
Class Adaptive Network Calibration

Bingyuan Liu*1, Jérôme Rony⇤1, Adrian Galdran2, Jose Dolz1, Ismail Ben Ayed1

1ÉTS Montreal, Canada 2Universitat Pompeu Fabra, Barcelona, Spain

Abstract

Recent studies have revealed that, beyond conventional

accuracy, calibration should also be considered for train-

ing modern deep neural networks. To address miscalibra-

tion during learning, some methods have explored different

penalty functions as part of the learning objective, along-

side a standard classification loss, with a hyper-parameter

controlling the relative contribution of each term. Never-

theless, these methods share two major drawbacks: 1) the

scalar balancing weight is the same for all classes, hinder-

ing the ability to address different intrinsic difficulties or

imbalance among classes; and 2) the balancing weight is

usually fixed without an adaptive strategy, which may pre-

vent from reaching the best compromise between accuracy

and calibration, and requires hyper-parameter search for

each application. We propose Class Adaptive Label Smooth-

ing (CALS) for calibrating deep networks, which allows

to learn class-wise multipliers during training, yielding a

powerful alternative to common label smoothing penalties.

Our method builds on a general Augmented Lagrangian

approach, a well-established technique in constrained opti-

mization, but we introduce several modifications to tailor it

for large-scale, class-adaptive training. Comprehensive eval-

uation and multiple comparisons on a variety of benchmarks,

including standard and long-tailed image classification, se-

mantic segmentation, and text classification, demonstrate the

superiority of the proposed method. The code is available at

https://github.com/by-liu/CALS .

1. Introduction
Deep Neural Networks (DNNs) have become the prevail-

ing model in machine learning, particularly for computer
vision [13] and natural language processing applications [44].
Increasingly powerful architectures [3,13,24], learning meth-
ods [4, 12] and a large body of other techniques [15, 27] are
constantly introduced. Nonetheless, recent studies [11, 31]
have shown that regardless of their superior discriminative

*Equal Contributions. Correspondence to: {liubingyuan1988@
gmail.com, jerome.rony.1@etsmtl.net}

performance, high-capacity modern DNNs are poorly cali-
brated, i.e. failing to produce reliable predictive confidences.
Specifically, they tend to yield over-confident predictions,
where the probability associated with the predicted class
overestimates the actual likelihood. Since this is a critical is-
sue in safety-sensitive applications like autonomous driving
or computational medical diagnosis, the problem of DNN
calibration has been attracting increasing attention in recent
years [11, 31, 38].

Current calibration methods can be categorized into two
main families. The first family involves techniques that per-
form an additional post-processing parameterized operation
on the output logits (or pre-softmax activations) [11], with
the calibration parameters of that operation obtained from a
validation set by either learning or grid-search. Despite the
simplicity and low computational cost, these methods have
empirically proven to be highly effective [8, 11]. However,
their main drawback is that the choice of the optimal cali-
bration parameters is highly sensitive to the trained model
instance and validation set [22, 31].

The second family of methods attempts to simultaneously
optimize for accuracy and calibration during network train-
ing. This is achieved by introducing, explicitly or implicitly,
a secondary optimization goal involving the model’s predic-
tive uncertainty, alongside the main training objective. As
a result, a scalar balancing hyper-parameter is required to
tune the relative contribution of each term in the overall loss
function. Some examples of this type of approaches include:
Explicit Confidence Penalty (ECP) [38], Label Smoothing
(LS) [32], Focal Loss (FL) [21] and its variant, Sample-
Dependent Focal Loss (FLSD) [31]. It has been recently
demonstrated in [22] that all these methods can be formu-
lated as different penalty terms that enforce the same equal-
ity constraint on the logits of the DNN: driving the logit

distances towards zero. Here, logit distances refers to the
vector of L1 distances between the highest logit value and the
rest. Observing the non-informative nature of this equality
constraint, [22] proposed to use a generalized inequality con-
straint, only penalizing those logits for which the distance is
larger than a pre-defined margin, achieving state-of-the-art
calibration performance on many different benchmarks.

Although learning based methods achieve greater calibra-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16070

Figure 1. Many techniques have been proposed for jointly improving accuracy and calibration during training [11,31], but they fail to consider
uneven learning scenarios like high class imbalance or long-tail distributions. We show a comparison of the proposed CALS-ALM method
and different learning approaches in terms of Calibration Error (ECE) vs Accuracy on the (a) ImageNet and (b) ImageNet-LT (long-tailed
ImageNet) datasets. A lower ECE indicates better calibration: a better model should attain high ACC and low ECE. Among all the
considered methods, CALS-ALM shows superior performance when considering both discriminative power and well-balanced probabilistic
predictions, achieving best accuracy and calibration on ImageNet, and best calibration and second best accuracy on ImageNet-LT.

tion performance [22, 31], they have two major limitations:
1) The scalar balancing weight is equal for all classes. This
hinders the network performance when some classes are
harder to learn or less represented than others, such as in
datasets with a large number of categories (ImageNet) or
considerable class imbalance (ImageNet-LT). 2) The balanc-
ing weight is usually fixed before network optimization, with
no learning or adaptive strategy throughout training. This
can prevent the model from reaching the best compromise
between accuracy and calibration. To address the above is-
sues, we introduce Class Adaptive Label Smoothing method
based on an Augmented Lagrangian Multiplier algorithm,
which we refer to as CALS-ALM. Our Contributions can
be summarized as follows:

• We propose Class Adaptive Label Smoothing (CALS) for
network calibration. Adaptive class-wise multipliers are
introduced instead of the widely used single balancing
weight, which addresses the above two issues: 1) CALS
can handle a high number of classes with different intrinsic
difficulties, e.g. ImageNet; 2) CALS can effectively learn
from data suffering from class imbalance or a long-tailed
distribution, e.g. ImageNet-LT.

