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Abstract

In contrast to sparse keypoints, a handful of line segments
can concisely encode the high-level scene layout, as they
often delineate the main structural elements. In addition to
offering strong geometric cues, they are also omnipresent in
urban landscapes and indoor scenes. Despite their appar-
ent advantages, current line-based reconstruction methods
are far behind their point-based counterparts. In this paper
we aim to close the gap by introducing LIMAP, a library
for 3D line mapping that robustly and efficiently creates
3D line maps from multi-view imagery. This is achieved
through revisiting the degeneracy problem of line triangu-
lation, carefully crafted scoring and track building, and
exploiting structural priors such as line coincidence, paral-
lelism, and orthogonality. Our code integrates seamlessly
with existing point-based Structure-from-Motion methods
and can leverage their 3D points to further improve the line
reconstruction. Furthermore, as a byproduct, the method
is able to recover 3D association graphs between lines and
points / vanishing points (VPs). In thorough experiments,
we show that LIMAP significantly outperforms existing ap-
proaches for 3D line mapping. Our robust 3D line maps
also open up new research directions. We show two exam-
ple applications: visual localization and bundle adjustment,
where integrating lines alongside points yields the best re-
sults. Code is available at https://github.com/cvg/limap.

1. Introduction

The ability to estimate 3D geometry and build sparse
maps via Structure-from-Motion (SfM) has become ubiq-
uitous in 3D computer vision. These frameworks enable
important tasks such as building maps for localization [60],
providing initial estimates for dense reconstruction and re-
finement [65], and novel view synthesis [45, 48]. Currently,
the field is dominated by point-based methods in which 2D
keypoints are detected, matched, and triangulated into 3D
maps [20, 64]. These sparse maps offer a compact scene rep-
resentation, only reconstructing the most distinctive points.

While there have been tremendous progress in point-
based reconstruction methods, they still struggle in scenes

(a) Point mapping [13, 64] (b) Line mapping

(c) Line-point association (d) Line-VP association

Figure 1. In this paper, we propose a robust pipeline for mapping
3D lines (b), which offers stronger geometric clues about the scene
layout compared to the widely used point mapping (a). Part of
the success of our pipeline attributes to the modeling of structural
priors such as coincidence (c), and parallelism / orthogonality (d).
The corresponding 3D association graphs between lines and points
/ vanishing points (VPs) are also recovered from our system as a
byproduct. The degree-1 point and degree-2 junctions are colored
in blue and red respectively in (c), while parallel lines associated
with the same VP are colored the same in (d).

where it is difficult to detect and match sufficiently many sta-
ble keypoints, such as in indoor areas. On the contrary, these
man-made scenes contain abundant lines, e.g. in walls, win-
dows, doors, or ceilings. Furthermore, lines exhibit higher
localization accuracy with less uncertainty in pixels [16].
Last but not least, lines appear in highly structured patterns,
often satisfying scene-wide geometric constraints such as
co-planarity, coincidence (line intersections), parallelism,
and orthogonality. In practice, lines suffer from different is-
sues, such as poor endpoint localization and partial occlusion.
However, recent line detectors and matchers are bridging the
gap of performance between points and lines [25, 46, 84],
making it timely to revisit the line reconstruction problem.

Despite their rich geometric properties and abundance in
the real world, there exist very few line-based reconstruction
methods in the literature [22, 23, 44, 77]. In practical applica-
tions, they have also not achieved the same level of success
as their point-based counterparts. We believe this is due to
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several intrinsic challenges specific to line mapping:
• Inconsistent endpoints. Due to partial occlusion, lines

often have inconsistent endpoints across images.
• Line fragmentation. In each image there might be mul-

tiple line segments that belong to the same line in 3D.
This makes the process of creating track associations more
complex compared to building 3D point tracks.

• No two-view geometric verification. While point
matches can be verified in two views via epipolar geome-
try, lines require at least three views to filter.

• Degenerate configurations. In practice line triangula-
tion is more prone to unstable configurations (see Fig. 8),
e.g. becoming degenerate whenever the line is parallel
with the camera motion (i.e. to epipolar lines).

• Weaker descriptor-based matching. State-of-the-art de-
scriptors for line segments are far behind their point-based
counterparts, putting more emphasis on geometric verifi-
cation and filtering during reconstruction.
In this paper we aim to reduce the gap between point-

based and line-based mapping solutions. We propose a new
robust mapping method, LIMAP, that integrates seamlessly
into existing open-source point-based SfM frameworks [64,
67, 80]. By sharing the code with the research community
we hope to enable more research related to lines; both for
low-level tasks (such as improving line segment detection
and description) and for integrating lines into higher-level
tasks (such as visual localization or dense reconstruction). In
particular, we make the following contributions in the paper:

• We build a new line mapping system that reliably recon-
structs 3D line segments from multi-view RGB images.
Compared to previous approaches, our line maps are sig-
nificantly more complete and accurate, while having more
robust 2D-3D track associations.

