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Abstract

Unsupervised domain adaptive object detection (UDA-
OD) aims to learn a detector by generalizing knowledge
from a labeled source domain to an unlabeled target do-
main. Though the existing graph-based methods for UDA-
OD perform well in some cases, they cannot learn a proper
node set for the graph. In addition, these methods build the
graph solely based on the visual features and do not con-
sider the linguistic knowledge carried by the semantic pro-
totypes, e.g., dataset labels. To overcome these problems,
we propose a cross-modality graph reasoning adaptation
(CIGAR) method to take advantage of both visual and lin-
guistic knowledge. Specifically, our method performs cross-
modality graph reasoning between the linguistic modality
graph and visual modality graphs to enhance their repre-
sentations. We also propose a discriminative feature selec-
tor to find the most discriminative features and take them as
the nodes of the visual graph for both efficiency and effec-
tiveness. In addition, we employ the linguistic graph match-
ing loss to regulate the update of linguistic graphs and
maintain their semantic representation during the training
process. Comprehensive experiments validate the effective-
ness of our proposed CIGAR.

1. Introduction
Object detection is a fundamental technique in computer

vision tasks, and it has been widely explored in many ap-
plications, e.g., self-driving and public safety. A variety of
works [31,38,39,56,57] have achieved improvements in de-
tection performance due to the development of deep neural
networks. However, a detector significantly degrades if we
deploy it in a novel domain due to the problem of domain
shift. The domain shift can be induced by many factors,
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Figure 1. Illustration of the proposed Cross-modality Graph Rea-
soning Adaptation (CIGAR) framework.

such as the variation of the capture condition from sunny
to foggy weather, from virtual to real-world, and from one
camera to another.

To deal with the problem of domain shift [9], researchers
have proposed many unsupervised domain adaptive object
detection (UDA-OD) methods to bridge the domain gap be-
tween the source and target domains. Among them, the
self-training based methods [5, 10, 26, 35] have shown ex-
cellent performances. However, they cannot be easily ex-
tended to real applications because they are computationally
expensive and inefficient. Feature alignment-based meth-
ods [3,4,6,22,25] have also been extensively studied. These
methods are structurally elegant and can be categorized into
three groups, including global-level alignment, instance-
level alignment, and category-level alignment. The global-
level alignment methods [6,41] align the whole shallow fea-
ture maps produced by a backbone network. The instance-
level alignment methods [4,17] extract the feature maps for
all the instances and learn to achieve cross-domain align-
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ment in the deep feature space. The category-level align-
ment methods [58,61] normally first use the detectors or an
additional classification model for pseudo label assignment
to the target samples, then align the category-wise instance
features of two domains based on the ground-truth source
labels and the pseudo target labels.

Numerous works [3, 24, 25] achieve feature alignment
using graph-based approaches. These methods take dense
features as nodes to construct the graphs and investigate the
relationship between nodes. They use the knowledge car-
ried by the graphs to enhance the features for the purpose
of cross-domain alignment and thus improve the detection
performance. Though the graph-based methods have sig-
nificantly improved the feature alignment, they still have
two inherent limitations. First, the existing methods do not
construct the graph with the proper node set. Many graph-
based methods randomly or uniformly [25] select features
to construct graphs, resulting in the missing of some dis-
criminative features. Some other methods [3] are not robust
against noise and are computationally expensive, as they
take all features as the graph nodes. Secondly, they only
explore the visual knowledge extracted from the images. In
this way, they ignore the critical knowledge of the linguis-
tic modality, which carries the semantic prototypes of the
domains, e.g., linguistic dataset labels. Linguistic modality
knowledge is very effective in regulating visual knowledge,
and its absence severely reduces the representative ability
of the resulting features. Some existing works [18,63] have
focused on using semantic category information to enhance
performances in vision tasks. Singh et al. [46] also used
a language model for the semi-supervised domain adaptive
task and achieved improved performance.

