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Abstract

Self-supervised pretraining has achieved remarkable
success in high-level vision, but its application in low-level
vision remains ambiguous and not well-established. What
is the primitive intention of pretraining? What is the core
problem of pretraining in low-level vision? In this paper,
we aim to answer these essential questions and establish
a new pretraining scheme for low-level vision. Specifically,
we examine previous pretraining methods in both high-level
and low-level vision, and categorize current low-level vision
tasks into two groups based on the difficulty of data acqui-
sition: low-cost and high-cost tasks. Existing literature has
mainly focused on pretraining for low-cost tasks, where the
observed performance improvement is often limited. How-
ever, we argue that pretraining is more significant for high-
cost tasks, where data acquisition is more challenging. To
learn a general low-level vision representation that can im-
prove the performance of various tasks, we propose a new
pretraining paradigm called degradation autoencoder (De-
gAE). DegAE follows the philosophy of designing pretext
task for self-supervised pretraining and is elaborately tai-
lored to low-level vision. With DegAE pretraining, SwinIR
achieves a 6.88dB performance gain on image dehaze task,
while Uformer obtains 3.22dB and 0.54dB improvement on
dehaze and derain tasks, respectively.

1. Introduction

With the phenomenal success of self-supervised pre-
training in natural language processing (NLP), a large num-
ber of attempts have also been proposed in the field of com-
puter vision [20,21,66,67]. The idea behind self-supervised
pretraining is to learn a general visual representation by de-
vising an appropriate pretext task that does not rely on any
manual annotation. Owing to large-scale pretraining, mod-
els with a voracious appetite for data can alleviate the over-
fitting problem and achieve further improvement.

* Corresponding author. Email: chao.dong@siat.ac.cn.

Recently, referring to the philosophy of masked language
modeling (MLM) in NLP [27,51], masked image modeling
(MIM) [20,67] has been proposed and proven to be extraor-
dinarily effective in high-level vision tasks, e.g., image clas-
sification, object detection, and image segmentation. How-
ever, the notion of low-level vision pretraining is not yet
well-established, due to the distinctions between high-level
and low-level vision tasks. Specifically, the representative
high-level vision tasks take fixed-size images as inputs and
predict manually annotated labels as targets [15, 23], while
most low-level vision methods accept low-quality (LQ) im-
ages as inputs and produce high-quality (HQ) images as
targets [31, 78]. More importantly, the annotation man-
ner in low-level vision is quite different. To obtain LQ-
HQ pairs, a wide range of tasks choose to synthesize in-
put LQ images from collected HQ images, such as classi-
cal super-resolution [11] and Gaussian denoise [77]. Based
on the difficulty of paired-data acquisition, we can roughly
categorize low-level vision tasks into two groups: 1) low-
cost task: tasks with low-cost data acquisition (e.g., super-
resolution), and 2) high-cost task: tasks with high-cost data
acquisition (e.g., dehaze). This analysis is absent in exist-
ing low-level vision literatures [4, 7, 34]. They only con-
sider low-cost tasks and simply adopt a straightforward pre-
training strategy that has the same objectives as the down-
stream tasks. Such a pretraining paradigm lacks generality
and only brings marginal improvement. In this paper, we
claim that pretraining could potentially be more effective
for high-cost tasks and that a new pretraining paradigm tai-
lored to low-level vision would be highly beneficial.

To this end, we devise a novel pretraining paradigm for
low-level vision. Since the goal of low-level vision is to
process LQ images with various degradations, we propose
a degradation autoencoder (DegAE) to achieve content-
degradation disentanglement and generation. DegAE ac-
cepts an input image with degradation D1 and a reference
image with degradation D2. It attempts to transfer the
degradation D2 of the reference image to the input image,
obtaining an output image with input image content, but
with degradation D2, as described in Fig. 1. Through such
a learning paradigm, the model is expected to learn both
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Figure 1. Example results of DegAE pretraining. For instance,
given an input noise image and a reference blur image, DegAE
attempts to transfer the blur degradation to the input image. More
visual examples are illustrated in the supplementary file.

natural image representations and degradation information,
which are the key components in low-level vision. Our
approach follows the philosophy of designing pretext task
for self-supervised pretraining [20, 27]. Firstly, the pretext
task should not depend on the downstream tasks, in order to
achieve the generality and transferability of the pretrained
representations. Secondly, the pretext task should be care-
fully designed to exploit internal structures of data.