• Different from previous penalty based methods, we solve
the resulting constrained optimization problem by imple-
menting a modified Augmented Lagrangian Multiplier
(ALM) algorithm, which yields adaptive and optimal
weights for the constraints. We make some critical de-
sign decisions in order to adapt ALM to the nature of
modern learning techniques: 1) The inner convergence cri-
terion in ALM is relaxed to a fixed number of iterations in
each inner stage, which is amenable to mini-batch stochas-

tic gradient optimization in deep learning. 2) Popular
techniques, such as data augmentation, batch normaliza-
tion [15] and dropout [10], rule out the possibility of track-
ing original samples and applying sample-wise multipliers.
To overcome this complication, we introduce class-wise
multipliers, instead of sample-wise multipliers in the stan-
dard ALM. 3) The outer-step update for estimating optimal
ALM multipliers is performed on the validation set, which
is meaningful for training on large-scale training set and
avoids potential overfitting.

• Comprehensive experiments over a variety of applications
and benchmarks, including standard image classification
(Tiny-ImageNet and ImageNet), long-tailed image clas-
sification (ImageNet-LT), semantic segmentation (PAS-
CAL VOC 2012), and text classification (20 Newsgroups),
demonstrate the effectiveness of our CALS-ALM method.
As shown in Figure 1, CALS-ALM yields superior per-
formance over baselines and state-of-the-art calibration
losses when considering both accuracy and calibration, es-
pecially for more realistic large-scaled datasets with large
number of classes or class imbalance.

2. Related Work
2.1. Problem Formulation

Given a dataset D = {(x(i)
, y

(i)
)}Ni=1 with N 2 N

pairs of samples x 2 X and corresponding labels y 2 Y ,
with Y = {1, . . . ,K}, a deep neural network (DNN)
F✓ : X ! RK parameterized by ✓ yields logits

l = F✓(x) = (F✓(x)k)1kK 2 RK . In a classification
scenario, the output probability s = (sk)1kK 2 �

K�1,
where �

K�1 ⇢ [0, 1]
K denotes the probability simplex, is

16071

obtained by applying the softmax function on the output log-

its, i.e. s = softmax(l) =
exp lP
exp l . Therefore, the predicted

class ŷ is computed as ŷ = arg maxk sk, and the predicted
confidence is p̂ = sŷ = maxk sk. A perfectly calibrated
model should satisfy that the predicted confidence of any
input is equal to the accuracy of the model: p̂ = P(ŷ = y|p̂).
Hence, an over-confident model yields on average larger
confidences than the associated accuracy, whereas an under-
confident model yields lower confidence than its accuracy.

A number of recent studies [11, 22, 30, 31] have shown
that DNNs tend to become over-confident during training
as a result of minimizing the popular cross-entropy (CE)
training loss:

LCE(x, y) = �
KX

k=1

yk log sk (1)

where y 2 {0, 1}K is the one-hot encoding of y. This ob-
jective function is minimized when the predictions for all
the training samples fully match the ground-truth labels y,
i.e. sy = 1 and 8k 6= y, sk = 0. The negative logarith-
mic term on the logit of the correct category renders the
global minimization of the CE loss unreachable, as it keeps
pushing the predicted probabilities s towards the vertices
of the (K�1)-simplex even after the classification error is
zero [31], resulting in over-confident models.

2.2. Post-processing methods

To address mis-calibration, different post-processing tech-
niques applied after model training have been proposed re-
cently [8, 11, 43]. The most popular of these strategies is
Temperature Scaling (TS) [11], which applies a single scalar
temperature parameter to manipulate logit outputs mono-
tonely, resulting in softened prediction confidences without
affecting predicted labels. Note that here the temperature
parameter needs to be tuned on a separate validation set.
Despite its simplicity, TS has been shown effective in fix-
ing over-confidence predictions [11]. As a local alternative
to TS, [8] proposed to train a regression model for learn-
ing position-specific temperature for semantic segmentation
problems. Unfortunately, TS and its variants can be sensitive
to both the model and the validation set, and do not work
well under data distribution shifts [36]. Thus, some subse-
quent works [28, 43] have attempted to provide solutions for
improving performance under domain shift.

2.3. Learning-based methods

Another popular direction is to directly address mis-
calibration during training by introducing an additional
penalty or supervision regarding model calibration with the
standard training loss. In [18], the authors introduced a train-
able calibration measure based on RKHS kernels, while [16]

proposed a differential calibration loss based on a soft ver-
sion of the binning operation in the ECE metric. In [5],
two types of binary pairwise calibration constraints were
proposed as additional penalty terms during training. Other
methods try to decrease over-fitting on the cross-entropy
loss, which has been demonstrated to be the main reason
of over-confidence [11, 31]. In [38] an explicit confidence
penalty (ECP) is proposed to maximize the entropy and re-
duce over-fitting, while Label Smoothing [42] has also been
shown to implicitly improve the calibration [32] by soften-
ing the hard one-hot targets in the cross-entropy. The Focal
Loss [21], originally proposed to tackle class imbalance, can
also be effective for calibration [31], as it implicitly min-
imizes the Kullback-Leibler (KL) divergence between the
uniform distribution and the network softmax probabilities,
thereby increasing the entropy of the predictions. As an ex-
tension the Sample-Dependent Focal Loss (FLSD) was also
proposed in [31] to further boost calibration performance.