To overcome the two limitations mentioned above,
we propose a Cross-modalIty GrAph Reasoning Adapta-
tion (CIGAR) framework for category-level alignment via
graph-based learning, as shown in Fig. 1. To enhance ef-
ficiency and improve the robustness against noise, we pro-
pose a Discriminative Feature Selector (DFS) for finding
discriminative features and constructing the visual graph us-
ing only the discriminative features. In particular, we first
conduct a procedure of singular value decomposition (SVD)
and drop the small singular values, then evaluate the infor-
mation richness of each feature via the summation of the ab-
solute value of the elements. We can improve the represen-
tation ability of visual graphs by only taking these discrim-
inative features as the nodes. Our method is more computa-
tionally efficient than previous methods, which use all im-
age features to construct graphs. Our CIGAR also explores
the graph in the linguistic modality and performs cross-
modality graph reasoning between the linguistic modality
and the visual modality. The linguistic modality knowledge
can guide the mapping of visual modality knowledge from
different domains to the same feature space. Our CIGAR

can build a graph not only for the tasks with multiple cat-
egories and capture the relationship between different cate-
gories but also for the tasks with a single category and cap-
ture the relationship between different components of a sin-
gle category. We maintain the semantic representation of
the knowledge in linguistic modality and use it to guide the
training procedure.

We summarize our contributions as follows:

• We propose a Cross-modality Graph Reasoning Adap-
tation (CIGAR) method for the domain adaptive object
detection problem. To the best of our knowledge, this
is the first work to tackle the UDA-OD task by graph
reasoning across different modalities.

• We propose a Discriminative Feature Selector for find-
ing discriminative image features and efficiently con-
structing the representative visual graph.

• Extensive experiments are conducted on four adapta-
tion tasks, and our CIGAR achieves state-of-the-art
performance, outperforming existing works by a large
margin.

2. Related Works
2.1. Unsupervised Domain Adaptation

Unsupervised Domain adaptation methods aim to trans-
fer knowledge from a labeled source domain to an unla-
beled target domain. Many domain adaptation methods are
widely investigated in computer vision tasks, e.g., image
classification [43, 51, 52], image clustering [29, 30], seman-
tic segmentation [7], and object detection [6]. Inspired by
Generative Adversarial Nets [14], DANN [12] proposes to
learn the domain-invariant features by a Gradient Reversal
Layer (GRL). ADDA [50] takes similar adversarial learning
but uses two feature extractors to generate image features
for the source domain and target domain. CDAN [32] per-
forms the adversarial learning process within different cate-
gories. Bousmalis et al. [1] use an image-to-image transla-
tion method to generate source-like and target-like images
to reduce the domain gap of image styles. Ma et al. [34]
transform the images into graphs and use the graph convo-
lution network to align their features in the feature space.
Luo et al. [33] employ the bipartite graph method to per-
form domain interactions for the video adaptation problem.
Kang et al. [21] formulate the domain adaptive semantic
segmentation problem as a pixel-wise matching problem.

2.2. Domain Adaptive Object Detection

To deal with the domain shift problem in the object de-
tection tasks, many UDA-OD methods [4,17,58] have been
proposed. DA-Faster [6] uses the gradient reversal layer to
perform adversarial learning for globally aligning features
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Figure 2. Overview of the proposed Cross-modality Graph Reasoning Adaptation (CIGAR) framework.

in different domains. SWDA [41] employs weak alignment
on global shallow feature maps and strong alignment on lo-
cal instance feature maps. Zheng et al. [61] highlight the
importance of instance features and employ a coarse-to-fine
method to perform adaptation. Wu et al. [54] propose a
feature-decoupled method by vector decomposition, divid-
ing the extracted features into domain-specific features and
domain-invariant features. SCAN [24] uses graphs to rep-
resent the semantic relations of features and introduces the
graph neural network to complete information between dif-
ferent domains. FGRR [3] uses all foreground instance fea-
tures as nodes to construct graphs and perform intra- and
inter-relational reasoning between source and target graphs
in both pixel and semantic spaces. SIGMA [25] uniformly
samples features within foreground features to construct
category-wise graphs. They also use a memory bank to
complete the graphs in each batch. Besides, SIGMA pro-
poses to tackle adaptive detection as the graph matching
problem. However, the existing graph-based methods do
not build graphs with the proper node set, as they simply
use all features or uniformly sample features to construct
graphs. To deal with this issue, we propose a discriminative
feature selector to mine discriminative features.

3. Proposed Method

Let S = {(xs, ys)} be the source domain, where xs is
a source image and ys is the corresponding source label.
Similarly, we denote the target domain as T = {(xt, yt)}.
Due to the domain shift, the data distributions of S and T
are different. Note that the samples in both domains belong

to {1, 2, · · · , C} categories. Given the labeled source data
{(xs, ys)} and the unlabeled target images {xt}, a UDA-
OD task aims to learn a detector and apply it to the target
domain to predict the {yt}.