To validate the effectiveness of DegAE pretraining, we
choose three representative backbone models (SwinIR [38],
Uformer [64] and Restormer [71]) to conduct experiments.
The results suggest that DegAE pretraining can signif-
icantly improve the model performance. For example,
SwinIR yields a 6.88dB gain on image dehaze task (SOTS)
and a 1.27dB gain on image derain task (Rain100L).
Uformer obtains 3.22dB and 0.54dB improvement on im-
age dehaze and derain task (Test100). Restormer achieves
0.43dB performance improvement on image motion deblur
task (GoPro), respectively. As expected, we also observe
incremental improvement on low-cost tasks – SR and
denoise tasks. We believe our efforts can help to bridge
the gap between high-level and low-level vision tasks and
improve the performance of various low-level vision tasks.

2. Related Work
Image Restoration. The rise of deep learning has led to
significant developments in image restoration [2,11,29,77].
The purpose of image restoration is to reconstruct high-
quality natural images from observed corrupted images.
Typical image restoration tasks include image deblur, de-
noise, dehaze, derain, super-resolution, etc. [2,11,14,29,30,
70, 77, 78]. A pioneer work SRCNN [11] first introduced

convolutional neural networks (CNN) to perform super-
resolution. Zhang et al. [77] proposed the first deep de-
noise method DnCNN. DehazeNet [2] and MSCNN [54]
were the forerunners in applying the deep learning-based
method to image dehaze. For image motion deblur, Deblur-
GAN [29] and DeblurGAN-v2 [30] leveraged generative
adversarial learning to achieve more realistic results. After-
wards, more advanced methods like SRN [60], SPAIR [49]
and NAFNet [5] were proposed. For image derain, the rep-
resentative methods include DerainNet [16], PreNet [53]
and MSPFN [25]. A multitude of follow-up works have
been proposed in low-level vision tasks and achieved con-
tinuous improvements.

Vision Transformer. Transformer [62] has dominated the
model design in natural language processing (NLP). Due
to its powerful representation learning capabilities, many
attempts have been made to explore Transformer in vari-
ous vision tasks, such as image recognition [15], segmen-
tation [59] and object detection [3]. Along with high-level
vision tasks, Transformer-based methods are also deployed
in low-level vision tasks. Based on ViT, Chen et al. [4]
proposed IPT for image restoration. Liang et al. [38] pre-
sented a stronger baseline model SwinIR based on Swin
Transformers [44]. To facilitate long-range pixel dependen-
cies and multi-scale local-global representation learning,
Uformer [64] and Restormer [71] were proposed. They both
adopted an encoder-decoder design to achieve higher effi-
ciency, establishing new state-of-the-art baselines on vari-
ous image restoration tasks.

Self-supervised Pretraining. In the field of NLP, with
the power of Transformer and billion-scale data, self-
supervised pretraining has become a default option. The
tacit recipe is to pretrain on a large corpus and then fine-
tune on a smaller task-specific dataset. Masked language
modeling and its variants have been proven successful for
pretraining, e.g., GPTs [51, 52] and BERT [27]. As for
computer vision, diverse pretext tasks also have been in-
vented to learn visual representation, e.g., jigsaw puzzle
solving [48], rotation prediction [18], instance discrimina-
tion [21,66]. Recently, masked image modeling (MIM) has
been proposed for vision tasks, where the pioneer works are
MAE [20] and SimMIM [67]. Experiments show that MIM
pretraining can learn abstract and discriminative representa-
tions, achieving promising transfer learning results. As for
low-level vision tasks, a few pretraining methods have been
proposed [4,7,34,41]. For instance, IPT [4] proposed multi-
task restoration pretraining and EDT [34] proposed multi-
related-task restoration pretraining. However, the motiva-
tion and paradigm of these pretraining methods are ambigu-
ous, compared to the prevalent pretraining in high-level vi-
sion. In this paper, we propose a novel pretraining paradigm
tailored to low-level vision – degradation autoencoder (De-
gAE), which is more general for various downstream tasks.
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3. Rethinking Pretraining in Computer Vision

