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Abstract

Unsupervised domain adaptation (UDA) aims to trans-
fer the knowledge from a labeled source domain to an
unlabeled target domain. Typically, to guarantee desir-
able knowledge transfer, aligning the distribution between
source and target domain from a global perspective is
widely adopted in UDA. Recent researchers further point
out the importance of local-level alignment and propose to
construct instance-pair alignment by leveraging on Optimal
Transport (OT) theory. However, existing OT-based UDA
approaches are limited to handling class imbalance chal-
lenges and introduce a heavy computation overhead when
considering a large-scale training situation. To cope with
two aforementioned issues, we propose a Clustering-based
Optimal Transport (COT) algorithm, which formulates the
alignment procedure as an Optimal Transport problem and
constructs a mapping between clustering centers in the
source and target domain via an end-to-end manner. With
this alignment on clustering centers, our COT eliminates
the negative effect caused by class imbalance and reduces
the computation cost simultaneously. Empirically, our COT
achieves state-of-the-art performance on several authorita-
tive benchmark datasets.

1. Introduction

Benefiting from the availability of large-scale data, deep
learning has achieved tremendous success over the past
few years. However, directly applying a well-trained con-
volution neural network on a new domain frequently suf-
fers from the domain gap/discrepancy challenge, resulting
in spurious predictions on the new domain. To remedy
this, Unsupervised Domain Adaptation (UDA) has attracted
many researchers’ attention, which can transfer the knowl-
edge from a labeled domain to an unlabeled domain.

A major line of UDA approaches [1,1,28,42,49,53] aim
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to learn a global domain shift by aligning the global source
and target distribution while ignoring the local-level align-
ment between two domains. By leveraging on global do-
main adaptation, the global distributions of source and tar-
get domain are almost the same, thus losing the fine-grained
information for each class (class-structure) on the source
and target domain.

Recently, to preserve class structure in both domains,
several works [6, 15, 23, 30, 38, 40, 44, 51, 54] adopt optimal
transport (OT) to minimize the sample-level transportation
cost between source and target domain, achieving a signifi-
cant performance on UDA. However, there exist two issues
on recent OT-based UDA approaches. (i) When considering
a realistic situation, i.e. the class imbalance1 phenomenon
occurs between the source and target domain, samples be-
longing to the same class in the target domain are assigned
with false pseudo labels due to the mechanism of optimal
transport, which requires each sample in source domain can
be mapped to target samples. As a result, existing OT-based
UDA methods provide poor pair-wise matching when fac-
ing class imbalance challenges. (ii) OT-based UDA meth-
ods tend to find a sample-level optimal counterpart, which
requires a large amount of computation overhead, especially
training on large-scale datasets.

To solve two aforementioned issues, we propose a
Clustering-based Optimal Transport algorithm, termed
COT, to construct a clustering-level instead of sample-level
mapping between source and target domain. Clusters in the
source domain are obtained from the classifiers supervised
by the labeled source domain data. While for the target do-
main, COT utilizes a set of learnable clusters to represent
the feature distribution of the target domain, which can de-
scribe the sub-domain information [50, 57]. For instance,
in many object recognition tasks [13, 20] an object could
contain many attributes. Each attribute can be viewed as
a sub-domain. To this end, the clusters on the source and
target domain can represent the individual sub-domain in-
formation, respectively, such that optimal transport between
clusters intrinsically provides a local mapping from the sub-
domain in the source domain to those in the target domain.
Moreover, we provide a theoretical analysis and compre-

1label distribution are different in two domains, P s(y) ̸= P t(y)
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hensive experimental results to guarantee that (i) COT can
alleviate the negative effect caused by class imbalance; (ii)
Compared to existing OT-based UDA approaches, our COT
economizes much computation head.

In summary, our main contributions include:

• We propose a novel Clustering-based Optimal Trans-
port module as well as a specially designed loss de-
rived from the discrete type of Kantorovich dual form,
which resolves two aforementioned challenges on the
existing OT-based UDA algorithms, facilitating the de-
velopment of OT-based UDA community.

• We provide a theoretical analysis to guarantee the ad-
vantages of our COT.

• Our COT achieves state-of-the-art performance on sev-
eral UDA benchmark datasets.

2. Related work
Pseudo Label based Domain Adaptation Inspired by
the observation that samples in the target domain can be
clustered within the feature space, for accurate pseudo-
labeling, [48] propose a selective pseudo-labeling strat-
egy based on structural predictions which utilize the unsu-
pervised clustering analysis. [41] introduce a confidence-
based weighting scheme for obtaining pseudo-labels and
an adaptive threshold adjustment strategy to provide suf-
ficient and accurate pseudo-labels during the training pro-
cess. The confidence-based weighting scheme generates
pseudo-labels that can enable the performance less sensi-
tive to the threshold determined by the pseudo-labels. In
the task of person re-identification, [17] propose an unsu-
pervised framework called Mutual Mean-Teaching to learn
better features from the target domain by refining the hard
pseudo labels offline and soft pseudo labels online alterna-
tively to mitigate the effects of noisy pseudo labels caused
by the clustering algorithms.
Optimal Transport based Domain Adaptation As a way
to find a minimal effort strategy to the transport of a given
mass of dirt into a given hole, [37] put forward the optimal
transport problem for the first time. [22] provide an exten-
sion of the original problem of Monge. Recently, by apply-
ing the optimal transport to domain adaptation, some new
computation strategies have emerged.