Margin-based Label Smoothing (MbLS). A unifying
constrained-optimization formulation of loss functions pro-
moting calibration has been recently presented in [22].
Specifically, the additional penalties integrated in these meth-
ods, including ECP [38], LS [32] and FL [31], can be viewed
as different forms of approximations to the same constraint,
i.e. enforcing the logit distances to be zero. Noticing that this
constraint is non-informative (its solution being uniformly
distributed probabilities), [22] further proposed a general-
ized formulation by relaxing the constraint to allow the logit
distances being lower than a strictly positive margin.

The specific formulation of MbLS [22] is as follows.
Given a margin m 2 R+, the constrained optimization prob-
lem for network training is:

min
✓

NX

i=1

LCE(x(i)
, y

(i)
)

s. t. max
k

{l(i)k }� l
(i) � m1K , i = 1, . . . , N,

(2)

where l(i) = F✓(x(i)
). The minimum can be approximated

by penalty-based optimization methods, transforming the
above formulation into an unconstrained problem by means
of simple ReLU functions:

min
✓

NX

i=1

LCE(x(i)
, y

(i)
) +

�

NX

i=1

KX

j=1

max{0,max
k

{l(i)k }� l
(i)
j �m},

(3)

where � 2 R+ is a scalar weight balancing contributions of
the CE loss and the corresponding penalty.

16072

3. Sample-wise Constrained DNN Optimization
Although MbLS can significantly improve calibration, the

associated constrained problem (2) is not solved accurately.
It is approximated by an unconstrained problem with a single
uniform penalty, regardless of the data sample or category.
However, the samples and classes considered in a classifi-
cation problem have different intrinsic learning difficulties.
Therefore, an improved training scheme would involve con-
sidering distinct penalty weights � for each sample and class.
This would result in having to chose N ⇥K penalty weights
⇤ 2 RN⇥K

+ , with the resulting optimization problem being:

min
✓

NX

i=1

LCE(x(i)
, y

(i)
) +

NX

i=1

KX

j=1

⇤ij max{0,max
k

{l(i)k }� l
(i)
j �m}.

(4)

From an optimization perspective, supposing that optimal
weights ✓? exists for problem (2), there exists ⇤

? 2 RN⇥K
+

such that (✓
?
,⇤

?
) is a saddle point of the Lagrangian asso-

ciated to (2). These ⇤
? are the Lagrange multipliers of the

problem. Therefore, using ⇤ = ⇤
? would be the best choice

to solve (4).
In practice, using the Lagrange multipliers of problem (2)

as the weights for the penalties may not be computationally
feasible, and it could even result in degraded performance.
Indeed, in the context of machine learning, we optimize a
model’s weights ✓ to solve (2) on a training set Dtrain, and
expect to generalize on a test set Dtest, which we do not have
access to during training. Because of the bias-variance trade-
off, solving (2) optimally would likely result in overfitting,
i.e. we may solve problem (2) accurately on the train set,
but not generalize properly on the test set, resulting in poor
calibration and classification performance overall. This sug-
gests that it could be preferable to evaluate during training
the quality of multipliers on a separate validation set Dval.
Additionally, several mechanisms for training DNNs are not
compatible with a straightforward minimization. First, the
use of batch normalization yields predictions that are not
independent between samples in a minibatch. Second, the
use of regularization techniques such as dropout may lead to
virtually inaccurate predictions on certain training samples,
impacting the correct estimation of multipliers. Third, data
augmentation, which is standard in DNN training, would
result in additional penalty weights for the augmented sam-
ples: they can be easier or harder to classify than the original
ones.

In addition to the above obstacles, applying a penalty
weight per sample and per class (resulting in N⇥K weights)
would not scale well for large datasets and dense predictive
tasks, such as semantic segmentation, which is typically for-
mulated as a per-pixel classification task. Assuming that im-

ages in the dataset have a size of H⇥W , this would result in
N⇥H⇥W⇥K penalty weights. This rapidly becomes a lim-
iting factor for moderately sized segmentation datasets. For
instance, Pascal VOC 2012 [9] contains 21 classes and 1464
training images, amounting to 2.62⇥10

8 pixels, or 5.5⇥10
9

penalty weights, which, stored as float32, would use
⇠20 GiB. For Cityscapes [6], containing approximately
3000 training images of size 2048⇥1024 in 19 classes, this
amounts to ⇠445 GiB.

Following the above observations, we introduce a relax-
ation of sample-wise penalties, and propose to solve the
following problem:

min
✓

NX

i=1

LCE(x(i)
, y

(i)
) +

NX

i=1

KX

j=1

�j max{0,max
k

{l(i)k }� l
(i)
j �m},

(5)

where (�j)1jK 2 RK
+ . Since penalties are now class-

wise, we need K penalty weights. This has the advantage to
scale well to denser classification tasks such as segmentation.
However, we still face a challenging optimization problem
(5), since we still need to chose K weights, which can be
extremely complicated for large-scale datasets with many
classes such as ImageNet, which contains 1000 classes. In
the next section, we introduce a numerical technique to deal
with this challenge.