• We achieve this by automatically identifying and ex-
ploiting structural priors such as coincidence (junctions)
and parallelism. Our technical contribution spans all
stages of line mapping including triangulating proposals,
scoring, track building, and joint optimization, with 3D
line-point / VP association graphs output as a byproduct.

• The framework is flexible such that researchers can easily
change components (e.g. detectors, matchers, vanishing
point estimators, etc.) or integrate additional sensor data
(e.g. depth maps or other 3D information).

• We are the first to go beyond small test sets by quanti-
tatively evaluating on both synthetic and real datasets to
benchmark the performance, with hundreds of images for
each scene, in which LIMAP consistently and signifi-
cantly outperforms existing approaches.

• Finally, we demonstrate the usefulness of having robust
line maps by showing improvement over purely point-
based methods in tasks such as visual localization and
bundle adjustment in Structure-from-Motion.

2. Related Work
Line Detection and Matching. Detecting 2D line segments
conventionally relies on grouping image gradients [5, 75].
To improve the robustness and repeatability, learning-based
line detectors were later proposed to tackle the problem
of wireframe parsing [25, 43, 82, 83, 88, 90]. Recent deep
detectors [26, 46, 81] manage to achieve impressive results
for detecting general line segments. Matching of the detected
line segments is often based on comparing either handcrafted
[8, 74, 76, 85] or learning-based [1, 34, 46, 73, 84] descriptors.
Some recent methods also exploit point-line [14, 15] and
line-junction-line structures [38, 39] to improve matching
results, yet still not reaching the reliability level of advanced
point matchers [58, 70]. Our method can leverage any line
detector and matcher, and is robust to outliers.

Line Reconstruction. As a seminal work, Bartoli and
Sturm [6, 7] proposed a full SfM pipeline for line segments,
later improved by Schindler [63] with Manhattan-world as-
sumption [12]. Jain et al. [27] proposed to impose global
topological constraints between neighboring lines, which
were further explored in [51, 53, 54] to build wireframe mod-
els. Some learning-based methods [42, 90] were introduced
as well to predict 3D wireframes. Hofer et al. [21–23] pro-
posed checking weak epipolar constraints over exhaustive
matches and graph clustering, and introduced the Line3D++
software (referred as L3D++ in this paper), which remains
the top choice [17, 42] for acquiring 3D line maps so far.
Recently, ELSR [77] employed planes and points to guide
the matching. However, all prior work mainly shows qual-
itative results and provides quantitative evaluation only on
relatively small image sets [27, 69]. In this paper, we set up
a quantitative evaluation on benchmarks with hundreds of
images, where our proposed system significantly surpasses
prior work by improving all stages in the mapping pipeline.

Line-based Applications. The resulting 3D line maps can
be used for many downstream applications. [23] advocates
the complementary nature of line reconstruction for structure
visualization. Some incremental line-based SfM systems are
introduced in [24,44,86]. To improve quality and robustness,
recent methods [18,19,40,41,49,78,91] jointly employ point
and line features in SLAM. While their line maps are often
noisy and incomplete, noticeable improvement has been
achieved in the accuracy of the recovered camera motion.
There has also been development on VP estimation [9,37,50,
87] and solvers for joint point-line pose estimation [4,52, 72,
89]. Recently, promising performance in visual localization
has been achieved by combining point and line features in
a refinement step [17]. In this paper, we show that our line
maps can benefit multiple applications such as localization,
SfM, and MVS (Sec. J in supp.). In particular, we present
very competitive results on point-line visual localization.
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Figure 2. Overview. Given a set of posed images and optional 3D points, we associate nearby points to lines, match the lines, triangulate them
with 4 different strategies, score 3D line proposals, build line tracks, jointly optimize all features, before obtaining our final reconstruction.

3. The Proposed 3D Line Mapping Pipeline
We now present our proposed pipeline for 3D line map-

ping. Our method takes as input a set of images with 2D
line segments from any existing line detectors. We as-
sume the camera pose for each image is available (e.g. from
SfM/SLAM), and optionally we can also leverage a 3D point
cloud (e.g. obtained from point-based SfM). The pipeline
consists of three main steps:

• Proposal Generation (Sec. 3.1): For each 2D line seg-
ment, we generate a set of 3D line segment proposals.

• Scoring and Track Association (Sec. 3.2): Considering
multi-view consistency, we score each proposal, select the
best candidate for each 2D line, and associate them into a
set of 3D line tracks.

• Joint Refinement (Sec. 3.3): Finally, we jointly perform
non-linear refinement over the 3D line tracks along with
3D points and VP directions, integrating additional struc-
tural priors as soft constraints.

Figure 2 shows an overview of the overall pipeline. In the
following sections, we detail each of the three main steps.

By design our pipeline is robust to scale changes and
we use the same hyper-parameters for all experiments
across datasets, which are provided in Sec. F.2 in the supp.