[7] propose regularized unsupervised optimal transport
model to align the representation of features between differ-
ent domains. The regularization schemes encoding class-
structure in source domain during estimation of transport
map enforce the intuition that samples of the same class
must undergo a similar transformation. [5] minimize the
optimal transport loss between the joint source distribution
and the estimated target joint distribution depending on a
function that is introduced to predict an output value given

input from the source domain. For reducing the discrep-
ancy between multiple domains, [40] propose Joint Class
Proportion and Optimal Transport which performs multi-
source domain adaptation and target shift correction simul-
taneously by learning the predicted class probability of the
unlabeled target data and the coupling to align the distribu-
tions between source and target domain. For better align-
ment between different domains, a relation between target
error and the magnitude of different Wasserstein distances
are proposed in [23] which optimize the metric for domain
adaptation.

3. Preliminary
In this section, we introduce the basic knowledge for op-

timal transport.

3.1. Optimal Transport

LetX ⊆ Rd be a measurable space and the labels are de-
noted as Y . We denote the set of all probability distributions
on X as P(X). The source and target domains are space X
equipped with two distinct probability distributions µS and
µT . Suppose we have source dataset {xsi}

ns
i=1 ⊂ XS =

(X,µS) associated with label set {ysi }
ns
i=1 where ysi ∈ Y .

The target dataset is {xtj}
nt
j=1 ⊂ XT = (X,µT ) without

labels. The goal of optimal transport is to minimize the
inter-domain transportation cost by finding a feasible map
to preserve measure.

Definition 1 (Kantorovich) For given joint distribution
ρ(xs, xt) which satisfies for every measurable Borel set
OS ⊂ XS , OT ⊂ XT , we have

  \rho (O_{\mathcal {S}}\times X_{\mathcal {T}})=\mu _{\mathcal {S}}(O_{\mathcal {S}}),\rho (X_{\mathcal {S}}\times O_{\mathcal {T}})=\mu _{\mathcal {T}}(O_{\mathcal {T}})             (1)

For convenience, we denote the projection maps from XS ×
XT to XS and XT as πS , πT . The above equation can be
denoted as πS#ρ = µS and πT #ρ = µT . The correspond-
ing transportation cost is

 \label {kantorovich_type} \mathcal {C}(\rho )=\int _{X_{\mathcal {S}}\times X_\mathcal {T}}c(x^{s},x^{t})d\rho (x^{s},x^{t}) 



   (2)

where c(xs, xt) is pointwise transportation cost between
xs ∈ XS and xt ∈ XT . The optimal transport problem
is proposed to minimize the C(ρ) under the measure pre-
serving as the following:

  W_{c}:=\inf \limits _{\rho }\{\mathcal {C}(\rho )||\pi _{\mathcal {S}\#}\rho = \mu _{\mathcal {S}},\pi _{\mathcal {T}\#}\rho =\mu _{\mathcal {T}}\}  

         (3)

By convex optimization theory, we can consider the Kan-
torovich’s dual problem as:

  W_{c}:=\left \{ \begin {aligned} &\max \limits _{\varphi ,\psi }\int _{X_{\mathcal {S}}}\varphi (x^{s})d\mu _{\mathcal {S}}+\int _{X_{\mathcal {T}}}\psi (x^{t})d\mu _{\mathcal {T}}\\ &\text {s.t. \quad }\varphi (x^{s})+\psi (x^{t})\le c(x^{s},x^{t}) \end {aligned} \right . 














     

(4)
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where φ and ψ are real functions from XS and XT to R.
Moreover, the Kantorovich problem can be formulated as

 \label {dual_form} \max \limits _{\varphi }\{\int _{X_{\mathcal {S}}}\varphi (x^{s})d\mu _{\mathcal {S}}+\int _{X_{\mathcal {T}}}\varphi ^{c}(x^{t})d\mu _{\mathcal {T}}\} 











  (5)

where φc(xt) = inf
xs∈XS

{c(xs, xt) − φ(xs)} is called the

c-transform of φ.
By classical optimal transport theory, different choices

of cost function will influence the difficulty to solving the
optimal transport problem. When we choose c(xs, xt) =
∥xs−xt∥2, the problem stated in Equation (5) is equivalent
to

  \max \limits _{\varphi }\{\int _{X_{\mathcal {S}}}\varphi (x^{s})d\mu _{\mathcal {S}}-\int _{X_{\mathcal {T}}}\varphi (x^{t})d\mu _{\mathcal {T}}\} 










  (6)

where φ is under the constraint that |φ(x) − φ(x′)| ≤
∥x − x′∥2. WGAN [2] is inspired by above cost setting,
during the implementation of optimal transport in WGAN,
they utilize the gradient clip to guarantee the Lipschitz con-
stant of φ is bounded from above by 1. When we set the
cost function as c(xs, xt) = ∥xs − xt∥22, [16] guarantees
the existence and uniqueness of optimal transport map.