4. Class Adaptive Network Calibration
The challenge of the previous formulation stems from

correctly choosing the weights � 2 RK
+ , which can be cum-

bersome when K is large. Therefore, we propose to use an
Augmented Lagrangian Multiplier (ALM) method to adap-
tively learn the weights of the penalties.

4.1. General ALM
ALM methods combine penalties and primal-dual updates

to solve a constrained problem. They have well-established
advantages and enjoy widespread popularity in the general
context of optimization [1, 35, 41]. Specifically, we have the
following generic constrained optimization problem:

min
x

f(x) s. t. hi(x) 0, i = 1, . . . , n (6)

where f : Rd ! R is the objective function and hi : Rd !
R, i = 1, . . . , n are the constraint functions. We tackle it by
approximately solving a sequence j 2 N of unconstrained
problems:

min
x

L(j)
(x) = f(x) +

nX

i=1

P (hi(x), ⇢
(j)
i ,�

(j)
i) (7)

16073

�4 �2 0 2
�2

0

2

4

z

P
(z

,⇢
,�

)

⇢ = 1 , � = 1

⇢ = 10, � = 1

⇢ = 1 , � = 0.3

Figure 2. A penalty-Lagrangian function P with varying values of
⇢ and µ. Higher values of ⇢ bring P closer to an ideal penalty. The
multiplier � is the derivative of P w.r.t. the constraint at z = 0.

with P : R⇥Rn
++ ⇥Rn

++ ! R a penalty-Lagrangian func-
tion, and ⇢(j)

= (⇢i)1in 2 Rn
++, �(j)

= (�
(j)
i)1in 2

Rn
++ the penalty parameters and multipliers associated to P

at the j-th iteration. This sequence of unconstrained prob-
lems is called outer iterations, while the steps in the mini-
mization of L(j) are called inner iterations.

The main components of ALM methods are (i) the
penalty-Lagrangian function P , (ii) the update of the penalty

multipliers �(j) and (iii) the increase of the penalty pa-

rameters ⇢(j). First, the penalty function P needs to
satisfy a set of axioms [2] (see Appendix A): these ax-
ioms constrain the function to be continuously differen-
tiable w.r.t. its first variable and to have a non-negative
derivative: 8z 2 R, P 0

(z, ⇢,�) =
@
@zP (z, ⇢,�) � 0, with

P
0
(0, ⇢,�) = �. Figure 2 gives an example of a penalty, and

how ⇢ and � affect it. The choice of penalty function is criti-
cal to the performance of ALM methods, especially for non-
convex problems [2]. Typical functions include PHR [14,39],
P2 [17] and P3 [34] (see section 3.2 of [2]). Second, the
penalty multipliers �(j) are updated to the derivative of P
w.r.t. the solution obtained during the last inner minimiza-
tion. Formally, let x(j) be the approximate minimizer of
L(j), then 8i 2 {1, . . . , n}:

�
(j+1)
i = P

0
(hi(x

(j)
), ⇢

(j)
i ,�

(j)
i) (8)

This update rule corresponds to a first-order multiplier es-
timate for the constrained problem. Third, the penalty pa-
rameters ⇢(j) are increased during the outer iterations if
the constraints do not improve (i.e. is closer to being sat-
isfied) compared to the previous outer iteration. Typically,
⇢
(j+1)
i = �⇢

(j)
i if hi does not improve, with � > 1.

When the problem is convex, alternating between the
approximate minimization of (7) and the update of the multi-
pliers (8) leads to a solution for the constrained problem. The
inner minimization corresponds to minimizing the primal
while the outer iterations correspond to solving the dual prob-
lem. The complete procedure is presented in Algorithm 1.

Although guarantees exist only in the convex case, it is well-
known that ALM methods can efficiently solve nonconvex
problems as well [2]. In the context of deep learning, their
use has been surprisingly underexplored [40, 41].

Algorithm 1 Augmented Lagrangian Multiplier algorithm
Require: Objective function f
Require: Constraint functions hi, i = 1, . . . , n
Require: Penalty function P , initial �(0) 2 Rn

++, ⇢(0) 2 Rn
++

Require: Initial variable x(0), iterations j = 1
1: while not converged do
2: Initialize with x(j�1) and minimize (approximately):

L(j)(x) = f(x) +
Pn

i=1 P (hi(x), ⇢
(j)
i ,�(j)

i)

3: x(j) (approximate) minimizer of L(j)

4: for i = 1, . . . , n do
5: �(j+1)

i P 0(hi(x
(j)), ⇢(j)

i ,�(j)
i)

6: if the i-th constraint does not improve then
7: ⇢(j+1)

i �⇢(j)
i

8: else
9: ⇢(j+1)

i ⇢(j)
i

10: end if
11: end for
12: j j + 1
13: end while

4.2. ALM for calibration
Our goal now is to build an ALM method effective for

calibration purposes. We can achieve this by reformulating
problem (5) using a penalty function P parameterized by
(⇢,�) 2 RK

++ ⇥ RK
++ as follows:

min
✓

NX

i=1

LCE(x(i)
, y

(i)
) +

KX

k=1

P (d
(i)
k �m, ⇢k,�k) (9)

where d(i)k = max{l(i)}� l
(i)
k 2 R+. With this formulation,

it is natural to use a penalty-Lagrangian function for P . To
avoid numerical issues typically associated with non-linear
penalties, we normalize the constraints by the margin m > 0:

d
(i)
k �m 0 ,

d
(i)
k

m
� 1 0 (10)