Fig. 2 illustrates the structure of our proposed CIGAR.
As the source domain and the target domain share the same
semantic knowledge space, we can use the relationships be-
tween semantic prototypes to enhance the visual features
(i.e., the features of the images) in both domains. To be
specific, we construct visual graphs based on the image fea-
tures of both domains and use them to explore the knowl-
edge in the visual modality. In addition, we extract the se-
mantic prototypes to construct linguistic graphs and explore
the knowledge of linguistic modality. We use both intra-
graph and cross-graph knowledge reasoning to accomplish
the interaction between the visual modality and the linguis-
tic modality. To enhance the feature representation of the
visual graph, we propose a new feature selection compo-
nent, i.e., Discriminative Feature Selector (DFS). This DFS
can analyze the feature space via subspace learning and
select the most representative features to construct visual
graphs. To the best of our knowledge, our method is the
first to tackle the UDA-OD task by the graph reasoning of
the linguistic modality knowledge and the visual modality
knowledge.

Our method is different from the previous methods in
three points. First, we introduce the Singular Value Decom-
position (SVD) in the DFS to select feature vectors with
rich information. Second, we utilize the knowledge from
two modalities for graph reasoning so that the visual and
linguistic graphs can interact with each other and enhance
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the resulting representations. Third, we propose the linguis-
tic graph matching loss to regulate the update of linguistic
graphs and maintain their semantic representation during
the training process.

3.1. Visual Graph Construction

We use a shared backbone network (i.e., G in Fig. 2)
to extract features from the labeled source sample xs and
the unlabeled target sample xt, i.e., Fs/t = G(xs/t) ∈
Rh×w×c, where (h,w) and c are the size and channel di-
mension of a feature map. We construct a visual graph with
the feature maps via three steps. The first step identifies the
informative features associated with the foreground or back-
ground regions and denotes them as F̄s/t. The second step
defines a module DFS to evaluate the information richness
of each feature and selects the most discriminative features
F̂s/t from F̄s/t. The third step constructs visual graphs Gs/t

based on the representative features in F̂s/t.
Informative Feature Identification. Not all features are
equally important in a detection task. In this work, we se-
lect the informative features and use them as nodes to build
our visual graphs. While the informative features are easily
obtained in the labeled source domain, we cannot directly
obtain them in the target domain, as the ground-truth bound-
ing boxes in the target domain are unavailable. Following
SIGMA [25], we first obtain the classification score map of
a target image via a source detector, then consider a pixel
to be the informative foreground feature of the j-category
if its j-th classification score is higher than a threshold θfg ,
and the informative background feature if all of its classifi-
cation scores are smaller than the threshold θbg . Here, we
have θbg < θfg . The pixels associated with the classifica-
tion score in [θbg, θfg] are not trustful, and we do not de-
termine whether they are foreground or background. In the
source/target domain, we take the informative feature vec-
tors belonging to the j-category to form a feature matrix
F̄ j
s/t ∈ RNj

s/t
×c, where N j

s/t is the number of informative
features associating with the j-category.
Discriminative Feature Selection. For efficiency and ro-
bustness, we expect to build our visual graph using only the
most discriminative features instead of all the informative
features. For this purpose, we design the Discriminative
Feature Selector (DFS) to estimate the discriminative abili-
ties of the features and use it to select the most discrimina-
tive features from the informative ones.

Inspired by HRank [28], we use singular value decom-
position (SVD) to decouple F̄ j

s/t. It can be formulated as
follows:

F̄ j
s/t =

R∑
i=1

riuiv
T
i =

L∑
i=1

riuiv
T
i +

R∑
i=L+1

riuiv
T
i

= SVDLS(F̄
j
s/t) + SVDSS(F̄

j
s/t),

(1)

where ri is the i-th largest singular value, its left singu-
lar vector and right singular vector are ui and vi, respec-
tively. R is the rank of the feature matrix F̄ j

s/t and L ≤ R.
Thus, a feature matrix with R singular values can be dis-
entangled into the matrix SVDLS(F̄

j
s/t) ∈ RNj

s/t
×c con-

taining rich information and the matrix SVDSS(F̄
j
s/t) ∈

RNj
s/t

×c containing little information. we use Im =∑c
n=1 |SVDLS(F̄

j
s/t)|m,n to denote the information rich-

ness of the m-th feature in F̄ j
s/t. For each category j ∈

{0, 1, · · · , C}, we select the top N class
v feature vectors in

terms of information richness from F̄ j
s/t and use them to

build a feature matrix F̂ j
s/t.