4. Methodology
In this section, we present the detail of our COT and

demonstrate the advantages of our COT theoretically.

4.1. Clustering-based Optimal Transport

Instead of aligning instance-level features between
source and target domain, we propose a novel clustering-
based optimal transport (COT) module for unsupervised do-
main adaptation in this subsection. Firstly, we extract fea-
tures from the source and target domain by ImageNet pre-
trained CNNs. Then we utilize learnable clusters to rep-
resent the sub-domains in the source and target domain,
respectively. Finally, we apply a Kantorovich dual form-
based loss to implement the optimal transport between clus-
ters from both domains.
Feature Extractor We utilize an ImageNet pre-
trained (without fully connected layers) CNNs (e.g.
ResNet50/ResNet101) to extract features {xsi}

ns
i=1 and

{xtj}
nt
j=1 from the source and target dataset respectively

at the beginning of training process. Note that the
distributions of features vary during the training phase.
Clustering As for each sample from source domain, i.e.,
xsi and corresponding ground-truth ysi ∈ Y . We denote
the fully-connected layer which outputs the classification
logits as W = [ws1, ..., w

s
|Y|]

⊤ ∈ R|Y|×c, where |Y| is the
number of categories and c is number of feature channels.
The predicted classification probability is P (ŷsi = v|xsi ) =
ex

s⊤
i ws

v

|Y|∑
u=1

ex
s⊤
i

ws
u

. The corresponding cross-entropy loss is shown

as follows:

 \label {cross_entropy} \mathcal {L}_{cross-entropy}=\frac {1}{b}\sum \limits _{i=1}^{b}-y_{i}^{s}\cdot \log (P(\hat {y}_{i}^{s}|x_{i}^{s})) 







      (7)

For the source domain, since {wsv}
|Y|
v=1 [13, 47] have been

shown effective for clustering representation, we take the
classifiers {wsv}

|Y|
v=1 as clusters for feature space of source

domain. For the target domain, a set of learnable clus-
ters termed as {wtu}Ku=1 are proposed to represent the sub-
domains, where K = Q · |Y| is a hyper-parameter which
stands for the number of sub-domains in the target domain,
Q is a positive integer which represents the number of sub-
domains for each class. The motivation of introducing Q
is to preserve the sub-domain information in the target do-
main during the COT optimization procedure. For instance,
if we set the same number of sub-domains on the source
and target domain, the sub-domain information in the tar-
get domain would be seriously influenced by those in the
source domain during the COT procedure, since the latter
is optimized with hard supervision signal while the former
is supervised by soft signal. On the contrary, Q helps the
target domain generate more sub-domains, which can pre-
serve the sub-domain information in the target domain be-
cause not all of them are optimized during the COT phase.
Empirically, the performance is superior when Q is set to
2. {wtu ∈ Rc}l·Qu=(l−1)·Q+1 represent the clusters for class
l, ∀1 ≤ l ≤ |Y|. For each feature xtj , we assign it to the
closest cluster in {wtu}Ku=1. We utilize the L2 distance to
measure the distance between features and clusters and pull
the features back to corresponding clusters.

  \left \{ \begin {aligned} & \mathcal {L}_{\text {cluster}} = \sum _{j=1}^{n_t} \| w_{u*}^t - x_{j}^t \|^2 \\ s.t. \enspace &u^{*}_{j} = \mathop {\arg \min }\limits _{1 \leq u \leq K}( \| w_{u}^t - x_{j}^t \|^2 ), \forall 1 \leq j \leq n_t \end {aligned} \right . 





 

  


     

(8)

Optimal Transport With clusters {wsv}
|Y|
v=1 and {wtu}Ku=1

from source and target domain respectively, we design the
clustering based optimal transport as follows: \label {cluster_cluster} \left \{ \begin {aligned} &\min \limits _{T\in \mathbb {R}^{|\mathcal {Y}|\times K}}T_{vu}c_{vu}\\ s.t.& \sum \limits _{u=1}^{K}T_{vu}=\frac {1}{K},\sum \limits _{v=1}^{|\mathcal {Y}|}T_{vu}=\frac {1}{|\mathcal {Y}|},\\ &T_{vu}\ge 0,\forall 1\le v\le |\mathcal {Y}|, 1\le u\le K \end {aligned} \right . 


























