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Abstract

Neuron reconstruction in a full adult fly brain from high-
resolution electron microscopy (EM) data is regarded as a
cornerstone for neuroscientists to explore how neurons in-
spire intelligence. As the central part of neurons, somas in
the full brain indicate the origin of neurogenesis and neu-
ral functions. However, due to the absence of EM datasets
specifically annotated for somas, existing deep learning-
based neuron reconstruction methods cannot directly pro-
vide accurate soma distribution and morphology. More-
over, full brain neuron reconstruction remains extremely
time-consuming due to the unprecedentedly large size of
EM data. In this paper, we develop an efficient soma re-
construction method for obtaining accurate soma distribu-
tion and morphology information in a full adult fly brain.
To this end, we first make a high-resolution EM dataset
with fine-grained 3D manual annotations on somas. Re-
lying on this dataset, we propose an efficient, two-stage
deep learning algorithm for predicting accurate locations
and boundaries of 3D soma instances. Further, we deploy a
parallelized, high-throughput data processing pipeline for
executing the above algorithm on the full brain. Finally,
we provide quantitative and qualitative benchmark compar-
isons on the testset to validate the superiority of the pro-
posed method, as well as preliminary statistics of the re-
constructed somas in the full adult fly brain from the bi-
ological perspective. We release our code and dataset at
https://github.com/liuxy1103/EMADS.

1. Introduction

Drosophila melanogaster, also known as the fruit fly, is
an organism with intelligent behaviors including percep-
tion, learning, and judgment [10, 34, 36]. It has a complete
and relatively simple neural system [6, 37]. The interac-
tions among neurons in the system guide the drosophila’s
intelligent behaviors [8, 14, 23, 35]. Therefore, the study
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of drosophila neurons, which has fascinated neuroscientists
for more than a century [5, 7, 16, 40, 44], has key implica-
tions for understanding how the brains of living organisms
produce intelligence [2, 41].

As the central part of the neuron, the soma maintains
the neuron structure and controls the formation of neu-
rites [22, 30]. Studies have shown that the location and
morphology of somas in the full brain are related to neural
development and the neural logic function [3, 17], and the
number of somas is related to the complexity of the brain
and the age of the living body [1, 25]. Therefore, it is of
great biological significance to investigate soma reconstruc-
tion in the full brain of model organisms such as drosophila.

Traditional studies in this field are mainly based on brain
images collected by optical microscopies [13, 38]. The
soma structure is first stained with specific staining proteins,
and the confocal images collected could show fluorescence
staining signals, so as to obtain the soma distribution of the
full brain of drosophila. However, the resolution of con-
focal images is low, making it difficult to obtain the exact
morphology of each soma. Based on the assumption that
each cell has only one nucleus, the isotropic fractionator
method [15, 18] is used to obtain the number of somas in
the full brain of drosophila. This method destroys the brain
structure during the production of cell suspension, so the
distribution of somas in the full brain cannot be obtained.

Recently, with the development of high-speed elec-
tron microscopy (EM) scanning technology, high-
resolution EM image datasets of different species including
drosophila [42], mouse [31], and human [39] have been
successfully acquired, and the full adult fly brain (FAFB)
dataset [47] imaged from a complete drosophila brain can
be regarded as a representative. Based on these datasets,
advanced deep learning algorithms are developed to auto-
matically reconstruct neurons [12, 23] and cell nucleus [32]
in EM images for connectomics study. Meanwhile, parallel
and distributed data processing pipelines [39, 46] are
proposed to deploy these algorithms on large-scale EM
datasets. However, due to the lack of high-resolution EM
datasets specifically annotated for somas, existing works
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cannot directly provide accurate soma distribution and
morphology information.

In this paper, we make one of the first efforts to develop
an efficient soma reconstruction method in a full adult fly
brain, aiming to obtain accurate soma distribution and mor-
phology information for this model organism. The contri-
butions of this work are four aspects:

• We make a high-resolution EM soma dataset with fine-
grained 3D manual annotations for more than 8× 109

voxels. To the best of our knowledge, this dataset is
the first of its kind.