3.1. Generating 3D Line Segment Proposals

The first step is to generate a set of 3D line proposals
for each 2D line segment. Given a segment in an image,
we use any existing line matcher to retrieve the top K line
matches in each of the nv closest images. Using the top K
line matches instead of a single match increases the chance
of getting a correct match, while wrong matches will be
filtered out in subsequent steps.

Let (xr
1,x

r
2) ∈ R3 × R3 be the two endpoints (in homo-

geneous coordinates normalized by the intrinsics) for the
reference line segment that we wish to generate proposals
for. For ease of notation, we let the world-coordinate system
align with the reference view. The endpoints of the 3D line
proposals that we generate can all be written as

X1 = λ1x
r
1, X2 = λ2x

r
2, (1)

for some values of λ1, λ2 ∈ R. Having the 3D endpoints
of all proposals lie on the camera rays of the 2D endpoints
simplifies the scoring procedure in the second step (Sec. 3.2).

3.1.1 Line Triangulation

For each matched 2D line segment (xm
1 ,xm

2 ) we generate
one proposal via algebraic line triangulation. Let (Rm, tm)
be the camera pose of the matched view. We can then solve
linearly for the endpoint ray depths λi as

(xm
1 × xm

2 )T (Rm(λix
r
i ) + tm) = 0, i = 1, 2. (2)

The proposals are then filtered with cheirality checks (posi-
tive λ) and degeneracy check via the angle between ray xr

i

and ℓm = xm
1 × xm

2 . Note that line triangulation becomes
inherently unstable close to degenerate configurations when
ℓTmRmxr

i = 0, where we get zero or infinite solutions from
(2). Geometrically, this happens when the line is parallel
with the epipolar plane: If ℓTmtm ̸= 0 they have no inter-
section, otherwise they intersect fully and we get infinite
solutions ℓm ∼ tm × Rmxr

i = Exr
i , i.e. the line segment

coincides with the epipolar line from xr
i . This issue is further

illustrated in Figure 8. Since we solve for each λi indepen-
dently, the triangulation problem can have zero, one, or two
degenerate endpoints. We term the case with one degenerate
endpoint as a weakly degenerate one, and the case with two
degenerate endpoints as fully degenerate. In contrast to the
point case, two-view line triangulation is minimal such that
any solution fits the measurements exactly with zero error,
preventing filtering with 2D reprojection error at this stage.

3.1.2 Point-Line Association

To obtain meaningful proposals in degenerate cases, we lever-
age additional geometric information coming from either
points or associated vanishing points (VPs). 2D-3D point
correspondences can either come from a point-based SfM
model or be triangulated from matched endpoints/junctions.
For each 2D line segment, we associate all 2D points within
a fixed pixel threshold and thereby associate with their corre-
sponding 3D points. For each image, we also estimate a set
of VPs and their association to 2D lines using JLinkage [71].
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3.1.3 Point-guided Line Triangulation

We now generate a second set of proposals for each 2D
line segment with the assistance of the associated 2D-3D
point correspondences and vanishing points. In the follow-
ing parts we present three different methods. M1 employs
multiple associated 3D points so it is stable for all cases
including the fully degenerate ones, while M2 and M3 with
one known point / VP can help generate stable proposals in
weakly degenerate cases, which are more common in prac-
tice. Cheirality tests are applied to all proposals with respect
to both views.
M1. Multiple Points. For each matched line segment we
generate one proposal by collecting all of the associated 3D
points that are common between the reference and the match.
On top of those common points, we fit a 3D line that is then
projected onto two camera rays corresponding to xr

1 and xr
2.

M2. Line + Point. For each matched line segment we also
generate one proposal for each shared 3D point. We first
project the 3D point onto the plane spanned by xr

1 and xr
2.

We then aim to find a line that passes through the projection
and minimizes the residuals in (2) to the matched line. This
can be formulated as a quadratic optimization problem in the
two endpoint depths λ = (λ1, λ2) with a single constraint:

min
λ∈R2

λTAλ+ bTλ, s.t. λTQλ+ qTλ = 0. (3)

Due to the low-dimensionality of the problem, a closed-form
solution can be derived by reducing it to a univariate quartic
polynomial. We show the full derivation in Sec. B in supp.
M3. Line + VP. Each VP corresponds to a 3D direction. For
each associated VP, we generate one proposal based on its
direction (again projected onto the plane spanned by xr

1 and
xr
2). This gives a single linear constraint on the ray depths,

(v × (xr
1 × xr

2))
T
(λ2x

r
2 − λ1x

r
1) = 0. (4)

where v ∈ R3 is the VP. Using the constraint, we then solve
for λ = (λ1, λ2) by minimizing the two residuals of (2) in
a least squares sense. Note that v can either come from the
reference image, or from a matched line in another image.
Extension: Line Mapping Given Depth Maps. The
proposal generation step can be improved when each image
has a corresponding depth map (e.g. from an RGB-D sensor),
which can be leveraged with robust line fitting to generate
the 3D line proposals. Refer to Sec. E in our supplementary
material for more details and results.