          

(9)

where cvu = ∥wsv − wtu∥22. Similar to Equation (5), we can
get the discrete Kantorovich dual problem of Equation (9).

  \label {equ:cot} \max \limits _{\psi }\{\frac {1}{K}\sum \limits _{u=1}^{K}\psi (w_{u}^{t})+\frac {1}{|\mathcal {Y}|}\sum \limits _{v=1}^{|\mathcal {Y}|}\psi ^{c}(w_{v}^{s})\} 

















 (10)
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Algorithm 1 Clustering-based Optimal Transport

1: Set number of epochs for training as E, learnable clus-
ters for target domain as {wtu}

|Y|
u=1, classifiers/clusters

for source domain as {wsv}
|Y|
v=1;

2: for k-th training epoch while k ≤ E do
3: for t-th iteration in k-th epoch do
4: Take mini-batch of samples from source and target

domain as input for feature extractor CNNs with
parameters θ, the output features are {xsi}bi=1 and
{xtj}bj=1;

5: Compute the Lcluster for {xtj}bj=1, Lcross-entropy for
{xsi}bi=1 in the l-th batch, and LOT ;

6: if 1 ≤ t ≤ k/(b ∗ 10) then
7: we find the current optimal map from clusters

of source domain to those of target domain by
maximizing LOT;

8: end if
9: Minimize LCOT ;

10: end for
11: end for

where ψc(wsv) =
K

inf
u=1

(cvu − ψ(wtu)). According to Equa-
tion 10, We can seek for the optimal transportation map be-
tween clusters by optimizing the following loss (line 7 in
Algorithm 1):

 \label {loss} \mathcal {L}_{\text {OT}}=\frac {1}{K}\sum \limits _{u=1}^{K}\lambda _{u}^{t}+\frac {1}{|\mathcal {Y}|}\sum \limits _{v=1}^{|\mathcal {Y}|}(\inf \limits _{u=1}^{K}(c_{vu}-\lambda _{u}^{t})) 





















   (11)

where {λtu}Ku=1 represent the value of function ψ at points
{wtu}Ku=1. Furthermore, it is worth noting that cost cvu is
frozen during the optimization of LOT, indicating that only
{λtv}

|Y|
v=1 is updated in this step. Then based on the founded

optimal map, we minimize the following loss (LCOT) to
close the matched clusters from the feature representation
perspective, thus the domain-invariant feature representa-
tion is learned via this step (line 9 in Algorithm 1). Corre-
spondingly, we freeze the {λtv}

|Y|
v=1 and only update cvu in

this step.

  \mathcal {L}_{\text {COT}} = \mathcal {L}_{\text {cross-entropy}}+\alpha _{1}\cdot \mathcal {L}_{\text {cluster}}+\alpha _{2}\cdot \mathcal {L}_{\text {OT}}            (12)

where α1 and α2 are loss weights. Finally, we elaborate the
overall optimization strategy of our COT in Algorithm 1.
Line 6 of Algorithm 1 represents we only optimize LOT in
the initial 10% iterations of each epoch.

4.2. Theoretical Analysis on Instance/Clustering
Optimal Transport

Given features {xsi}
ns
i=1 and {xtj}

nt
j=1 from source and

target domain respectively, where xsi and xtj are output from

shared-parameters neural network for feature extractor. We
consider the discrete Kantorovich problem \label {discrete_kan} \left \{ \begin {aligned} &\min \limits _{T\in \mathbb {R}^{n_s\times n_t}}T_{ij}c_{ij}\\ s.t. & \sum \limits _{j=1}^{n_t}T_{ij}=\frac {1}{n_s},\sum \limits _{i=1}^{n_s}T_{ij}=\frac {1}{n_t},\\ &T_{ij}\ge 0,\forall 1\le i \le n_s, 1\le j \le n_t . \end {aligned} \right . 


























          

(13)

where cij = ∥xsi − xtj∥22.
Considering the distance and inner-product between fea-

tures and classifiers:

 \label {distance-innerpro} \begin {aligned} &\|x_{i}^{s}-w_{v_{1}^{s}}\|^{2}_{2}-\|x_{i}^{s}-w_{v_{2}}^{s}\|_{2}^{2}\\ =&\|w_{v_{1}}^{s}\|_{2}^{2}-\|w_{v_{2}}^{s}\|_{2}^{2}\\ +&2(\|w_{v_{2}}^{s}\|_{2}x_{i}^{s\top }\frac {w_{v_{2}}^{s}}{\|w_{v_{2}}^{s}\|_{2}}-\|w_{v_{1}}^{s}\|_{2}x_{i}^{s\top }\frac {w_{v_{1}}^{s}}{\|w_{v_{1}}^{s}\|_{2}}) \end {aligned}  

   






 




















(14)