This new feature selection method has two advantages.
First, we drop the noisy features and improve the represen-
tation ability. Second, we reduce the scale of graph struc-
tures and decrease the computational burden by only con-
sidering the most discriminative features.
Visual Graph Initialization. Let F̂s/t =

{F̂ 0
s/t, F̂

1
s/t, · · · , F̂

C
s/t} ∈ RNv×c be the visual fea-

tures of all categories, where Nv = (N class
v × (C + 1))

is the total number of all selected feature vectors. We
use a fully connected network to learn the embeddings
of F̂s/t and take them as the visual graph node features
Vs/t ∈ RNv×cg , where cg is the channel dimension for all
graph nodes. We randomly initialized a learnable visual ad-
jacency matrix As/t ∈ RNv×Nv to represent edge relations
between nodes within each domain and denote the visual
graph of the source/target domain as Gs/t = {Vs/t, As/t}.

3.2. Linguistic Graph Construction

We build a linguistic graph Gl based on the word embed-
dings to describe the relationship between different seman-
tic prototypes. In a detection task with multiple categories,
we take each category as a semantic prototype and use the
linguistic graph to capture the cross-category relationship.
To build the linguistic graph in the detection task with one
single category, we take each component of the object as a
semantic prototype and use the linguistic graph to capture
the intra-category relationship.
Multi-category Linguistic Graph. If the detection task has
C(C > 1) categories, we naturally use the category labels
as the semantic prototypes and feed them into GloVe [37] to
generate the foreground word embeddings F fg

l ∈ RC×cl ,
where cl is the channel dimension of each word embed-
ding. Besides the C foreground categories, we also use
a randomly initialized embedding F bg

l ∈ R1×cl to repre-
sent the knowledge of the background. We use a fully con-
nected network to transform both F fg

l and F bg
l into linguis-

tic graph nodes Vl ∈ RNl×cg , where Nl = C+1 is the num-
ber of embeddings. We randomly initialize the knowledge
adjacency matrix Al ∈ RNl×Nl , which represents the de-
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pendencies between different categories. As shown in Fig. 3
(a), we define the linguistic graph as Gl = {Vl, Al}.
Single-Category Linguistic Graph. Some detection tasks
only have a single category. For example, the benchmark
datasets Sim10k [36] and KITTI [13] only have one fore-
ground category, i.e., Car. In this case, it is inappropri-
ate to take the category label as the semantic prototype to
build the linguistic graph. To mine the linguistic knowl-
edge inside the category, we take Cfine components inside
the category as semantic prototypes. For example, we use
seven semantic prototypes to describe a car, including Roof,
Tire, Rearview mirror, Wind shield, Head lamp, Bumper,
and Door. With these semantic prototypes and a random
initialized background feature, we can obtain the graph em-
beddings Vl ∈ RNl×cg , where Nl = Cfine + 1 is the num-
ber of embeddings, i.e., fine-grained semantic prototypes.
We also use a randomly initialized matrix Al ∈ RNl×Nl as
the graph adjacency matrix. As shown in Fig. 3 (b), we can
also define a single-category linguistic graph Gl = {Vl, Al}
to capture the relationship between different components.

3.3. Cross-Modality Graph Reasoning

We formulate the feature alignment task into a graph
matching problem following SIGMA [25]. Our learning
procedure involves not only the optimization of each modal-
ity graph independently but also the interaction reason-
ing between the visual modality graphs and the linguistic
modality graph. In this section, we propose a linguistic
knowledge matching loss to regulate the updating of the lin-
guistic graph to maintain its semantic representation during
the training process.
Intra-graph Reasoning. We introduce the visual/linguistic
intra-graph transformer (IGTv/l) to perform graph reason-
ing within each graph. First, we use a graph convolution
network (GCN) to aggregate information about each node
from its neighborhoods. The GCN process is formulated as
follows:

Ṽs/t/l = Relu((As/t/l + I) · Vs/t/l ·Wv/l), (2)

where Ṽs/t/l is the enhanced features, I is an identity ma-
trix, Wv ∈ RNv×Nv is the learnable parameters for pro-
cessing Gs/t, and Wl ∈ RNl×Nl is the learnable parame-
ters for processing Gl. Then, we feed the enhanced graph
G̃s/t/l = {Ṽs/t/l, As/t/l} into a self-attention based trans-
former to encode their node embeddings. The transforma-
tion process can be formulated as follows:

QT = Ṽs/t/l · W̌
q
v/l

, KT = Ṽs/t/l · W̌
k
v/l, VT = Ṽs/t/l · W̌

v
v/l,

V̌s/t/l = Softmax(QTK
T
T ) · VT + Ṽs/t/l,

(3)

where V̌s/t/l is the enhanced graph nodes after intra-graph
reasoning. W̌ q

v/l, W̌
k
v/l, and W̌ v

v/l are the learnable param-
eters in IGTv/l for projecting embeddings. The obtained
graphs can be formulated as Ǧs/t/l = {V̌s/t/l, As/t/l}.
Cross-graph Reasoning. We introduce the visual-
linguistic cross-graph transformer (CGTvl) to achieve the
cross-modality reasoning between the two different types
of graphs. In this way, we can use the linguistic knowledge
extracted from semantic prototypes to improve the repre-
sentations of the visual graphs. In the CGTvl, we feed the
V̌s/t/l into a cross-attention based transformer to perform
reasoning between visual and linguistic graphs. Inspired by
SIGMA [25] and GINet [55], The cross-attention operation
is formulated as follows:

V̀s/t = Softmax[(V̌s/t · Ẁ q
)(V̌l · Ẁk

)
T
] · (V̌l · Ẁv

) + V̌s/t,

V̀l = Softmax[(V̌l · Ẁ q
)(V̌s/t · Ẁk

)
T
] · (V̌s/t · Ẁv

) + V̌l,
(4)

where V̀s/t/l are the enhanced graph nodes after cross-graph
reasoning. Ẁ q , Ẁ k, and Ẁ v are learnable parameters of
CGTvl. We use G̀s/t/l = {V̀s/t/l, As/t/l} to denote the
visual and linguistic graphs after cross-graph reasoning.
Visual Graph Matching Loss. To enhance the align-
ment of the visual features at the category level, we fol-
low SIGMA [25] to formulate the domain adaptation into
a graph matching problem between G̀s and G̀t. Given the
graph nodes V̀s/t enhanced by cross-graph reasoning, we
learn the affinity matrix Mv ∈ RNv×Nv to denote the align-
ment between every pair of nodes from two different do-
mains. The element Mv

i,j represents the affinity represen-
tation between the i-th node in V̀s and the j-th node in V̀t.
Here, we derive Mv

i,j via a fully connected network, which
receives the concatenation of the features of two involving
nodes. The positive element in Mv indicates that the cor-
responding two nodes from different domains are matched,
and vice versa. The matching loss is detailed as follows:

Lv
match =

∑
i

1

Nv
[max

j
(Mv ⊙ Yv)i,j − 1]2

+
∑
i,j

1

|1− Yv |
[Mv ⊙ (1− Yv)]2i,j ,

(5)

where Yv is the matching label matrix and Yv
i,j = 1 if and

only if the i-th node in G̀s and the j-th node in G̀t have
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Table 1. Results on Cityscapes→Foggy Cityscapes. ‘Bb’ and
‘prsn’ denote ‘Backbone’ and ‘person’.

Method Bb prsn rider car truck bus train motor bike mAP

CFFA [61]

V
G

G
-1

6

34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6
EPM [17] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
RPNPA [60] 33.6 43.8 49.6 32.9 45.5 46.0 35.7 36.8 40.5
UMT [10] 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7
MeGA [62] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
VDD [54] 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0
KTNet [48] 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
SSAL [35] 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6
D-adapt [20] 44.9 54.2 61.7 25.6 36.3 24.7 37.3 46.1 41.3
SCAN [24] 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
FGRR [3] 34.4 47.6 51.3 30.0 46.8 42.3 35.1 38.9 40.8
SIGMA [25] 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
CIGAR(ours) 45.3 45.3 61.6 32.1 50.0 51.0 31.9 40.4 44.7

GPA [59]

R
es

N
et

-5
0

32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
EPM [17] 39.9 38.1 57.3 28.7 50.7 37.2 30.2 34.2 39.5
DIDN [27] 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5
DSS [53] 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9
SDA [40] 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
SIGMA [25] 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
CIGAR(ours) 46.1 47.3 62.1 27.8 56.6 44.3 33.7 41.3 44.9

the same category, otherwise 0. The Lv
match promotes the

model to match pair-wise nodes correctly, thus aligning vi-
sual features at the category level.
Linguistic Graph Matching Loss. To maintain the seman-
tic representation of the linguistic graph during the training
process, we propose the linguistic graph matching loss to
regulate the update from Gl to G̀l. We concatenate the fea-
tures of the i-th node in Vl and the j-th node in V̀l and feed
the concatenation into a fully connected network to gener-
ate the linguistic affinity matrix Ml. The linguistic graph
matching loss is formulated as follows:

Ll
match =

∑
i

1

Nl
[max

j
(Ml ⊙ Yl)i,j − 1]2

+
∑
i,j

1

|1− Yl|
[Ml ⊙ (1− Yl)]2i,j ,

(6)

where Yl is the matching label matrix whose definition is
similar to Yv . By minimizing Ll

match, we match the pair-
wise nodes in Gl to G̀l and avoid semantic bias when updat-
ing the linguistic graph in the training procedure.