This leads to improved numerical stability for the ALM
multiplier update as well. Additionally, we average the
constraints instead of summing them. This makes the method
independent of the number of classes, and eases the choice
of initial penalty parameters ⇢(0). The resulting loss is:

NX

i=1

LCE(x(i)
, y

(i)
) +

1

K

KX

k=1

P

✓
d
(i)
k

m
� 1, ⇢k,�k

◆
(11)

As noted in Section 3, one of the main downsides of
estimating Lagrange multipliers from the training set is that

16074

we could quickly overfit the data. Therefore, we propose
to use the validation set to obtain a reliable estimate of the
penalty multipliers at each epoch. We consider that an epoch
of training corresponds to the approximate minimization
of the loss function, and then compute the average penalty
multiplier on the validation set. Formally after a training
epoch j, the penalty multipliers for epoch j+1 will be, for
all k = 1, . . . ,K:

�
(j+1)
k =

1

|Dval|
X

(x,y)2Dval

P
0
✓
dk

m
� 1, ⇢

(j)
k ,�

(j)
k

◆
(12)

Finally, the penalty multiplier is projected on a safeguarding
interval [�min,�max] = [10

�6
, 10

6
] in our case. To update

the penalty parameters ⇢, we compute the average constraint
per class on the validation set. Then, for each class, if the
average constraint is positive and has not decreased com-
pared to the previous epoch, we multiply the corresponding
penalty parameter by �.

Finally, as suggested by [2] and confirmed by our empiri-
cal results, we utilize the PHR function in our implementa-
tion, defined as follows:

PHR(z, ⇢,�) =

(
�z +

1
2⇢z

2 if � + ⇢z � 0;

��2

2⇢ otherwise.
(13)

Overall, the proposed method, consolidated in Algorithm 2,
corresponds to approximately solving the constrained prob-
lem (2), by learning class-wise penalty multipliers on the
validation set, to avoid overfitting and training specificities
(i.e. batch normalization, dropout, augmentations) which
would result in unreliable penalty multipliers estimates.

5. Experiments
5.1. Experimental Setup
Datasets. We perform experiments on a variety of popu-
lar benchmarks. First, we include three widely used image
classification benchmarks, including Tiny-ImageNet [7], Ima-

geNet [7] and one long-tailed image classification, ImageNet-

LT [25]. Tiny-ImageNet is widely used in the calibration
literature [22, 31], with relatively small 64⇥64 resolution,
while ImageNet [7] is a large-scale benchmark consisting
of 1000 categories and over 1M images. The main char-
acteristic of ImageNet-LT is that the number of samples
is extremely imbalanced across classes, ranging from 5 to
1280. To evaluate performance in dense prediction tasks,
we include one semantic segmentation benchmark, PASCAL

VOC2012 [9]. Furthermore, one benchmark from the NLP
domain, 20 Newsgroups [19], is included to show the general
applicability. For a detailed description of each dataset and
the pre-processing settings, please refer to Appendix B.
Evaluation Metrics. For calibration, we report the most
widely used Expected Calibration Error (ECE) [33]. Samples

Algorithm 2 CALS-ALM training

Require: DNN initial ✓0, margin m
Require: Dataset: Dtrain, Dval, batch size B
Require: Penalty function P , � > 1, ⌧ 2 (0, 1)
Require: Initial �(0) 2 Rn

++, ⇢(0) 2 Rn
++

1: for j = 0, . . . , T do // Epochs of training
2: for each mini-batch {(x(i), y(i))}B

i=1 in Dtrain do

3: Lc =
BP

i=1
LCE(x

(i), y(i)) // Cross-entropy

4: Lp =
BP

i=1

1
K

KP
k=1

P
⇣

d
(i)
k
m � 1, ⇢(j)

k ,�(j)
k

⌘
// Penalties

5: L = 1
B (Lc + Lp)

6: ✓(t+1) ✓(t) � ↵ ·r✓L // Gradient descent
7: end for
8: for k = 1, . . . ,K do // Adjust � and ⇢ on validation

9: �(j+1)
k = 1

|Dval|

X

(x,y)2Dval

P 0
✓
dk

m
� 1, ⇢(j)

k ,�(j)
k

◆

10: dk
(j)

= 1
|Dval|

X

(x,y)2Dval

dk

m
� 1 // Average constraint

11: if j � 1 and dk
(j)

> ⌧ max{0, dk
(j�1)} then

12: ⇢(j+1)
k �⇢(j)

k // Constraint has not improved
13: else
14: ⇢(j+1)

k ⇢(j)
k

15: end if
16: end for
17: end for

are grouped into M equi-spaced bins according to prediction
confidence, and a weighted average of the absolute difference
between accuracy and confidence in each bin is calculated:

ECE =

MX

m=1

|Bm|
N

|Am � Cm|, (14)

where M is the number of bins, N the amount of test sam-
ples, Bm the samples with prediction confidence in the
m

th bin, Am the accuracy and Cm the mean confidence
of samples in the m

th bin. Note we fix N to 15 according
to [22,31]. In accordance with [22], we also report Adaptive
ECE (AECE), a variant of ECE where the bins are configured
to evenly distribute the test samples across them. Addition-
ally, Classwise Calibration Error (CWCE) [29], a classwise
extension of ECE, is included in Appendix C. For discrim-
inative performance, we use standard measures: accuracy
(Acc) for classification, and intersection over union (mIoU)
for segmentation.
Compared methods. We compare our method to other
learning based calibration losses, including (i) methods that
impose constraints on predictions (either logits or softmax
probabilities), i.e. Explicit Confidence Penalty (ECP) [38],
Label Smoothing (LS) [42], Focal Loss (FL) [21] and its
sample-dependent version (FLSD) [31], Margin-based Label

16075

TinyImageNet ImageNet ImageNet-LT

ResNet-50 ResNet-50 SwinV2-T ResNet-50 SwinV2-T

Method Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE Acc ECE AECE

CE 65.02 3.73 3.69 75.16 9.19 9.18 75.60 9.95 9.94 37.90 28.12 28.12 31.82 31.82 36.68
MMCE [18] 65.34 2.81 2.61 74.85 8.57 8.56 76.68 9.07 9.08 37.79 28.41 28.40 33.14 26.41 26.41
ECP [38] 64.90 4.00 3.92 75.22 8.27 8.26 75.82 9.88 9.86 37.69 28.14 28.13 31.22 33.70 33.70
LS [42] 65.78 3.17 3.16 76.04 2.57 2.88 75.42 7.32 7.33 37.88 10.46 10.38 31.70 11.42 11.40
FL [31] 63.09 2.96 3.12 73.87 1.60 1.65 75.60 3.19 3.18 36.04 18.37 18.36 30.73 25.50 25.50
FLSD [31] 64.09 2.91 2.95 73.97 2.08 2.06 74.70 2.44 2.37 36.18 17.77 17.78 32.56 25.16 25.17
CPC [5] 64.49 4.88 4.91 76.33 3.66 3.59 76.34 5.50 5.33 38.90 16.00 15.99 32.54 13.21 13.19
MbLS [22] 64.74 1.64 1.73 75.82 4.44 4.26 77.18 1.95 1.73 38.32 6.16 6.16 32.05 7.65 7.64

CALS-HR 65.09 2.50 2.42 76.34 5.63 5.69 77.58 3.06 2.95 38.50 2.83 2.78 34.31 2.37 2.45
CALS-ALM 65.03 1.54 1.38 76.44 1.46 1.32 77.10 1.61 1.69 38.56 2.15 2.30 33.94 2.32 2.45

Table 1. Calibration performance for different approaches on three image classification benchmarks. We report two lower-is-better calibration
metrics, i.e. ECE and AECE. Best method is highlighted in bold, while the second-best one is underlined.

Smoothing (MbLS) [22] and CPC [5], and (ii) techniques
that directly optimize calibration measures, i.e. MMCE [18].
We refer to the related literature [22, 31] to set the hyper-
parameters for various methods. For instance, the smoothing
factor in LS and FL is set to 0.05 and 3 respectively, and
we set margin to 10 in MbLS. A detailed description of
hyper-parameter values can be found in Appendix F.
Our methods. A simple alternative to the algorithm pre-
sented in Section 4.2 would be to heuristically tune multipli-
ers by scaling them according to penalty values: if P (j+1)

k

increases we also increase �j+1
k and vice versa. This strategy,

akin to learning rate scheduling, can be formulated as:

�
(j+1)
k =

8
>><

>>:

µ�
(j)
k if P

(j+1)
k > ⌧P

(j)
k

�
(j)
k /µ if P

(j)
k > ⌧P

(j+1)
k

�
(j)
k otherwise

(15)

where µ > 1 and ⌧ > 1 are hyper-parameters that we fix to
1.1. We refer to our main algorithm as CALS-ALM and to
this heuristic rule as CALS-HR in what follows.

We fix the margin to m = 10 on vision tasks and m = 6

on the NLP benchmark, as in [22], for a fair comparison. We
also perform an ablation study to investigate the impact of
the margin value. For other hyper-parameters, we set �(0)

=

10
�6 · 1K , ⇢(0)

= 1K , � = 1.2, and we update the penalty
parameters ⇢ every 10 epochs. Please refer to Appendix F
for a detailed description of all hyper-parameters.
Implementation Details. For image classification, we exper-
iment with ResNet [13] and a vision Transformer model, i.e.
Swin Transformer V2 (SwinV2-T) [23]. DeepLabV3 [3] is
employed for semantic segmentation on PASCAL VOC2012.
Following [22, 31], we use the Global Pooling CNN (GPool-
CNN) architecture [20] on the NLP recognition task. Further
training details on each dataset can be found in Appendix B.

5.2. Results
Results on image classification. Table 1 presents the dis-
criminative and calibration performance of our methods