In the Bayesian view, we can consider ∥wsv∥2 as the prior
probability of class v, xsi is feature representation of a sam-
ple and ws

v

∥ws
v∥2

is the cluster for class v. xs⊤i
ws

v

∥ws
v∥2

mea-
sure the similarity between feature and cluster. When clas-
sifiers in {∥wsv∥2}

|Y|
v=1 are of the same magnitude, we con-

clude that the similarity between features and clusters are al-
most equivalent to the distance between features and classi-
fiers. With labels as supervision, the optimization of cross-
entropy can promote the inter-class discrepancy which im-
plies

  x_{i}^{s\top }\frac {w_{y_{i}^{s}}^{s}}{\|w_{y_{i}^{s}}^{s}\|_{2}}\gg x_{i}^{s\top }\frac {w_{v}^{s}}{\|w_{v}^{s}\|_{2}},\forall v\neq y_{i}^{s} 








   (15)

which also provide the following result

  \|x_{i}^{s}-w_{y_{i}^{s}}^{s}\|_{2}^{2}\ll \|x_{i}^{s}-w_{v}^{s}\|_{2}^{2},\forall v\neq y_{i}^{s}   

       (16)

If clustering doesn’t work sufficiently well, it happens
that some samples in the source domain with label v are
assigned to samples in the target domain with label u ̸=
v. When clustering performs well, We have cij ∼ c̄vj =
∥wsv − xtj∥22, where ∼ means these two numbers are almost
the same. Then we get \label {sim_1} \sum \limits _{i,j}T_{ij}c_{ij}\sim \sum \limits _{v,j}(\sum \limits _{x_{i}^{s}\in X_{v}^{s}}T_{ij})\bar {c}_{vj} 














 (17)

where Xs
v is the set of samples with label v in the source

domain. We denote the number of samples with class v as
nv , then we get

 \label {sim_2} \sum \limits _{j=1}^{n_t}(\sum \limits _{x_{i}^{s}\in X_{v}^{s}}T_{ij})=\frac {n_v}{n_s} \text {, } \sum \limits _{v=1}^{|\mathcal {Y}|}(\sum \limits _{x_{i}^{s}\in X_{v}^{s}}T_{ij})=\frac {1}{n_{t}} 




























(18)
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Table 156 Accuracy (%) on Office-31 for UDA (ResNet-50).The best result is in bold.

Method A→W D→W W→D A→D D→A W→A Avg

C
om

m
on

U
D

A
ADDA [46] 86.2 96.2 98.4 77.8 69.5 68.9 82.9
JAN [34] 85.4 97.4 99.8 84.7 68.6 70.0 84.3
MCD [42] 88.6 98.5 100.0 92.2 69.5 69.7 86.5
GTA [43] 89.5 97.9 99.8 87.7 72.8 71.4 86.5
CDAN [33] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
TAT [32] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
MDD [25] 94.5 98.4 100.0 93.5 74.6 72.2 88.9
GSP [19] 92.9 98.7 99.8 94.5 75.9 74.9 89.5
DANN [1] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
SHOT [29] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
MCC [21] 95.5 98.6 100.0 94.4 72.9 74.9 89.4
GVB-GD [9] 94.8 98.7 100.0 95.0 73.4 73.7 89.3
TSA [28] 96.0 98.7 100.0 95.4 76.7 76.8 90.6
SRDC [45] 95.7 99.2 100.0 95.8 76.7 77.1 90.8

O
T-

ba
se

d JDOT [5] 84.7 97.8 100.0 86.4 64.4 67.7 83.5
DeepJDOT [11] 88.9 98.5 99.6 88.2 72.1 70.1 86.2
MLOT [23] 92.8 98.5 100.0 90.8 72.8 71.6 87.8
RWOT [51] 95.1 99.5 100.0 94.5 77.5 77.9 90.8
DANN [1] + MMI [28] 95.2 98.6 100.0 94.4 74.6 75.2 89.7
DANN + MMI + COT (Ours) 96.5 99.1 100.0 96.1 76.7 77.4 91.0

Inspired by Equation (17) and (18), we consider the follow-
ing optimal transport between clusters from the source do-
main and instances from the target domain instead of solv-
ing the Kantorovich problem in Equation (13). \label {cluster_instance} \left \{ \begin {aligned} &\min \limits _{\bar {T}\in \mathbb {R}^{|Y|\times n_{t}}}\bar {T}_{vj}\bar {c}_{vj}\\ s.t.& \sum \limits _{j=1}^{n_{t}}\bar {T}_{vj}=\frac {n_v}{n_s},\sum \limits _{v=1}^{|\mathcal {Y}|}\bar {T}_{vj}=\frac {1}{n_t},\\ &\bar {T}_{vj}\ge 0,\forall 1\le v\le |\mathcal {Y}|, 1\le j\le n_t \end {aligned} \right . 

