The overall training loss is as follows:

Ltotal = Ldet + Lglobal + Lnc + λvL
v
match + λlL

l
match, (7)

where Ldet is the detection loss of FCOS [49], Lglobal is the
global alignment loss [17], Lnc is the cross-entropy classi-
fication loss of each node for visual graphs, Lv

match is the
visual graph matching loss, Ll

match is the linguistic graph
matching loss, λv and λl are the weights of visual and lin-
guistic graph matching losses.

4. Experiments

4.1. Datasets and Evaluation

To verify our proposed method, we conduct extensive
experiments on four different types of domain shifts. We
use FCOS as our baseline detector and the mean Average
Precision (mAP) with a threshold of 0.5 to evaluate the
detection performance on target domains. In addition, we
use GAIN to calculate the improvement of the method in
comparison with the models trained using only the source
samples. Six benchmark datasets are used: Cityscapes [8],
Foggy Cityscapes [42], Pascal VOC [11], Clipart [19],
Sim10k [36], and KITTI [13].
Cityscapes→Foggy Cityscapes. These two datasets in-
volve the adaption from sunny to foggy weather. Cityscapes
is a city landscape dataset captured in clear weather. It con-
tains 2975 training images and 500 validation images with
bounding box annotations. Foggy Cityscapes is a synthe-
sized dataset generated from Cityscapes.
Pascal VOC→Clipart. Pascal VOC is a real-world dataset
consisting of twenty categories of objects. We use its 2007
and 2012 versions, a total of 16551 samples, as training im-
ages. Clipart contains 1k images with the same twenty cat-
egories as Pascal VOC.
Sim10k→Cityscapes. These two datasets involve the adap-
tion from synthetic to real-world. Sim10k is rendered from
the gaming engine of Grand Theft Auto. It contains 10k
images and 58701 objects with bounding box annotations
of the car category.
KITTI→Cityscapes. These two datasets involve the adap-
tation of different capture cameras. KITTI is a city street
scene dataset from vehicle-mounted cameras. It consists of
7481 images of the car category.

4.2. Implementation Details

We employ VGG-16 [45], ResNet-50 [15], and ResNet-
101 [15] as backbones to extract image features. We adopt
the Stochastic Gradient Descent(SGD) [47] optimizer with
a learning rate of 0.002 and a batch size of 2 for 50k itera-
tions to train our models. We set θfg and θbg to be 0.5 and
0.05. Both λv and λl in the total loss function are set to
0.1. We set L to be one-half of rank R in SVD. Besides, we
set N class

v to be 40, i.e., we sample up to 40 graph nodes
in each category. If the number of all category nodes is less
than 40 × (C + 1) in a batch, we use the memory bank in
SIGMA to complete the visual graphs. We set both the di-
mensions of visual and linguistic node embeddings as 256.
To obtain the word embeddings of semantic prototypes, we
use the GloVe word embedding model to process the lin-
guistic words. The original word embedding dimension cl
is set to 300. All experiments are performed with NVIDIA
3090 GPUs.
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Table 2. Comparison results on Pascal VOC→Clipart with the ResNet-101 backbone.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mAP SO/GAIN