3.1. Revisiting High-level Vision Pretraining

The Primitive Intention of Pretraining. In high-level vi-
sion tasks, manual labeling is expensive (e.g., objective de-
tection and image segmentation), resulting in limited la-
beled data for model training. As deep learning-based ar-
chitectures are becoming more powerful and data-hungry,
they can easily overfit to limited training data, even to hun-
dreds of millions data [9, 15]. To address this issue, pre-
training on large-scale datasets (e.g., ImageNet) is adopted
[10,18,20,21,48,66,67,79]. It aims to learn an effective and
general visual representation that can be transferred to vari-
ous downstream tasks, thus alleviating the overfitting prob-
lem. SimMIM [67] and MAE [20] both present masked
image modeling (MIM) for visual representation learning.
These self-supervised pretraining methods have proven to
be scalable and shown significant effect on diverse well-
known benchmark datasets [9,26,39,80]. Overall, pretrain-
ing has proven to be a powerful tool for learning visual rep-
resentations in scenarios where labeled data is scarce. By
designing a pretext task, a transferable representation can
be learned to complement the downstream finetuning.
Can We Directly Borrow Masked Image Modeling for
Low-Level Vision? Low-level vision tasks require more
continuous and spatial information at the pixel-level,
whereas high-level vision tasks are concerned with discrete
and abstract semantic information. However, the pretrain-
ing method MAE [20] is not suitable for low-level vision
tasks due to its pretext task design and backbone architec-
ture. MAE masks random patches up to a masking ratio
of 75% and reconstructs the missing patches, which results
in a significant loss of high-frequency information, such as
edges, textures, and structures. Furthermore, MAE is de-
signed based on ViT [15], which directly splits the input
image into 16×16 patches and transforms them into a se-
quence of linear embeddings. The aggressive masking strat-
egy and rough patch-splitting of MAE lead to severe arti-
facts and over-smoothed results. To address this limitation,
current Transformer-based low-level models [38,64,71] still
adopt CNN for pre/post-processing. To investigate the ap-
plicability of pretraining methods designed for high-level
vision tasks, we finetuned a ViT-based autoencoder initial-
ized from MAE on the image dehaze task and also trained
the autoencoder from scratch for comparison. Despite some
improvement over training from scratch (achieving 26.08dB
and 26.12dB on SOTS), the results were still far below the
state-of-the-art results (36.39dB in FFA-Net and 37.84dB in
DehazeFormer). Furthermore, the visual results, as shown
in the supplementary file, were over-smoothed and con-
tained artifacts. This experiment highlights the limitations
of directly applying high-level vision pretraining methods
to low-level vision.

3.2. Rethinking Low-level Vision Pretraining

Analysis on Low-level Vision tasks. Before we examine
the current low-level pretraining methods, let us pay atten-
tion to some important characteristics of low-level vision
tasks. According to the paired-data acquisition process, we
can roughly classify low-level vision tasks into two cate-
gories: 1) low-cost tasks: tasks with low-cost data acquisi-
tion; 2) high-cost tasks: tasks with high-cost data acquisi-
tion. For the first group, the paired training data can be eas-
ily synthesized by simple and cheap predefined operations.
For instance, image super-resolution (SR) task can be ac-
complished by downsampling high-resolution images using
bicubic interpolation, while Gaussian denoising task can be
achieved by adding Gaussian noise to clean images. These
degradation processes are relatively simple and can be im-
plemented on-the-fly during training with low cost. For the
second group, the data acquisition process is relatively ex-
pensive. For example, to simulate hazy images, depth infor-
mation estimation is required, which cannot be naively im-
plemented online. Therefore, hazy-clean image pairs need
to be carefully prepared in advance. Our observations sug-
gest that pretraining can provide significant gains for high-
cost tasks, but only marginal improvements for low-cost
tasks. Unfortunately, existing pretraining schemes have not
taken into account these characteristics of low-level vision
tasks, and their design motivations remain unclear, thus lim-
iting their effectiveness in exploiting the full potential of
low-level vision pretraining.
Rethinking Low-level Vision Pretraining. Now let us have
a closer look at current low-level vision pretraining meth-
ods. We provide a summary of prevalent high-level and
low-level pretraining methods in Tab. 1. Among the re-
cently proposed low-level vision pretraining methods, IPT
[4], EDT [34], and HAT [7] only consider low-cost tasks,
such as image super-resolution, Gaussian denoise, and sim-
ple derain 1. Specifically, IPT [4] adopts a multi-task
restoration (SR+denoise+derain) pretraining on ImageNet
dataset and then performs finetuning for each specific task
separately. However, the actual performance gains from
pretraining have not been justified. HAT [7] utilizes a
single-task restoration pretraining, and finds that pretrain-
ing on the ImageNet dataset for ×4 SR brings slight im-
provement (around 0.1dB). EDT [34] proposes a multi-
related-task pretraining method that handles several highly
related tasks, such as ×2, ×3, ×4 SR, on a partial ImageNet
(200k) dataset. Each sub-task (e.g., ×4 SR) is finetuned
on a smaller dataset (e.g., DF2K [1, 61]). However, only
marginal improvement is observed on the Gaussian denoise
task (less than 0.1dB). In summary, these low-level pretrain-
ing methods do not achieve significant performance gains
on downstream tasks while requiring a substantial amount

1Rain model is single and fixed.
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Table 1. A summary of high- and low-level pretraining methods. Our DegAE shows similar properties as high-level pretraining methods:
the difficulty of data acquisition of downstream tasks is high-cost; the objective of the pretext task is different from the downstream tasks.

Pretraining Finetuning

Method Pretext Task The Difficulty of
Data Acquisition Downstream Tasks The Difficulty of

Data Acquisition
Same objective
as pretraining?