• Relying on the above dataset, we propose an effi-
cient, two-stage deep learning algorithm for soma in-
stance segmentation, and benchmark existing alterna-
tive methods to validate the superiority of ours.

• We deploy a parallelized, high-throughput data pro-
cessing pipeline for executing our algorithm on the full
brain, fulfilling the soma reconstruction task on a 90-
GPU cluster within 4 days.

• We provide quantitative and qualitative results for eval-
uating the accuracy and efficiency of the proposed
method, along with preliminary statistics of the re-
constructed somas in the full adult fly brain, including
count, size, distribution and morphology.

We believe our work will contribute to the study of the
drosophila neural system. The benchmark dataset has been
released to facilitate future research along this line. Code
and a 4K video of the full brain reconstruction result are
now available through the links provided in Github website.

2. Related Work
2.1. Neuron Reconstruction

Recent works of neuron reconstruction in EM images,
such as FFN [23], MALA [12], and other elaborate meth-
ods [19, 20, 24, 28, 29], embrace the power of deep learn-
ing and obtain neuron instance information based on con-
nectivity, pre-labeling, etc. However, due to the absence
of elaborate annotations and specific designs for somas in
these algorithms, the shape and position of the soma can-
not be accurately predicted. Moreover, these algorithms
are generally time-consuming when dealing with extremely
large-scale EM data. For example, MALA has complex
post-processing procedures based on optimization of tradi-
tional methods, and FFN has a very large number of sliding
windows during inference, making them inefficient for fast
soma reconstruction in the full brain of drosophila. More
recent works [11, 26] reconstruct all neurons on the FAFB
dataset. However, one cannot directly obtain the accurate
distribution and morphology information of somas based
on these results, since each generated segment often con-
tains all parts of a fly neuron: a soma, dendrites, axon ter-

minals, and a primary neurite. Therefore, our work on in-
dependent soma reconstruction is complementary to neuron
reconstruction for connectomics study.

2.2. 3D Nuclei Reconstruction

As a parallel line, there are two recent works on nucleus
reconstruction in EM images. Although the soma has a one-
to-one correspondence to the nucleus, the nucleus is often
located in the center of the soma with a regular spherical
shape, which cannot reflect the morphology of the soma.
Mu et al. [32] reconstruct all cell nuclei on the FAFB dataset
by using a standard 2D U-Net to predict the binary classi-
fication of individual pixels as either nucleus or not. How-
ever, this method lacks the utilization of 3D structural infor-
mation and is difficult to apply to densely distributed somas
with complex shapes. Lin et al. [27] make a neuronal nu-
clei instance segmentation EM dataset at the sub-cubic mil-
limeter scale and propose a hybrid representation segmen-
tation method by directly adopting a 3D model to predict
multiple complete objects simultaneously. However, this
method is not suitable for high-resolution EM images at the
nanometer scale, since somas with much larger sizes cannot
be processed by the model due to the limited GPU memory.
Different from existing nucleus segmentation methods, our
proposed soma segmentation method not only adopts a 3D
model to consider the 3D structure of complete somas but
also can directly process high-resolution EM images with
an elaborate two-stage instance segmentation algorithm.

3. EM Dataset with Fine-Grained Annotations
We make an EM adult drosophila soma (EMADS)

dataset with fine-grained manual annotations. EMADS con-
tains 204 completely annotated 3D somas with different
sizes and morphologies derived from 10 apart regions in a
full adult fly brain.