3.2. Proposal Scoring and Track Association

At this point, each 2D line segment l in image I is associ-
ated with a set K of 3D line segment proposals (stemming
from the top K line matches and various triangulations) for
each neighboring image J . We describe in the following
how we select the best 3D line proposal for each 2D line seg-
ment, and associate these lines into tracks. For each of these
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Figure 3. Scoring methods. We propose three novel line scoring
measures that are scale-invariant and handle different line lengths.

steps, we leverage different scoring methods quantifying the
distance between two 3D line segments (L1, L2). These
distances are usually computed symmetrically and averaged,
and can be obtained both in 3D and in 2D by projecting
each 3D line into the other view. We start by presenting two
classic ones, and then define our three novel line distances
(one for 3D proposal selection and two for track building).

• Angular distance: angle between L1 and L2.

• Perpendicular distance: maximum orthogonal distance of
the endpoints of L1 to the infinite line spanned by L2.

3D Proposal Selection. To select best 3D candidate for each
2D line, we score each proposal Li by measuring its consis-
tency with the others. Here we introduce a new distance:

• Perspective distance: assuming the endpoints of L1 and L2

are on the same rays as in Fig. 3(a), the distance is defined
as the endpoint distances, divided by the ray depths ds, de
of the endpoints of L1 in image 1. This score can filter
out ill-posed triangulations (refer to Sec. F.3 in supp. for
detailed discussions), while remaining scale-invariant.

This new distance, together with the angular distance in 2D
and 3D, and the perpendicular distance in 2D, have different
scales. In order to aggregate them together, we associate
a scaling factor τr to each distance r and get a normalized
score sn = e−(r/τr)

2 ∈ (0, 1]. Denoting by S the set of
all the corresponding normalized scores and 1 the indicator
function, the score between L1 and L2 becomes

s(L1, L2) = min
sn∈S

(sn · 1sn≥0.5) ∈ {0} ∪ [0.5, 1]. (5)

Now equipped with unique score per line pair, we can con-
sider all the neighboring 3D line candidates Lk

j coming from
the neighboring image J and proposal k. The consistency
score is defined by summing the best score from each image:

sc(Li) =
∑
J∈NI

max
k∈K

s(Li, L
k
J), (6)

where NI is the set of neighboring images of I . The best 3D
line candidate for each 2D line segment l is then selected as
the proposal with the highest score: L = argmaxLi

sc(Li).
If the score is less than 1.0, i.e. the best candidate has less
than two supports from neighboring views, we ignore this
2D line segment in the subsequent track building process.
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Track Building. At this point, each 2D segment has been
assigned a unique 3D line (its best 3D line candidate). The
goal of this step is to gather these 2D segments into line
tracks. For this, we form a graph where the 2D segments
are nodes and all initial line matches are edges. We aim
to prune edges in the graph such that the connected 2D
segments share similar 3D assignments. We propose two new
line scoring measures that can cope with different endpoint
configurations and variable scales across images.

• Overlap score: we project L1 orthogonally onto L2, clip
the projected endpoints to the endpoints of L2 if they fall
outside of L2 to get segment Π(L1), and compare the ratio
of lengths to a threshold τo: 1 |Π(L1)|

|L2| ≥τo
(see Fig. 3(b)).

• InnerSeg distance: the endpoints of L1 are perpendicu-
larly unprojected to L2. If they fall outside of L2, we
clip them to the closest endpoint of L2. By doing this in
both directions, we can define two inner segments (see
Fig. 3(c)), and the InnerSeg distance as the maximum
distance between their endpoints. To make this measure
scale-invariant, we additionally divide it by a scale factor
σ = min(d1,d2)

f , where dj is the depth of the mid-point of
Lj in image J and f is the focal length. This encodes how
far the mid-point can move in 3D before reaching 1 pixel
error in the image (detailed in Sec. F.3 in supp.).

We then convert the InnerSeg distance computed in 3D to a
normalized score as in the previous paragraph, and combine
it with the overlap score in 2D and 3D and previous scores
using (5). Given these pairwise scores of 3D lines, we can
now prune edges whose score is below a threshold tf = 0.5.
The connected components of the resulting graph yield the
line tracks, ignoring components with less than 3 nodes.

For each track, we then re-estimate a single 3D line seg-
ment. Using the set of endpoints from the 3D assignments
of all nodes in the track, we apply Principal Component
Analysis (PCA) and use the principal eigenvector and mean
3D point to estimate the infinite 3D line. We then project all
endpoints on this infinite line to get the new 3D endpoints.