SWDA [41] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 12.5 12.5 33.8 65.5 54.5 52.0 9.3 24.9 54.1 49.1 38.1 27.8/ 6.9
CR [58] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3 27.8/ 11.3
ATF [16] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1 14.3/ 27.8
SCL [44] 44.7 50.0 33.6 27.4 42.2 55.6 38.3 19.2 37.9 69.0 30.1 26.3 34.4 67.3 61.0 47.9 21.4 26.3 50.1 47.3 41.5 27.8/ 10.3
HTCN [4] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 20.1 20.1 39.1 72.8 61.3 43.1 19.3 30.1 50.2 51.8 40.3 27.8/ 12.5
SAPN [23] 27.4 70.8 32.0 27.9 42.4 63.5 47.5 14.3 48.2 46.1 31.8 17.9 43.8 68.0 68.1 49.0 18.7 20.4 55.8 51.3 42.2 27.8/ 14.4
UMT [10] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1 27.8/ 16.3
DBGL [2] 28.5 52.3 34.3 32.8 38.6 66.4 38.2 25.3 39.9 47.4 23.9 17.9 38.9 78.3 61.2 51.7 26.2 28.9 56.8 44.5 41.6 27.8/ 13.8
FGRR [3] 30.8 52.1 35.1 32.4 42.2 62.8 42.6 21.4 42.8 58.6 33.5 20.8 37.2 81.4 66.2 50.3 21.5 29.3 58.2 47.0 43.3 27.8/ 15.5
IIDA [27] 41.5 52.7 34.5 28.1 43.7 58.5 41.8 15.3 40.1 54.4 26.7 28.5 37.7 75.4 63.7 48.7 16.5 30.8 54.5 48.7 42.1 27.8/ 14.3
CIGAR(ours) 35.2 55.0 39.2 30.7 60.1 58.1 46.9 31.8 47.0 61.0 21.8 26.7 44.6 52.4 68.5 54.4 31.3 38.8 56.5 63.5 46.2 25.3/ 20.9

Table 3. Comparison on Sim10k→Cityscapes (S→C) and
KITTI→Cityscapes (K→C) with VGG-16 as backbone. GAIN
indicates the detection gains compared with Source-only (SO)
trained models.

Method S→C SO/GAIN K→C SO/GAIN

EPM [17]ECCV ′20 49.0 39.8/ 9.2 43.2 34.4/ 8.8
DSS [53]CV PR′21 44.5 34.7/ 9.8 42.7 34.6/ 8.1
MEGA [62]CV PR′21 44.8 34.3/ 10.5 43.0 30.2/ 12.8
RPNPA [60]CV PR′21 45.7 34.6/ 11.1 - -
UMT [10]CV PR′21 43.1 34.3/ 8.8 - -
KTNet [48]ICCV ′21 50.7 39.8/ 10.9 45.6 34.4/ 11.2
SSAL [35]NeurIPS′21 51.8 38.0/ 13.8 45.6 34.9/ 10.7
D-adapt [20]ICLR′22 50.3 34.6/15.7 - -
FGRR [3]TPAMI′22 44.5 34.6/ 9.9 - -
SCAN [24]AAAI′22 52.6 39.8/ 12.8 45.8 34.4/ 11.4
SIGMA [25]CV PR′22 53.7 39.8/ 13.9 45.8 34.4/ 11.4
CIGAR(ours) 58.5 39.8/ 18.7 48.5 34.4/ 14.1

4.3. Comparison with State-Of-The-Arts

Cityscapes→Foggy Cityscapes. As shown in Tab. 1,
we present the performances of several benchmark detec-
tors using ResNet-50 and VGG-16 as backbones. CIGAR
achieves 44.7 and 44.9 mAP, outperforming the existing
methods. Compared with other latest graph-based align-
ment methods with VGG-16 backbone, e.g., SCAN [24]
and FGRR [3], CIGAR achieves 2.6 and 3.9 mAP improve-
ments. We compare CIGAR with D-adapt, the latest self-
training method, and achieve 3.4 mAP improvement.
Pascal VOC→Clipart. Tab. 2 lists the results of several
methods. Our CIGAR achieves a 46.2 mAP performance
which outperforms other methods. In comparison with
the graph-based FGRR [3] and decoupling IIDA [27], our
CIGAR surpasses them by 2.9 and 4.1 mAP increments.
Sim10k→Cityscapes. Tab. 3 (left) lists the comparison re-
sults. Our CIGAR achieves a 58.5 mAP, surpassing the
existing methods by a large margin. In comparison with
FGRR [3], SCAN [24] and SIGMA [25], CIGAR improves
the mAP by a margin 14, 5.9 and 4.8, respectively. Our
method also surpasses the self-training D-adapt by 8.2 mAP,
showing its advantage over existing adaptation approaches.

Table 4. Results on Sim10k→Cityscapes with different methods
to select discriminative features when constructing visual graphs.
LSV denotes our proposed large singular value-aware method. We
compare two methods: random selection and uniform selection.

Selection Method mAP0.5 mAP0.75 mAP0.5:0.95

random 56.3 32.4 31.9
uniform 55.6 34.5 33.9

LSV(ours) 58.5 35.7 35.2

KITTI→Cityscapes. Tab. 3 (right) shows the experiment
comparison. CIGAR achieves a 48.5 mAP, and the value
of GAIN can be as large as 14.1 in terms of mAP, surpass-
ing the existing best method by a competitive improvement.
Compared with another graph-based method SIGMA [25],
CIGAR achieves 2.7 mAP improvement.