3.1. Source and Preparation

The EM images of the adult drosophila brain that we
annotate originate from FAFB [47]. FAFB is the world’s
first EM dataset for a complete drosophila brain. FAFB
is imaged at the synaptic resolution and has been pro-
cessed with stitching and alignment. There are a total of
7, 062 sections in FAFB, and the full resolution of each
section is 286, 720 × 155, 648 which is partitioned into
8, 192 × 8, 192 images, resulting in 40 TB data in stor-
age. Thanks to the high-resolution imaging technique, bi-
ological structures and boundaries in FAFB are clear, mak-
ing fine-grained manual annotations on the voxel-level data
possible. However, the annotation workload on such high-
resolution, large-scale data is heavy. Before annotation, we
first downsample FAFB at both the x-axis and the y-axis
with a factor of 4. The physical resolution of the downsam-
pled dataset is 16nm × 16nm × 40nm (x × y × z). In this
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Figure 1. (a) An overview of the FAFB dataset. We select 10 EM
blocks from the full brain, and annotate them to make our label
sets. We use different colors to represent different soma instances,
and the green color indicates the annotated background region. (b)
A visualization example for our localization label set. The white
and black colors indicate the seed and non-seed annotations, re-
spectively. The area in blue color is unannotated. (c) A visualiza-
tion example of the segmentation label set. The white and black
colors indicate the soma-of-interest and background annotations,
respectively. The red color indicates the boundary annotation of
the soma-of-interest. For simplicity and clarity, we visualize (b)
as a slice of the 3D block and (c) as a slice of the 3D patch.

way, the annotation workload for each soma is lessened so
that we can annotate more somas in diverse sizes and mor-
phologies. Besides, the reduced resolution also lessens the
computational burden in our method and makes it afford-
able for 3D deep networks. We store the full brain data in
our defined 3D image blocks, and the size of each block is
1, 836×1, 836×186. The 3D image blocks are arranged in
the order of x, y (in the lateral direction) and z (in the axial
direction) axis. By loading these blocks in the axial orders
continuously, we can obtain the full brain data. The parallel
data processing pipeline in our method is detailed in Sec. 5.

3.2. Selective Annotations

Many previous works [9, 21] utilize specific biological
stains to mark somas from 3D confocal images to indi-
cate a general soma distribution in the full drosophila brain.
Depending on this distribution, we select 10 apart image
blocks from FAFB according to the location and density of
somas in the full brain. We then organize a group of hu-
man annotators to annotate a part of somas and background
areas inside these 10 image blocks, with an efficient and
semi-automatic annotation tool VAST [4]. The annotations
are conducted at the voxel level, with the boundary of so-
mas to be annotated precisely. 20 master and Ph.D. students
majoring in neuroscience or computer vision devote them-

selves to this annotation task. We annotate 204 complete
somas with different sizes and morphologies inside these
10 image blocks, and each soma takes more than two hours
for one person to annotate. All 10 blocks are used to en-
sure the diversity of soma distribution and morphology. At
the same time, weighing the workload of the annotators and
the amount of data to be annotated, we only annotate about
20 somas in each block, and there are still unlabeled areas.
The total number of annotated voxels is more than 8× 109.
The average size of these somas is around 300× 300× 100
voxel3. The annotations are instance-wise, which means
each soma has a unique instance number that is different
from other somas. After the group annotation, two experts
check every annotated soma in a cross manner, and correct
the annotation mistakes. Finally, we obtain 10 EM blocks
with 10 corresponding label blocks, each with a resolution
of 1, 836 × 1, 836 × 186. We visualize one of these blocks
as an example in Fig. 1(a). Given that the soma is contin-
uous with the neurites that emanate from it, we annotate
each soma until its cell membrane curve narrows signifi-
cantly and reaches plateaus.

3.3. Localization Label Set

We first employ our annotations to make a label set for
localizing somas in a given EM block. We perform a binary
morphological erosion operation on the annotation of each
soma in its corresponding label block. Through this opera-
tion, the eroded annotations of somas are labeled as instance
seeds, which provides location information for each anno-
tated soma. In addition, since the erosion operation pre-
serves the morphology of each soma to a certain extent, we
can obtain the rough size of the soma according to the size
of the corresponding instance seed. After that, each labeled
block in the localization label set consists of two types of la-
bels besides the unannotated areas. These two labels denote
the instance seeds of the annotated somas and the non-seed
areas (which can be either the erosion areas or the non-soma
areas). An example is given in Fig. 1(b). This localization
label set, stored in blocks with a uniform size after further
downsampling, is used to localize somas in an efficient way
in the first stage of our segmentation algorithm (see details
in Sec. 4).