3.3. Joint Optimization of Lines and Structures

Finally, we perform non-linear refinement on the acquired
3D lines with their track information. The straightforward
approach is to perform geometric refinement on the repro-
jection error. With the 2D point-line association available,
we can formulate a joint optimization problem by including
additional structural information. The energy to minimize
can be written as follows:

E =
∑
p

EP (p) +
∑
l

EL(l) +
∑
(p,l)

EPL(p, l), (7)

where EP and EL are the data terms, and EPL encodes the
3D association between lines and points / VPs. In particular,

EP is the 2D point reprojection error as in regular bundle
adjustment [64]. The association energy is softly weighted
(as discussed later) and optimized with robust Huber loss [3].
Each line is converted into a 4-DoF infinite line with Plücker
coordinate [7] for optimization and converted back to line
segments by unprojecting its 2D supports. Each vanishing
point is parameterized with a 3-dimensional homogeneous
vector. Refer to Sec. A in supp. for details on efficient
computation with minimal parameterization.
Geometric Refinement. The data term of each line track
is also defined on its 2D reprojections. In particular, we
measure the 2D perpendicular distance weighted by the angle
consistency, which we robustly equip with Cauchy loss [3]:

EL(l) =
∑
k

w2
∠(Lk, ℓk) · e2perp(Lk, ℓk), (8)

where eperp is the perpendicular distance, Lk is the 2D pro-
jection of the 3D segment, ℓk are the 2D line segments, and
w∠ is the exponential of one minus the cosine of the 2D
angle between the projected and the observed line.
Soft Association between Lines and Points. For each
pair of 3D line and 3D point with their track information,
we can estimate how likely they are spatially associated
by traversing the 2D association graph (described in Sec.
3.1.2) of their supports. Specifically, we count the number
of associations among the 2D supports of the line track and
point track, and keep pairs with at least three 2D associations.
The 3D association energy EPL, defined on the surviving
pairs, is formulated as the 3D point-line distance weighted
by the number of 2D associations on their supports.
Soft Association between Lines and VPs. Same as the
point case, we can also build a soft association problem
between lines and VPs. First, we acquire 3D VP tracks
by transitively propagating line correspondences from the
3D line tracks. Then, we count the number of associations
among the 2D supports for each pair of 3D line and VP track.
The 3D line-VP association energy is defined as the sine of
the direction angle between the 3D line and the VP, implicitly
enforcing parallelism. Furthermore, we add regularizations
to the nearly orthogonal VP pairs to enforce orthogonality
of different line groups. Refer to Sec. C in supp. for details.

4. Experiments
Implementation Details. Our whole library is implemented
in C++ with Python bindings [28]. The triangulation and
scoring can be run in parallel for each node, enabling scal-
ability to large datasets. We use nv = 20 visual neighbors
and keep the top K = 10 line matches. We provide all the
values of thresholds and scaling factors in Sec. F.2 in supp.

4.1. Line Mapping

To validate the effectiveness of our system, we set up an
evaluation benchmark to quantify the quality of the recon-
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Line type Method R1 R5 R10 P1 P5 P10 # supports

LSD
[75]

L3D++ [23] 37.0 153.1 218.8 53.1 80.8 90.6 (14.8 / 16.8)
ELSR [77] 13.9 59.7 96.5 55.4 72.6 82.2 (N/A / N/A)
Ours 48.6 185.2 251.3 60.1 82.4 90.0 (16.4 / 20.5)

SOLD2
[46]

L3D++ [23] 36.9 107.5 132.8 67.2 86.8 93.2 (13.2 / 20.4)
Ours 54.3 151.1 191.2 69.8 84.6 90.0 (16.5 / 38.7)

Table 1. Line reconstruction on Hypersim [55] with LSD [75]
and SOLD2 [46] lines. Rτ and Pτ are reported at 1mm, 5mm, 10
mm along with the average number of supporting images/lines.

Method R5 R10 R50 P5 P10 P50 # supports

L3D++ [23] 373.7 831.6 2783.6 40.6 54.5 85.9 (8.8 / 9.3)
ELSR [77] 139.2 322.5 1308.0 38.5 48.0 74.5 (N/A / N/A)
Ours (line-only) 472.1 1058.8 3720.7 46.8 58.4 86.1 (10.3 / 11.8)
Ours 508.3 1154.5 4179.5 46.0 56.9 83.7 (10.4 / 12.0)

Table 2. Line reconstruction on train split of Tanks and Temples
[32] with LSD [75] lines. Rτ and Pτ are reported at 5mm, 10mm,
50mm along with the average number of supporting images/lines.

structed 3D line maps. As there are no ground truth (GT)
3D lines, we evaluate the 3D line mapping with either GT
mesh models or point clouds. We use the following metrics:
• Length recall (in meters) at τ (Rτ ): sum of the lengths of

the line portions within τ mm from the GT model.
• Inlier percentage at τ (Pτ ): the percentage of tracks that

are within τ mm from the GT model.
• Average supports: average number of image supports and