          

(19)

In general, because of the class imbalance, the empirical
label distribution between source and target dataset are dif-
ferent

  \exists \delta > 0, \text { s.t. } \|(\frac {n_{1}^{s}}{n_{s}},...,\frac {n_{|\mathcal {Y}|}^{s}}{n_{s}})-(\frac {n_{1}^{t}}{n_{t}},...,\frac {n_{|\mathcal {Y}|}^{t}}{n_{t}})\|_{2}\ge \delta    


















   (20)

where δ is a constant which measures the label distribution
between source and target domain. There must exists some
index i such that n

s
v

ns
>

nt
v

nt
, which means that some samples

with label v in the source domain will be assigned to sam-
ples in the target domain with label u ̸= v. This will result
in samples belonging to the same category in the target do-
main are given different pseudo labels, which increase the
difficulty of training and cause the degradation of the per-
formance of deep learning methods on the target domain.

When we utilize the clustering based optimal transport,

for source domain, we have
K∑
u=1

Tvu = 1
|Y| . For target do-

main,
|Y|∑
v=1

l·Q∑
u=(l−1)·Q+1

Tvu = Q
K = 1

|Y| , which ease the

negative effect from class imbalance in domain adaptation
based on optimal transport.

4.3. Computation Cost

In terms of instance-based optimal transport, firstly we
need to obtain the features of all samples from the source
and target domain, computation cost on the feature extractor
is shown as follows:

  \mathcal {O}(n_s+n_t)\cdot \mathcal {O}(\text {feature-extractor})      (21)

where O(feature-extractor) means the computation cost on
single sample when extracting the feature. Then consid-
ering the optimization of optimal transport, every iteration
will need O(ns · nt). In comparison, for cluster-based opti-
mal transport, the main computation cost on optimal trans-
port is O(|Y| ·K). For a large-scale dataset, the clustering-
based optimal transport cost is much less than instance-
based optimal transport.

5. Experiments

In this section, we first elaborate on implementation de-
tails and 3 authoritative benchmark datasets in the field of
UDA. Then we compare our COT with existing OT-based
UDA algorithms and state-of-the-art UDA methods, illus-
trating that our COT achieves the dominant result in the
field of OT-based UDA and competitive performance on the
common UDA realm, respectively. Furthermore, we pro-
vide some qualitative analysis to illustrate the advantage of
our COT when compared with some clustering-based DA
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Table 256 Accuracy (%) on Office-Home for UDA.The best result is in bold.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

C
om

m
on

U
D

A

JAN [34] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
TAT [32] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
TPN [39] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2
ETD [26] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
SymNets [56] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
BNM [8] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD [25] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
GSP [19] 56.8 75.5 78.9 61.3 69.4 74.9 61.3 52.6 79.9 73.3 54.2 83.2 68.4
MCD [42] 48.9 68.3 74.6 61.3 67.6 68.8 57 47.1 75.1 69.1 52.2 79.6 67.8
DANN [1] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [33] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [4] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
TSA [28] 55.8 73.7 79.0 61.9 74.6 74.5 60.7 53.2 80.1 72.7 58.4 84.3 69.1
GVB-GD [9] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SRDC [45] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

O
T-

ba
se

d JDOT [5] 44.7 63.4 68.6 55.1 64.4 60.7 54.3 48.4 72.8 67.4 57.2 69.4 60.5
DeepJDOT [11] 39.7 50.4 62.5 39.5 54.4 53.2 36.7 39.2 63.6 52.3 45.4 70.5 50.6
MLOT [23] 52.4 72.6 77.8 58.8 72.4 72.8 53.2 50.8 76.5 70.9 54.4 82.3 66.2
DANN [1] + MMI [28] 55.7 74.8 80.4 63.6 74.1 76.6 64.2 54.7 80.5 74.3 58.2 81.3 69.9
DANN + MMI + COT (Ours) 57.6 75.2 83.2 67.8 76.2 75.7 65.4 56.2 82.4 75.1 60.7 84.7 71.7
Ours + CDTrans [52] 70.1 86.3 86.4 82.2 88.6 89.1 77.2 65.7 89.2 83.2 67.4 89.8 81.3

methods in the Optimal Transport realm. Finally, we con-
duct ablative experiments together with visualization results
to further demonstrate the effectiveness of our COT.