3.4. Segmentation Label Set

We then employ our partially annotated blocks to make
the other label set for segmenting somas from patches.
Specifically, we crop the annotated somas from their blocks
to patches. The size of each patch is slightly larger than
the size of the soma, and each soma is at the center of its
patch. Since many somas are next to each other and thus it
is hard to distinguish instances, we devise the segmentation
label set with three types of labels to tackle this problem.
We erode the annotation of each soma inside its patch by
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Figure 2. Illustration of our proposed soma instance segmentation algorithm. The localization stage aims to localize somas by predicting
instance seeds and generating bounding boxes for them in a given EM block, and the segmentation stage aims to segment somas from the
predicted bounding boxes.

two voxels. We then label the eroded soma at the center
of the patch as the soma-of-interest, and label the erosion
area as the soma boundary. The rest area in a patch except
for the soma-of-interest and the soma boundary is regarded
as a separate label. Therefore, the segmentation label set
consists of three types of segmentation labels. An example
is given in Fig. 1(c). This segmentation label set, stored in
patches with variable sizes, is used to segment somas in an
accurate way in the second stage of our segmentation algo-
rithm (see details in Sec. 4).

4. Two-Stage Soma Segmentation Algorithm
We propose an accurate and efficient soma instance seg-

mentation algorithm. Our algorithm contains two sequential
stages, the localization stage and the segmentation stage.
The localization stage aims to localize somas by predict-
ing instance seeds and generating bounding boxes for them
in a given EM block, and the segmentation stage aims to
segment the complete soma (soma-of-interest) located in
the center of the predicted bounding boxes. These bound-
ing boxes provide 3D soma candidates for the segmentation
stage, which filter out regions without soma and speed up
soma reconstruction in the whole brain. We illustrate the
proposed algorithm in Fig. 2.

4.1. Localization Stage

The localization stage consists of three steps: label com-
pletion, bounding box prediction and coordinate mapping.

First, we complete the labels for the unannotated areas in
our localization label set automatically with a localization
network using the U-Net model. Then, we adopt the com-
pleted label set to continually train this U-Net model to
predict instance seeds of the somas in unseen blocks, and
generate the bounding boxes for the somas by the instance
seeds. Finally, we map the bounding boxes back to the orig-
inal blocks. The following segmentation stage segments so-
mas from these bounding boxes. We illustrate the detailed
structures of our networks and training details in supple-
mentary materials.

Label Completion and Instance Seed Prediction. The
localization label set is stored after downsampling so that
we can feed a full EM block into our localization network
within the capacity of GPU memories. The factors of down-
sampling are 4, 4 and 6 for x-, y- and z-axis, respectively,
resulting in a uniform block size of 459×459×62. Despite
that we have labels for a part of the areas in our localization
label set, there are still unannotated areas without labels.
We thus use our localization label set to train a network to
classify the instance seeds of somas and the non-seed areas
on the labeled areas. First, we ignore the unannotated ar-
eas and use the original labels to optimize the network. The
optimization only computes loss on the labeled areas. Af-
ter the optimization converges, we employ the network to
predict results for the unannotated areas. We combine both
the generated labels and the original labels together to form
the final labels for each block. We then adopt the final la-
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bels to further optimize the network until convergence. The
training details are shown in supplementary materials.
Bounding Box Generation. After label completion, we ob-
tain a trained classification network. We then use it to pre-
dict instance seeds of somas for unseen EM blocks. Accord-
ing to the sizes of the predicted instance seeds, our method
automatically generates the 3D bounding boxes for somas
that the instance seeds indicate. We set the centroid of the
predicted instance seed as the center for the bounding box.
The length of each border of the 3D bounding box is prede-
fined as more than two times the instance seed, which can
generally cover the corresponding soma completely. Each
bounding box thus indicates a patch that contains a com-
plete soma.
Coordinate Mapping. After obtaining the bounding boxes
for somas in a given block, we can localize the somas. How-
ever, since the block we use to localize somas has been
downsampled before, we have to map the coordinate back
to the original block. We multiply the coordinate by the
downsampling factors 4, 4 and 6, and adopt the bounding
boxes with the multiplied coordinates to localize the somas
in the original block.