2D line supports across all line tracks.
In the following, we compare our system with two state-

of-the-art methods as baselines: L3D++ [23] and ELSR [77],
using two line detectors: the traditional LSD detector [75]
and the learning-based SOLD2 [46]. For ELSR [77], we
convert the input into VisualSfM [80] format and use code1

from the authors (only supporting LSD [75]).
Our first evaluation is run on the first eight scenes of the

Hypersim dataset [55], composed of 100 images each, and is
reported in Tab. 1. For both detectors, we reconstruct much
more complete line maps with better or comparable preci-
sion than the competitors, while also exhibiting significantly
higher quality of track information. This abundant track as-
sociation is beneficial particularly for line-based applications
such as visual localization [17]. After discussing with the
authors of ELSR, it seems that their method does not achieve
satisfactory results due to a lack of point and plane features.

We further evaluate all three methods on the train split
of the Tanks and Temples dataset [32] without Ignatius as it
has no line structures. As SOLD2 [46] is trained for indoor
images, we only use LSD [75]. Since the provided point
cloud was cleaned to focus only on the main subject, we
compute its bounding box, extend it by one meter, and only
evaluate lines inside this region. This prevents incorrectly
penalizing correct lines that are far away from the main scene,

1https://skyearth.org/publication/project/ELSR/

Figure 4. Top row: L3D++ [23]. Bottom row: Ours. Both systems
are run on Horse and Family from [32]. We show two different
views on the main scene of Horse.

Barn (410 images) ai 001 003 (100 images) Courtroom (301 images)

Figure 5. Qualitative results on Hypersim [55] and Tanks and
Temples [32]. On Barn we jointly visualize our results and the
aligned ground truth point cloud.

Figure 6. Qualitative results of the recovered line-point and line-
VP association graphs (visualized similarly as in Fig. 1).

which our method is particularly good at thanks to our scale-
invariant design (refer to Sec. G in supp.). Tab. 2 shows
the results, where our methods significantly improve the
mapping quality across the board. Fig. 4 shows qualitative
comparison between our method and L3D++ [23]. Our
results exhibit better completeness, have less noisy lines
that are flying around, and achieve significantly more robust
reconstructions of subtle details (e.g. on the ground). More
examples of our produced line maps are shown in Fig. 5.

As an additional output of our system, junction structures
and line-line relations such as parallelism and orthogonality
are discovered, as shown in Fig. 6. This directly comes from
the line-point and line-VP soft associations of Sec. 3.3. From
the recovered structures, we can clearly perceive the scene
and easily recognize the main Manhattan directions [12].

To demonstrate the scalability of the proposed system,
we also run our method on two large-scale datasets: Aachen
(6,697 images) [61, 62] and Rome city (16,179 images) [2,
67, 68]. Fig. 7 shows that our method produces reliable
line maps with clear structures. Note that the camera poses
from Bundler [67] on Rome city are far from perfect, while
our mapping still works reasonably well. The efficiency
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Figure 7. Scalability to large-scale datasets: Aachen (6,697 images) [61] and Rome (16,179 images) [2, 67, 68]. For Aachen [61], parallel
lines from the line-VP association graph are colored the same. For Rome [2, 67, 68], we visualize 10 representative components individually.
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Figure 8. Uncertainty in line triangulation measured by the
largest eigenvalue of the covariance (Sec. D in supp.). Left: Each
segment is colored by the uncertainty in the triangulation. Lines
that align with the epipolar lines (shown in blue) exhibit higher (red)
uncertainty. Right: We perform a small synthetic experiment to
illustrate this. The graph shows the uncertainty for line triangulation
as the lines approach the degenerate state. We compare with point-
based triangulation assuming that endpoints are consistent.

Line type Triangulation R1 R5 R10 P1 P5 P10 # supports

LSD
[75]

Endpoints 27.6 101.4 138.0 58.2 83.5 92.1 (13.0 / 13.2)
Line 48.3 187.0 257.4 59.2 81.9 89.8 (15.8 / 19.1)

SOLD2
[46]

Endpoints 27.3 82.8 106.5 68.2 84.5 90.9 (12.3 / 19.9)
Line 50.8 143.5 180.8 74.4 86.9 91.2 (15.1 / 32.2)

Table 3. Comparison between endpoint and line triangulation
on Hypersim [55]. While being more stable at triangulation, the
endpoints are often unmatched between line pairs.