5.1. Datasets and Implementation Details

Office-31 is a benchmark dataset on the real-world unsuper-
vised domain adaptation. It has 4110 images for 31 classes
drawn from three domains: Amazon (A), DSLR (D), and
Webcam (W). The 31 classes in the dataset consist of ob-
jects that commonly appeared in office settings, such as key-
boards, file cabinets, and laptops.
Office-Home is a challenging benchmark dataset for do-
main adaptation which has 4 domains where each domain
consists of 65 categories. The four domains are Art – artis-
tic images in the form of sketches, paintings, ornamenta-
tion, etc.; Clipart – a collection of clipart images; Product
– images of objects without a background and Real-World
– images of objects captured with a regular camera. It con-
tains 15,500 images in 65 classes.
VisDa-2017 is a large-scale simulation-to-real dataset for
domain adaptation, which has over 280,000 images across
12 categories in the training, validation, and testing do-
mains. The training images are generated from the same
object under different circumstances, while the validation
images are collected from MSCOCO ( [31]).
Implementation Details Follow GVB ( [10]), we adopt
ResNet-50 pretrained on the ImageNet ( [12]) as our
backbone for Office-31 and Office-Home benchmarks and
ResNet-101 for VisDa-2017 dataset. Note that our COT is
a plug-and-play module, indicating it can integrate with a
vast body of existing UDA approaches, e.g. DANN [1],
CDAN [33]. If there is no extra statement, our COT is im-
plemented on DANN with Maximization Mutual Informa-
tion Loss (MMI) [28]. In this paper, all experiments are

implemented by PyTorch. For the optimizer schedule, we
adopt SGD with a momentum of 0.9. The total number of
training epochs is 40,40,30 on Office-31, Office-Home, and
VisDA-2017.

5.2. Results

Results on Office-Home. Table 2 presents the results
of OT-based and common UDA methods on Office-Home
dataset. Our COT achieves the highest accuracy 71.7%,
outperforming other OT-based UDA algorithms by 1.8%
at least. Such tremendous improvements demonstrate that
our COT can capture a more accurate local-level alignment
than previous DA-based methods’. Besides, when com-
pared with other state-of-the-art common UDA methods, to
the best of our knowledge, our COT is the first OT-based
UDA work that can perform a significant competitive result
on the Office-Home dataset.

Results on Office-31. The results are reported in the Table
1. Our COT achieves the best performance (91.0%) both on
the common and OT-based UDA.

Results on VisDA-2017. Table 3 shows the performance
of OT-based and common UDA methods on the challeng-
ing VisDa-2017 dataset. Our COT outperforms the exist-
ing OT-based / common UDA methods (CNN backbone)
by 3.1% / 3.2% at least, illustrating the dominant role of
our COT on UDA task. Furthermore, due to the plug-and-
play property of our COT, we directly add this module into
the sota UDA method (CDTrans [52] on the challenging
dataset VisDa2017 and Office-Home. The results in Table
3 show that our method achieves a new state-of-the-art per-
formance, indicating the superiority and appealing potential
of our COT.
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Table 356 Accuracy (%) on VisDA-2017 for UDA (ResNet-101). The best result is in bold.

Method plane bcybl bus car horse knife mcyle persn plant sktb train truck mean

C
om

m
on

U
D

A

DANN [1] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MinEnt [18] 87.4 55.0 75.3 63.8 87.4 43.6 89.3 72.5 82.9 78.6 85.6 27.4 70.7
TSA [28] 93.0 77.8 82.2 50.8 89.9 28.0 77.1 70.0 85.2 80.0 86.1 43.0 71.9
BSP [4] 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
MCC [21] 90.4 79.8 72.3 55.1 90.5 86.8 86.6 80.0 94.2 76.9 90.0 49.6 79.4
MODEL [27] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
STAR [35] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
BNM [8] 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
MSTN+DSBN [3] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
CGDM [14] 92.8 85.1 76.3 64.5 91.0 93.2 81.3 79.3 92.4 83.0 85.6 44.8 80.8
SHOT [29] 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
TVT [55] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans [52] 98.0 86.9 87.9 80.9 97.9 97.3 96.8 85.3 97.6 83.2 94.0 54.4 88.4

O
T-

ba
se

d JDOT [5] 78.4 70.8 79.4 68.8 82.3 80.5 84.2 70.7 88.4 68.8 78.4 45.7 74.7
DeepJDOT [11] 85.4 73.4 77.3 87.3 84.1 64.7 91.5 79.3 91.9 44.4 88.5 61.8 77.4
MLOT [23] 88.2 70.4 77.3 50.2 84.8 77.2 80.4 74.4 83.8 68.2 82.3 38.7 73.0
RWOT [51] 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
DANN+MMI+COT (Ours) 96.9 89.6 84.2 74.1 96.4 96.5 88.6 82.0 96.0 94.1 85.1 62.1 87.1
Ours + CDTrans [52] 98.2 89.4 87.6 82.3 98.0 97.2 96.4 86.2 98.3 92.6 92.2 58.1 89.7

(a) RWOT (b) COT

Figure 1. t-SNE of classifier responses by RWOT and COT on
CI50 (red: Amazon, blue: Webcam).