4.2. Segmentation Stage

In the segmentation stage, we train a segmentation net-
work using the U-Net backbone (which can be readily up-
graded to more advanced structures such as transformer, as
shown in Sec. 6) on our segmentation label set to classify
the soma-of-interest, the soma boundary and the rest area
from a given patch. Note that the network only predicts
the complete soma at the center of the patch, and the rest
area is regarded as the background. Based on this special
design, we can directly train a 3D model on the partially
annotated dataset. Moreover, this design is beneficial for
dealing with densely distributed somas, since it is difficult
to directly predict the background between adjacent somas,
even on fully annotated datasets. During inference, we re-
gard the bounding boxes we obtain in the localization stage
as the patches, and employ the trained segmentation net-
work to predict voxel-wise classes for these patches. Since
the size of each patch is variable, we set the batch size as
1 during network training. Finally, we take the predicted
soma-of-interest class as our soma segmentation results.

5. Parallelized Large-scale Data Processing
To cope with the huge amount of EM data of a full adult

fly brain and accelerate the computation, we deploy a par-
allelized, high-throughput data processing pipeline on dis-
tributed clusters of CPUs and GPUs, which is shown in sup-
plementary materials. Overall, our pipeline follows the de-
sign of a mainstream distributed processing algorithm [46]
but is customized based on our local infrastructure and our
soma segmentation task. Firstly, we divide the whole FAFB

volume into a number of 3D blocks. Secondly, we execute a
segmentation procedure to extract somas within each block
in parallel. Thirdly, we stitch all block-wise segmentation
results to obtain the final reconstruction result for the whole
3D volume.
3D Block Division. Limited by the RAM size, it is impos-
sible to process the whole FAFB volume directly in a single
cluster node. We divide the whole 3D volume into over-
lapping 3D blocks and save them in our purpose-built data
center. Then the cluster nodes process these blocks in paral-
lel. Metadata, containing the relative location in the whole
3D volume, accompanies each block. In total, we generate
40, 590 blocks with a size of 1, 836 × 1, 836 × 186 voxel
from the whole FAFB volume. Neighboring blocks share
an overlapping region with 212 × 30 voxels in lateral and
axial directions, respectively, which are used for stitching
the blocks later.
Intra-block Segmentation. We package these divided
blocks into groups, each of which can be distributed to and
processed by a computing task with one TITAN XP GPU
and corresponding CPUs, RAM, etc. We develop a task
management front-end to produce and submit these tasks to
a task queuing system. All tasks are executed independently
to process groups of blocks by the above deep learning-
based soma segmentation algorithm. This processing stage
requires little inter-process communication. Finally, each
task generates a group of intra-block segmentation results
and writes them into our data center for the following pro-
cessing stage.
Inter-block Stitching. To obtain the complete segmenta-
tion result of one soma instance across different neighboring
blocks, we adopt a hierarchical block stitching algorithm
with three steps to stitch the segmentation results efficiently.
Firstly, we compute the overlap ratio of each soma between
two adjacent blocks. If the overlap ratio exceeds an empir-
ically predetermined threshold, we consider it to be a soma
spanning two blocks. In other words, these two somas with
different IDs should be merged, i.e., they should be with the
same ID. Note that, in order to realize the stitching process
in parallel, we store the IDs that need to be merged into a
shared list instead of immediately changing the IDs in the
current block. Secondly, we unify the pairing of all IDs in
the shared list to ensure that each ID that needs to be merged
corresponds to a unique target ID. Finally, we remap the
IDs of somas in all blocks according to the shared list. The
inter-block stitching step is implemented in a parallel man-
ner, and the details are shown in supplementary materials.

6. Experimental Results

6.1. Visualization Results

We first provide some visualization results for the full
brain soma reconstruction, as shown in Fig. 3. Following
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Figure 3. Visualization of our soma reconstruction for a full adult
drosophila brain. Each color instance corresponds to a recon-
structed soma.

the z-axis order in the FAFB dataset, we select three 3D
sections of the full brain soma reconstruction results as an
example, and show the details in two representative regions,
respectively. Moreover, we give a 4K video in supplemen-
tary materials for the complete reconstruction results.