4.4. Ablation Studies

We present detailed ablation studies in this section to
show the effectiveness of our CIGAR. All ablation experi-
ments are conducted on two tasks (Sim10→Cityscapes and
Cityscapes→Foggy Cityscapes) with VGG-16 backbone.
Ablation on the discriminative feature selection. Tab. 4
shows the effectiveness of the discriminative feature selec-
tor. Compared with randomly and uniformly sample dis-
criminative features, our method gives 2.2 and 2.9 mAP im-
provements. These results demonstrate that the features cor-
responding to large singular values are discriminative and
can represent the fine-grained feature of objects.
Ablation on the cross-modality graph reasoning. Tab. 5
shows the impact of different graph transformers. The
IGTv , IGTl, and CGTvl all can enhance the detection per-
formance of the baseline method. When all kinds of mod-
ules are used to perform knowledge reasoning intra-graph
and cross-graphs, our CIGAR achieves the best perfor-
mance, showing that all components are helpful in improv-
ing the representations of visual and linguistic graphs.
Ablation on the linguistic graph. As shown in Tab. 6, we
investigate the influences of the linguistic graph and linguis-
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(d) Ground-truth(c) CIGAR(b) EPM(a) Raw image

Figure 4. Qualitative comparison results on the Cityscapes→Foggy Cityscapes task between EPM [17] and our proposed CIGAR.

Table 5. Comparison results on the cross-modality graph reason-
ing. C→F and S→C indicate Cityscape→Foggy Cityscapes and
Sim10K→Cityscapes adaptation tasks with VGG-16 backbone.

IGTv IGTl CGTvl S→C C→F

- - - 49.9 42.8
✔ - - 51.4 43.0
- ✔ - 49.8 42.2
- - ✔ 51.3 43.3
✔ - ✔ 53.6 44.2
- ✔ ✔ 54.1 44.5
✔ ✔ - 56.6 44.4
✔ ✔ ✔ 58.5 44.7

Table 6. Comparison results on the linguistic graph reasoning and
linguistic graph loss. The baseline method only uses visual graphs.
LG denotes linguistic graphs used in the method. E-dimension
is the dimension of linguistic graph node embeddings. LG-loss
denotes the linguistic graph matching loss used in the method.

method LG E-dimension LG-loss mAP

baseline - - - 54.5
CIGAR ✔ 100 - 57.6
CIGAR ✔ 300 - 57.2
CIGAR ✔ 100 ✔ 58.3

CIGAR(ours) ✔ 300 ✔ 58.5

tic graph matching loss. By introducing linguistic graph
reasoning to the baseline method, we can improve the de-
tection performance. We also conduct experiments with dif-
ferent dimensions of graph node embeddings. The results
show that the dimension has no significant influence on the
detection performance. Introducing the matching loss over
linguistic graphs improves the mAP by a margin of 1.3.

4.5. Qualitative Results

Result comparison. Fig. 4 presents some qualitative com-
parison results in the adaptation task from Cityscapes to
Foggy Cityscapes. Our CIGAR can detect car and bicycle
objects with fewer missing errors, showing its advantage of
dense detection ability.

Figure 5. The selected discriminative features of person, bicycle,
and car category objects with our proposed discriminative feature
selector (DFS). The red circles denote the selected features.

Discriminative feature selection. Fig. 5 shows the selected
discriminative features of three categories. These selected
features, i.e., red circles, are sparse and correspond to dif-
ferent characteristic components of a category of objects,
and the graph built by these features is representative.

5. Conclusion

We propose a Cross-modality Graph Reasoning Adapta-
tion (CIGAR) method for domain adaptive object detection.
We use graphs to represent the visual modality knowledge
extracted from image features and solve the domain adap-
tive object detection task as the graph matching problem. To
select the most discriminative features for constructing vi-
sual graphs, we propose a Discriminative Feature Selector
to estimate the information richness of each feature via sub-
space learning. Besides, we perform cross-modality graph
reasoning between the linguistic graph and visual graphs to
enhance their representations. In addition, we employ the
linguistic graph matching loss to regulate the update of lin-
guistic graphs and maintain their semantic representations
during the training process. Comprehensive experiments in-
dicate the effectiveness of our CIGAR.
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