5.3. Ablation study

Ability on Resisting Class-imbalance Challenge. As the
results illustrated above, our COT brings little gain than
the existing sota OT-based UDA method (RWOT [51]) on
the Office-31 dataset while achieving the dominant perfor-
mance on Office-Home and VisDA-2017 datasets. To find
the reason for this, we compute the label distribution of the
Office-31 dataset, where the class imbalance phenomenon
is not occurred obviously compared to the Office-Home and
VisDA-2017 datasets (shown in Fig. 2). Thus, to verify the
ability of our COT on resisting class-imbalance challenges
among all UDA benchmark datasets, we construct 3 types of
class-imbalance evaluation benchmarks by randomly eras-
ing 30%, 50%, 70% samples from certain classes on Office-
31 datasets target domain, termed CI30, CI50, and CI70,
respectively. Table 4 presents the results of our COT and
existing OT-based UDA methods on Office-31, CI30, CI50,
and CI70. According to this quantitative result, we dis-

cover that the more severe the class imbalance phenomenon
occurs, the larger the performance gap between our COT
and RWOT, demonstrating that our COT embraces excel-
lent ability on handling class-imbalance challenges.

Table 4. Mean accuracy of OT-based UDA methods on class-
imbalance datasets.

Dataset COT RWOT MLOT
Office-31 91.0 90.8 87.8

CI30 88.2 84.7 83.6
CI50 87.7 78.3 80.4
CI70 85.4 70.5 75.2

Computation Cost. Here, we compute the computation
cost of our COT and RWOT, where RWOT is a represen-
tative work of a sample-level OT matching mechanism. By
looking at the results in Fig. 3, compared with RWOT, our
COT significantly saves the computational cost with the in-
creasing of training scale. Integrating the above theoretical
analysis with this quantitative result demonstrates the supe-
riority of our COT in economizing the computation head.
Effects of Loss Weight. α1 and α2 are employed to weight
the importance of cluster and OT loss, respectively. In our
experiment, α1 and α2 are the same and selected from a
broad range of {0.1, 0.2, 0.4, 1.0, 2.0}. Results are evalu-
ated on the Office-31 and shown in Table 5. When α1 and
α2 are set to large value, the performance will tend to drop.
In our opinion, the larger α1 and α2 would put more atten-
tion to local alignment while weakening the feature repre-
sentation on both domains. As a result, α1 and α2 are set to
0.2, 0.2 for all datasets.
Effects of the Number of Sub-domains. Y , defined in
Section 4, represents the number of sub-domains for each
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(a) Office-31 (b) Office-Home (c) VisDA-2017

Figure 2. Class distribution on Office-31, Office-Home and VisDA-2017. Note that the visualized class distribution is randomly selected
from corresponding datasets.

Figure 3. Computation cost of COT and RWOT

Table 5. Mean accuracy of our COT with different α1 and α2 on
Office-31 dataset.

α1 α2 avg acc
0.1 0.1 90.8
0.2 0.2 91.0
0.4 0.4 90.6
1.0 1.0 89.4
2.0 2.0 87.7

class. We investigate a broad range of Y to find an appro-
priate value. Based on the results shown in Table 6, we set
Y to 2 for all test settings.

Table 6. Mean accuracy of our COT with different Y on Office-31
dataset.

Y avg acc
1 90.7
2 91.0
3 90.8
5 90.4

Qualitative Analysis on COT As discussed above, we
present 2 advantages of our COT when compared with ex-
isting OT-based methods [23,51]. In this part, we further il-
lustrate another advantage compared to the clustering-based

OT algorithm in the conventional OT realm [24, 36]. Our
COT is optimized in an end-to-end manner, thus the feature
representation and optimal transportation map are both up-
dated asynchronously. While for [24] and [36], they focus
on obtaining offline cluster centers firstly and then compute
the optimal transportation map. Such a synchronous op-
timization manner inevitably leads to a sub-optimal map-
ping result, because the computation procedure of an opti-
mal transportation map is based on the fixed cluster centers.
This is why we adopt an online clustering mode instead of
an offline one.

5.4. Visualization

We present the t-SNE visualization of feature representa-
tion for our COT and RWOT [51] on CI50. Under the chal-
lenge of class imbalance, the learned features from RWOT
in some classes are ambiguous to provide accurate repre-
sentation compared to our COT. These visualization results
further demonstrate the excellent ability of our COT on han-
dling class-imbalance challenges from the feature represen-
tation perspective.

6. Conclusion

In this paper, we propose a novel method to advance
the OT-based domain adaptation community, which inte-
grates optimal transport theory with clustering operation,
termed Clustering-based Optimal Transport (COT). Con-
cretely, COT applies the loss derived from discrete Kan-
torovich dual form to cluster and align centers in the source
and target domain, thus transferring knowledge from the
source domain to the target domain. Moreover, our COT
can eliminate the negative effect brought by the class imbal-
ance phenomenon and reduce the computation cost simul-
taneously, which are two challenging problems for existing
OT-based UDA algorithms. Besides, we also provide com-
prehensive theoretical analysis and experimental results to
guarantee the advantages of our COT.
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