Line M1 M2 M3 R1 R5 R10 P1 P5 P10 # supports

✓ 50.8 143.5 180.8 74.4 86.9 91.2 (15.1 / 32.2)
✓ 24.9 72.5 95.8 65.9 81.2 88.5 (11.3 / 15.7)
✓ ✓ 37.7 116.8 152.6 71.0 84.2 89.7 (13.8 / 25.8)

✓ ✓ 51.5 146.9 185.4 71.7 85.4 90.1 (14.9 / 31.2)
✓ ✓ ✓ 51.3 146.4 186.4 73.4 85.7 90.5 (15.8 / 35.6)
✓ ✓ ✓ ✓ 51.4 145.4 184.9 74.1 86.1 90.6 (16.5 / 38.7)

Table 4. Ablation study on different types of triangulation propos-
als (defined in Sec. 3.1.3) on Hypersim [55] with SOLD2 [46].

bottleneck is in line detection and matching (we use SOLD2
[46] descriptors), while the rest of the mapping takes only
∼10 minutes on Aachen [61, 62]. The time complexity of
our system is nearly linear with the number of images.

4.2. More Insights and Ablation Studies

Line Triangulation. To study the stability of the triangu-
lation, we perform a small test on a stereo pair from Ade-
laideRMF [79] on the uncertainty (measured by the largest
singular value of the covariance) of the triangulated 3D seg-
ments. We further run a synthetic experiment by generating
random lines on a plane orthogonal to the stereo pair, and
plot the uncertainty of point and line triangulations with

Line type Method R1 R5 P1 P5 # supports

LSD
[75]

L3D++ [23] 37.0 153.1 53.1 80.8 (14.8 / 16.8)
Ours (line) w/ [23] scoring 48.6 186.0 56.5 80.6 (14.4 / 16.8)
Ours (line) w/ [23] merging 41.2 158.2 59.6 82.5 (15.6 / 16.7)
Ours (line) w/ exhaustive 46.7 177.2 57.6 80.9 (16.8 / 20.8)
Ours (line) 48.3 187.0 59.2 81.9 (15.8 / 19.1)

SOLD2
[46]

L3D++ [23] 36.9 107.5 67.2 86.8 (13.2 / 20.4)
Ours (line) w/ [23] scoring 45.8 133.2 72.6 85.9 (15.0 / 31.1)
Ours (line) w/ [23] merging 37.7 113.4 70.5 84.5 (13.3 / 23.9)
Ours (line) w/ exhaustive 48.9 139.7 72.9 85.7 (16.2 / 36.9)
Ours (line) 50.8 143.5 74.4 86.9 (15.1 / 32.2)

Table 5. Studies on different components of our method with
only line-line proposals against L3D++ [23].

respect to the angle of the lines with the baseline (refer to
Sec. D in supp. for details). The results in Fig. 8 show that
when the matched line is nearly parallel to the epipolar line,
the line triangulation becomes degenerate with exploding
uncertainty, while triangulating the endpoints is significantly
more stable. Thus, combining points and VPs from the 2D
association is beneficial to improve the stability of the pro-
posals. However, the endpoints are generally not consistent
across line matches in practice and need to be complemented
with line-line triangulation. This can be verified in Tab. 3
where the performance significantly drops when we change
line triangulation into endpoint triangulation.

We further ablate our four types of triangulation for gen-
erating proposals. Results in Tab. 4 show that integrating
points and VPs enhance the 3D line maps, in particular sig-
nificantly improving the track quality. Another surprising
fact is that the third line in the table, relying only on points
and line + point triangulation, already achieves better results
than the prior baselines in Tab. 1. Employing all four types
of proposals obtains the best trade-off.
Scoring and Track Building. We first study the effects
of using exhaustive line matching as in L3D++ [23]. To
enable direct comparison we only use line triangulation pro-
posals. Results are shown in Tab. 5. While there are more
proposals generated from the exhaustive matches, both the
recall and precision decrease by a noticeable margin. This
is probably due to the large number of wrong proposals
misleading the scoring process. Nevertheless, our method
with exhaustive matches still works significantly better than
L3D++ [23]. To further study the effects of the proposed
distance measurements at scoring and track building (merg-
ing), we re-implement the ones proposed in L3D++ [23]
and perform direct comparison. Both our scoring and track
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Method R1 R5 R10 P1 P5 P10 # supports

Line-only w/o refine 43.5 135.8 180.1 75.1 87.2 92.2 (15.1 / 32.2)
Line-only w/ geom alone 50.8 143.5 180.8 74.4 86.9 91.2 (15.1 / 32.2)

w/o refine 46.5 146.0 189.7 76.8 88.9 93.3 (16.5 / 38.7)
w/ geom alone 51.4 145.4 184.9 74.1 86.1 90.6 (16.5 / 38.7)

w/ joint optimization 54.3 151.1 191.2 69.8 84.6 90.0 (16.5 / 38.7)

Table 6. Line refinement on Hypersim [55] with SOLD2 [46].

Dataset HLoc2 [56, 57] PtLine [17] Ours

Cambridge [30] 7.0 / 0.13 / 44.0 7.4 / 0.13 / 43.5 6.7 / 0.12 / 46.1
7Scenes [66] 3.3 / 1.08 / 73.0 3.3 / 1.09 / 72.7 3.0 / 1.00 / 78.0

Table 7. Visual localization on Cambridge [31] and 7Scenes [66].
We report the median translation and rotation errors in cm and
degrees, and the pose accuracy (%) at 5 cm / 5 deg threshold. All
metrics are averaged across all scenes of each dataset.