6.2. Quantitative Results

To validate the effectiveness and efficiency of the pro-
posed method, we compare our method with two existing
methods for nucleus reconstruction in EM images, i.e., Mu
et al. [32] and Lin et al. [27]. To adapt these two methods to
our EMADS dataset, we only use the annotated areas to op-
timize the networks and ignore the unannotated areas. For
the second method, we have to downsample the dataset to
1/96 of the previous volume so that each block can be fed
to a standard 3D U-Net as the method requires. Then, the
segmentation result is upsampled to the previous scale. In
addition, we compare our method with two self-designed
baseline methods. Baseline 1 adopts dense sliding bound-
ing boxes in a uniform size on the EM block instead of lo-
calization, and utilizes a two-class network to segment the
somas and the rest areas. Baseline 2 is similar to Baseline
1, and the only difference is that it adopts a three-class net-
work for segmentation. After the dense sliding finishes, the
segmented somas are endowed with instances by their con-
nected components in the block.
Evaluation Datasets and Metrics. We fully annotate the
somas in two additional EM blocks named A and B, each of
which contains about 50 somas. They are non-overlapping

with the 10 training blocks in EMADS, serving as the eval-
uation blocks. The somas in different blocks have differ-
ent sizes and morphologies. The background areas are also
of different types. We adopt 3D Average Precision met-
rics [45], i.e., mAP and mAP50 as the instance segmentation
metrics to evaluate the instance localization and segmen-
tation performance. In addition, we also use the Jaccard
score [33] as the semantic segmentation metric to evaluate
the semantic segmentation performance.
Comparison with Existing Methods. As shown in Table 1,
compared with the two existing methods for nucleus recon-
struction, our method with the U-Net backbone achieves
much better performance in terms of the instance segmen-
tation metrics mAP and mAP50, due to its special design
tailored for the soma reconstruction task. It should be no-
ticed that, however, these two existing methods perform not
badly in terms of the semantic segmentation metric, which
suggests that they mainly fail to distinguish between soma
instances. This can be verified by visual comparison ex-
amples in Fig. 4. As can be seen, our results with fewer
segmentation errors provide more accurate distribution and
morphology information of somas.
Comparison with Baseline Methods. Compared with
Baseline 1 and Baseline 2, our method is about 6 times
faster and achieves better performance, which validates the
efficiency of the localization stage in our method. We also
provide visual comparison examples with the two baseline
methods in supplementary materials. To further demon-
strate the generality of our method, we upgrade the 3D
U-Net used in the segmentation stage to the state-of-the-
art backbone based on the transformer architecture, i.e.,
Swin-UNETER [43]. The result of ‘Ours-Swin’ proves that
thanks to the flexibility of our two-stage segmentation algo-
rithm, a more powerful backbone network brings new per-
formance improvements.

6.3. Ablation on Seed Size

When we make our localization label set, we need to
erode the annotated somas to obtain the instance seeds. The
sizes of the instance seeds are different when we adopt
different erosion operations. We thus conduct an ablation
study on seed size. The seed size denotes the maximum
number of voxels a seed contains. The ablation results are
shown in Table 2, which demonstrates that the seed size of
50 provides the best performance.

7. Statistics
We compile statistics for the reconstructed somas in the

full adult fly brain in four aspects: count, size, distribution
and morphology. To make the reconstructed somas corre-
spond to the neurobiological structures in the brain, we par-
tition the full brain into four types of cubic regions: the op-
tic lobes, and the central brain A, B and C as shown in the
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Method Test block A Test block B Average
mAP mAP50 Jacc. mAP mAP50 Jacc. mAP mAP50 Jacc. time

Mu et al. 0.045 0.212 0.579 0.072 0.219 0.578 0.059 0.216 0.579 63s
Lin et al. 0.017 0.096 0.420 0.020 0.093 0.397 0.019 0.095 0.409 32s
Baseline 1 0.213 0.699 0.587 0.179 0.680 0.524 0.196 0.690 0.556 960s
Baseline 2 0.226 0.695 0.592 0.242 0.709 0.558 0.234 0.702 0.575 1142s
Ours-UNet 0.301 0.713 0.638 0.302 0.721 0.590 0.301 0.717 0.614 178s
Ours-Swin 0.420 0.853 0.650 0.303 0.614 0.474 0.362 0.734 0.562 158s