across three widely used classification benchmarks, com-
pared to baselines and related works. We can observe that
our CALS-ALM approach consistently outperforms existing
techniques in terms of calibration. Specifically, the results
indicate that the standard CE loss and other approaches often
lead to miscalibrated models, with the severity of miscali-
bration substantially increasing in correlation with dataset
difficulty. This is particularly evident in large-scaled datasets
with numerous classes, such as ImageNet, or those with
long-tail class distributions, like ImageNet-LT. Although
other learning-based methods could provide better calibrated
networks, their performance is not stable across different
settings. For example, while FL achieves a relatively low
ECE of 1.60 with a Resnet50 trained on ImageNet, it only
yields an ECE of 25.50 when training a SwinV2-T network
on ImageNet-LT, revealing a limitation in adapting to differ-
ent learning scenarios. In contrast, CALS-ALM attains the
best calibration performance in all cases, frequently outper-
forming exsiting approaches by a significant margin, with
minimal variations across datasets and architectures. This
trends persists when compared to the most closely related
technique, MbLS. It is noteworthy that the improvements
on the long-tailed ImageNet-LT dataset are substantial; for
example, we decrese ECE from 28.12 to 2.15 for ResNet-
50, and from 31.82 to 2.32 for SwinV2-T, validating the
effectiveness of class adaptive learning. Another interesting
finding is that CALS-HR, employing a naive update strategy
for class-wise penalty weights, achieves nearly the second-
best performance in the ImageNet-LT dataset. This further
demonstrates the effectiveness of CALS for learning under
class-imbalance scenarios. For the reliability diagrams of
various models, please refer to Appendix E.

In terms of model accuracy, our method delivers compet-
itive performances, surpassing existing methods in certain
cases. It is important to emphasize that, while the proposed
method achieves discriminative results comparable to the
best-performing approach for each dataset, the differences in
calibration are considerable. This highlights the superiority
of the proposed formulation for training highly discrimi-

16076

0

10

20

30

V
a
li
d
a
ti

o
n

E
C

E
(%

)

CALS

MbLS

CE

0 50 100 150 200
Epoch

0.0

0.5

1.0

1.5

C
A

L
S

m
u
lt

p
li
e
rs

max(�)

mean(�)

min(�)

(a) Validation ECE and multipliers during training.

0

10

20

30

E
C

E
(%

)

Validation

PHR

P2

P3

1 5 10 15 20
Margin m

10

20

30

40

A
c
c
u
ra

c
y

(%
)

Test

1 5 10 15 20
Margin m

(b) Effect of penalty function and margin on accuracy and ECE for CALS.

Figure 3. Ablation study on ImageNet-LT. (a) Evolution of ECE on validation and multipliers for CALS: ECE on the validation set for
our method (CALS), CE and MbLS [22] and values of multipliers � for CALS after each training epoch. (b) Effect of penalty functions
and margin: ECE and accuracy on validation and test set are shown across different choices of penalty functions and margin values.

native and well-calibrated networks. Figure 1 provides a
more visual comparison considering both accuracy and ECE.
It is demonstrated that CALS-ALM provides the optimal
compromise between accuracy and calibration performance.

Ablation Analysis. Figure 3 illustrates the evolution of
ECE in (a) and penalty multipliers � in (b) during training.
It is interesting to observe that the evolution of � is consis-
tent with the ECE. Specifically, the average penalty weight
gradually increases while the ECE initially deteriorates be-
cause the model is focused on increasing accuracy. However,
the value of the penalty weight begins to decline alongside
the ECE, as the network starts to become better calibrated.
For a visualization of classwise multipliers, please refer to
Appendix D. Figure 3(c) highlights the impact of the choice
of penalty functions and margin values. This demonstrates
that the PHR penalty function is preferable over the other
two options, P2 and P3, for both calibration and accuracy.
Regarding the margin, the best performance is achieved with
m ⇡ 10, which is consistent with the findings in [22].

Semantic Segmentation. Table 2 presents the perfor-
mance on Pascal VOC dataset. Note here CALS refers to
our best method, i.e. CALS-ALM. It can be observed that
the trend is consistent with image classification experiments:
CALS outperforms counterparts in terms of ECE, and yields
competitive results on discriminative performance, i.e. mIoU
in segmentation. It is worth noting that some methods like
MMCE, FLSD and CPC, are not included here because their
computation demands were too heavy for pixel-wise segmen-
tation tasks. In contrast, our method is unlimited in dense
prediction tasks as the computation cost it adds is moderate.

Text Classification. Last, we demonstrate the general
applicability of the proposed method by analyzing its per-
formance on a non-vision task, i.e. text classification on 20
Newsgroups dataset. The results are reported in Table 3.
Remarkably, CALS again brings substantial improvement in

CE ECP LS FL MbLS CALS

ECE 14.75 5.15 6.90 10.87 5.22 4.66

mIoU 66.46 65.57 67.73 64.25 65.29 66.77

Table 2. Segmentation results on the PASCAL VOC 2012.

CE MMCE ECP LS FL FLSD CPC MbLS CALS

ECE (%) 22.75 23.02 22.97 8.07 10.80 10.87 9.46 5.40 2.04

Acc (%) 67.01 66.23 66.48 67.14 66.08 65.85 68.27 67.89 68.32

Table 3. Results on the text classification task, 20 Newsgroups.

terms of calibration, with ECE decreasing to 2.04%, while
yielding the best accuracy 68.32%. This reveals that the pro-
posed class adaptive learning method is also able to handle
class differences in NLP applications and provide promising
performance in terms of both accuracy and calibration.

6. Limitations and Future Work
We have proposed Class Adaptive Label Smoothing for

network calibration based on a modified Augmented La-
grangian Multiplier algorithm. Despite its superior perfor-
mance over previous methods, there are potential limitations
in this work. For instance, our method requires the validation
set to have the same distribution as the training set. Although
this is satisfied in nearly every benchmark, it will be interest-
ing to investigate the impact of using non-independent and
identically distributed (i.i.d) validation sets.