HLoc [56, 57] Ours w/ LIMAP

(T / R) err. ↓ Acc. ↑

HLoc [57] 5.2 / 1.46 46.8
HLoc [57] w/ depth 4.7 / 1.25 53.4

PtLine [17] 4.8 / 1.33 51.9
Ours w/ L3D++ [23] 4.1 / 1.14 60.8
Ours w/ LIMAP 3.7 / 1.02 71.1

Figure 9. Line-assisted Visual localization on Stairs from 7Scenes
[66]. Blue: 2D points/lines; Green/Red: Projected 3D points/lines.

building are significantly better, especially when equipped
with SOLD2 [46] which produces more structured lines.
Joint Optimization. Finally, we ablate the proposed joint
optimization in our pipeline. First, we remove the point-line
association and only apply the geometric residuals (reprojec-
tion error). Results in Tab. 6 show that the geometric refine-
ment improves significantly when the proposals solely come
from line triangulation. However, when adding additional
proposals from points and VPs, it contributes marginally and
even misleads some lines that are generated from points and
VPs but poorly conditioned for lines (R10 decreases). When
integrated with joint optimization with soft association, the
recall is further improved noticeably, while sacrificing a bit
on the precision. It is worth pointing out that the joint opti-
mization also enables the byproduct of junction structures
and line-line relations (e.g. in Fig. 6).

4.3. Applications

Line-Assisted Visual Localization. We build a hybrid vi-
sual localization with both points and lines on top of the
acquired 3D line maps. Specifically, we first build point
maps as in HLoc [56, 57] and line maps with our proposed
method. Then, we match points and lines respectively and
get 2D-3D correspondences from the track information in
the 3D maps. Given these correspondences, we combine

2Up to the date of submission, the COLMAP model [64] used by HLoc
[56, 57] does not consider radial distortion from the VisualSfM [80] model.
So our results are better than the original ones.

Med. error ↓ AUC @ (1◦ / 3◦ / 5◦) ↑

COLMAP [64] 0.188 77.3 / 89.0 / 91.6
COLMAP [64] + LIMAP refinement 0.146 82.9 / 91.2 / 93.0

Table 8. Joint bundle adjustment of points and lines on Hypersim
[55]. Relative pose errors are measured on all image pairs.

four minimal solvers [33, 47, 89]: P3P, P2P1LL, P1P2LL,
P3LL from PoseLib [35], together in a hybrid RANSAC
framework [10,59] with local optimization [11,36] to get the
final 6-DoF pose (refer to Sec. H in supp. for details). This
also enables direct comparison since only using P3P [47] cor-
responds to the point-alone baseline similar to HLoc [56,57].
We also compare with the post-refinement of PtLine [17]
that optimizes over the initial point-alone predictions.

Results in Tab. 7 show that our localization system
achieves consistently better results than the point-alone base-
line both indoors [66] and outdoors [30], validating the effec-
tiveness of employing 3D line maps for visual localization.
In Fig. 9 we show more detailed results from the Stairs scene
from 7Scenes [66] as it is one of the most challenging ones.
Integrating lines significantly benefits the alignment of the
reprojected structures, improving the pose accuracy from
46.8 to 71.1. Also, with our localization pipeline, using the
map built from our proposed method is better than from
L3D++ [23] by a noticeable margin, again demonstrating
the advantages of our proposed line mapping system.
Refining Structure-from-Motion. With the acquired 3D
line maps built from a roughly correct point-based structure-
from-motion model, e.g, COLMAP [64], we can use the 3D
lines with their track information to refine the input camera
poses with joint optimization of points and lines. To verify
this, we run COLMAP [64] with SuperPoint [13] on the
first eight scenes of Hypersim [55], run the proposed line
mapping on top of it, and perform joint bundle adjustment
to refine poses and intrinsics. We report the relative pose
evaluation of all image pairs [29]. Tab. 8 shows that the joint
point-line refinement consistently benefits the accuracy of
the camera poses, in particular improving AUC@1◦ by 5.6.

5. Conclusion
In this paper, we introduce LIMAP: a library for robust

3D line mapping from multi-view imagery. Extensive exper-
iments show that our method, by improving all stages of the
reconstruction pipeline, produces significantly more com-
plete 3D lines, with much higher quality of track association.
As a byproduct, the method can also recover 3D association
graphs between lines and points / VPs. We further show the
usefulness of 3D line maps on visual localization and bundle
adjustment. Future directions include incremental / real-time
structure mapping, distinguishing structural lines from textu-
ral lines for wireframe modeling, and exploiting higher-level
structures and relations for downstream applications.
Acknowledgements. V. Larsson was supported by ELLIIT.
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