Table 1. Quantitative comparison results with existing and baseline methods.
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Figure 4. Visual comparison results of our method and two existing methods. The yellow box and the white box indicate the segmentation
and localization errors.

top left in Fig. 5. We compute the statistical results for each
of them. More details of the brain partitions are shown in
supplementary materials. According to the official nomen-
clature of brain structures for the drosophila [21], the central
brain A contains superior neuropils (SNP), mushroom bod-
ies (MB), inferior neuropils (INP), central complex (CX)
and lateral horn (LH); the central brain B contains ventro-
lateral neuropils (VLNP), ventromedial neuropils (VMNP),
antennal lobes (AL), and lateral complex (LX); the central
brain C contains periesophageal neuropils (PENP), gnathic
ganglia (GNG) and external nerves.
Soma Count. The number of soma instances we recon-
struct from the full adult fly brain is 116, 761. This number
is basically consistent with the result in the recent nucleus
reconstruction work [32] and the result reported by a tradi-
tional method [15]. Regarding the count in each region, the
optic lobes contain the majority of somas in the full brain
with a number of 76, 316. The central brains A, B and C
contain 18, 313, 14, 424 and 7, 708 somas, respectively. The
number of somas in the central brain A is obviously more
than that of B and C due to the abundant Kenyon cells in the
mushroom body [21].
Soma Size. We illustrate the counts of somas in different
sizes of each region in the second row of Fig. 5. The largest

soma in the full brain has a size of 980 µm3, and most of
the soma sizes are less than 75 µm3. The mean soma size
in the full brain is 27 µm3. The mean sizes of somas in the
central brain A, B, C and the optic lobes are 39, 35, 29 and
23 µm3, respectively.
Soma Distribution. From Fig. 3, we can observe that the
somas mainly locate at the rind of the full brain, and a few
somas locate at the center of the brain. The results in Fig. 5
demonstrate that the optic lobes have the most somas, while
the central brain C has the fewest somas. The statistical
results are consistent with the visualization results.
Soma Morphology. Somas in different morphologies have
different diameters (i.e., the maximum length of its spatial
size). We count the somas in different diameters. The soma
diameters are basically consistent in the four regions, as
shown in the third row in Fig. 5. The somas in the optic
lobes have the smallest mean diameter, which corresponds
to the fact that there are much more neural stem cells that are
undifferentiated in this region than in the central brain A, B
and C, as introduced in [22]. Moreover, we count somas in
different diameter ratios (i.e., ratios between the maximum
and the minimum lengths of its spatial size), which reflects
the roundness of the sphere. As shown in the fourth row
in Fig. 5, the somas in the optic lobes have the maximum
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Size Test block A Test block B Average
mAP mAP50 Jacc. mAP mAP50 Jacc. mAP mAP50 Jacc.

80 0.261 0.696 0.606 0.276 0.728 0.574 0.269 0.712 0.590
50 (Ours) 0.301 0.713 0.638 0.302 0.721 0.590 0.302 0.717 0.614
10 0.284 0.715 0.625 0.246 0.667 0.579 0.265 0.691 0.602

Table 2. Ablation study on seed size.
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Figure 5. Statistics of soma sizes and diameters in different regions of the full brain. The first row illustrates our separated four types of
regions and the statistical results on the full brain. The second row illustrates the soma count in different sizes, the third row illustrates the
soma count in different soma diameters, and the fourth row illustrates the soma count in different diameter ratios. The red line highlights
the mean value of each statistic.

mean diameter ratio and the morphology of these somas is
more similar to the sphere.

8. Conclusion

In this paper, we made one of the first efforts to develop
an accurate and efficient soma reconstruction method for a
full adult fly brain. We first contribute the EMADS dataset
with fine-grained annotation on somas, based on which we
then propose an efficient, two-stage deep learning algorithm
for accurate soma instance segmentation and implement it

on the full brain by deploying a parallelized large-scale data
processing pipeline. We hope this benchmark work could
benefit the future study of the drosophila neural system.
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