Acknowledgements
This work is supported by National Science and Engi-

neering Research Council of Canada (NSERC) and Prompt
Quebec. We also thank Calcul Quebec and Compute Canada.
Adrian Galdran is supported by a Marie Sklodowska-Curie
Fellowship (No 892297).

16077

References
[1] Dimitri P. Bertsekas. Constrained Optimization and Lagrange

Multiplier Methods (Optimization and Neural Computation

Series). Athena Scientific, 1 edition, 1996. 4
[2] Ernesto G Birgin, Romulo A Castillo, and José Mario

Martínez. Numerical comparison of augmented lagrangian
algorithms for nonconvex problems. Computational Opti-

mization and Applications, 31(1), 2005. 5, 6, 11
[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. In CVPR, 2017. 1, 7, 11

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 1

[5] Jiacheng Cheng and Nuno Vasconcelos. Calibrating deep
neural networks by pairwise constraints. In CVPR, 2022. 3,
7, 13

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, June 2016. 4

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009. 6, 11

[8] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Niethammer.
Local temperature scaling for probability calibration. In ICCV,
2021. 1, 3

[9] Mark Everingham, S. M. Eslami, Luc Gool, Christopher K.
Williams, John Winn, and Andrew Zisserman. The pas-
cal visual object classes challenge: A retrospective. IJCV,
111(1):98–136, 2015. 4, 6, 11

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In ICML, 2016. 2

[11] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In ICML, 2017. 1,
2, 3, 12

[12] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 1

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1, 7, 11

[14] Magnus R. Hestenes. Multiplier and gradient methods. Jour-

nal of Optimization Theory and Applications, 4:303–320,
1969. 5

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 1, 2

[16] Archit Karandikar, Nicholas Cain, Dustin Tran, Balaji Lak-
shminarayanan, Jonathon Shlens, Michael C Mozer, and Re-
becca Roelofs. Soft calibration objectives for neural networks.
In NeurIPS, 2021. 3

[17] Barry W. Kort and Dimitri P. Bertsekas. Combined pri-
mal–dual and penalty methods for convex programming.
SIAM Journal on Control and Optimization, 14(2):268–294,
1976. 5

[18] Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable
calibration measures for neural networks from kernel mean
embeddings. In ICML, 2018. 3, 7, 13

[19] Ken Lang. Newsweeder: Learning to filter netnews. In ICML,
1995. 6, 12

[20] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. In ICLR, 2014. 7, 12

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In CVPR,
2017. 1, 3, 6

[22] Bingyuan Liu, Ismail Ben Ayed, Adrian Galdran, and Jose
Dolz. The devil is in the margin: Margin-based label smooth-
ing for network calibration. In CVPR, 2022. 1, 2, 3, 6, 7, 8,
11, 12, 13

[23] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu
Wei, and Baining Guo. Swin transformer v2: Scaling up
capacity and resolution. In CVPR, 2022. 7, 11

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1

[25] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,
Boqing Gong, and Stella X. Yu. Large-scale long-tailed
recognition in an open world. In CVPR, 2019. 6, 11

[26] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. In ICLR, 2017. 11

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1, 11

[28] Xingchen Ma and Matthew B. Blaschko. Meta-cal: Well-
controlled post-hoc calibration by ranking. In ICML, 2021.
3

[29] Lena Maier-Hein et al. Metrics reloaded: Pitfalls and rec-
ommendations for image analysis validation. arXiv preprint

arXiv:2206.01653, 2022. 6, 12
[30] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances

Hubis, Xiaohua Zhai, Neil Houlsby, Dustin Tran, and Mario
Lucic. Revisiting the calibration of modern neural networks.
In NeurIPS, 2021. 3, 11, 12

[31] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart
Golodetz, Philip HS Torr, and Puneet K Dokania. Calibrating
deep neural networks using focal loss. In NeurIPS, 2020. 1,
2, 3, 6, 7, 11, 12, 13

[32] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When
does label smoothing help? In NeurIPS, 2019. 1, 3

[33] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In AAAI, 2015. 6

[34] H. Nakayama, H. Samaya, and H. Samaya. A generalized
lagrangian function and multiplier method. Journal of Opti-

mization Theory and Applications, 17:211–227, 1975. 5
[35] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-

tion. Springer, New York, NY, USA, 2 edition, 2006. 4
[36] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David

Sculley, Sebastian Nowozin, Joshua V Dillon, Balaji Laksh-
minarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset
shift. In NeurIPS, 2019. 3

16078

[37] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
EMNLP, 2014. 12

[38] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. In ICLR, 2017.
1, 3, 6, 7, 13

[39] M. J. D. Powell. A method for nonlinear constraints in mini-
mization problems. In Fletcher, R., Ed., Optimization, Aca-

demic Press, New York, NY, 1969. 5
[40] Jérôme Rony, Eric Granger, Marco Pedersoli, and Ismail Ben

Ayed. Augmented lagrangian adversarial attacks. In ICCV,
2021. 5

[41] Sara Sangalli, Ertunc Erdil, Andeas Hötker, Olivio F Donati,
and Ender Konukoglu. Constrained optimization to train
neural networks on critical and under-represented classes. In
NeurIPS, 2021. 4, 5

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, 2016. 3, 6, 7,
13

[43] Christian Tomani, Sebastian Gruber, Muhammed Ebrar Er-
dem, Daniel Cremers, and Florian Buettner. Post-hoc uncer-
tainty calibration for domain drift scenarios. In CVPR, 2021.
3

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1

16079