High
level

MoCo [21] Instance Discrimination
Low-cost

Image Classification
Object detection

Segmentation
High-cost %MAE [20]

SimMIM [67]
Masked image modeling

IPT [4]
Multi-task restoration

(SR&Denoise&Derain)
Low-cost

SR
Denoise
Derain

Low-cost "

EDT [34]
Multi-related-task restoration

(SR/Denoise/Derain)
Low-cost

SR
Denoise
Derain

Low-cost "

HAT [7]
Single-task restoration

(SR)
Low-cost SR Low-cost "

Low
level

DegAE
(Ours)

Degradation image modeling Low-cost
Motion Deblur

Derain
Dehaze

High-cost %

of computational resources.
After analyzing current low-level vision pretraining-

finetuning paradigms, we have identified two main reasons
why they are less significant. Firstly, these paradigms all
focus on low-cost tasks for downstream finetuning, where
training image pairs can be easily created with no limitation.
As a result, performance can be improved by simply collect-
ing more clean/high-resolution images or scaling up model
size [38]. Therefore, two-stage pretraining-finetuning on
the same or different datasets appears redundant. More im-
portantly, low-cost tasks do not typically suffer from se-
vere overfitting problems, rendering pretraining unneces-
sary. Secondly, the pretraining and downstream finetun-
ing objectives are the same, implying that the learned rep-
resentations can only benefit tasks involved in pretraining.
For a new downstream task, a corresponding new pretrain-
ing must be conducted. Therefore, the application scope of
these task-specific pretraining methods is very limited.
Summary. In low-level vision tasks, we need to pay more
attention to high-cost tasks, as these tasks are more prone
to overfitting due to the expense of data acquisition. It is
crucial to design a pretext task that enables effective repre-
sentation learning specifically tailored to low-level vision
tasks. The pretext task should not be dependent on the
downstream tasks, but rather aim to learn a general repre-
sentation that is beneficial for various downstream tasks.

In this paper, we select three high-cost tasks includ-
ing dehaze, motion deblur, and complex derain to conduct
experiments. Specifically, dehaze requires depth estima-
tion [14, 32, 37]; motion deblur relies on video acquisition
and non-trivial blurring operations [29, 33, 47, 76]; com-
plex derain considers the mixture of various rain synthetic
models [24, 36, 40, 46, 68, 70], such as additive composite
model [36], screen blend model [46], rain model with oc-
clusion [40], depth-aware rain model [24], etc. These fixed
training image pairs are produced in advance and directly

used in our downstream finetuning. Instead of achieving
a semantic-level understanding of images by predicting the
largely masked information in MAE, we devise a new pre-
training paradigm for low-level vision – degradation au-
toencoder (DegAE). DegAE corrupts the images and then
performs implicit reconstruction and generation. This pro-
cess requires an understanding of natural image represen-
tation and degradation information, which are crucial for
general low-level vision tasks.

4. DegAE: A New Pretraining Paradigm in
Low-level Vision

In this section, we introduce an effective degradation
autoencoder (DegAE) for low-level vision representation
learning. The schematic illustration is depicted in Fig. 2.
We first corrupt a clean image using a sequence of degra-
dation operations. DegAE accepts the corrupted image ID1

with degradation D1 and a reference image ID2

ref with degra-
dation D2. It aims to transfer the degradation D2 to the input
image, for obtaining an output image ÎD2 with input im-
age content, but with reference degradation D2. DegAE has
a Transformer-based encoder that operates directly on the
degraded input, and a CNN-based decoder that regenerates
the transferred output image based on the encoded feature
representations. This self-supervised learning paradigm can
effectively extract informative representations that contain
natural image statistics and degradation information.
Degradation Input. In DegAE, we apply a sequence of
degradations on clean images. Generally, the clean image
I is first convolved with blur kernel k. After that, noise
n is added. Then JPEG compression with quality q is ap-
plied. Specifically, we have Ĩ = [I ⊗ k + n]JPEGq

, where
Ĩ is the degraded image. Following [63, 75], in terms of the
choices of blur kernel k, we mainly consider isotropic and
anisotropic Gaussian filters. For noise n, we adopt addi-
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Figure 2. DegAE (Degradation Autoencoder): a new pretraining paradigm for low-level vision. For pretraining, the encoder accepts a
degraded input image and outputs the image representation. The degraded input image is synthesized online through a series of degradation
operations. The decoder accepts a reference degradation embedding, which is obtained by a degradation representor ϕ. Then, the decoder
attempts to transfer the reference degradation to the corrupted input image. During Finetuning, the decoder is replaced by one convolution
layer. We finetune the whole network on downstream tasks such as image dehaze, derain and motion deblur.

tive Gaussian noise, Poisson noise, and Speckle noise. Re-
garding the JPEG compression, we use the PyTorch version:
DiffJPEG [45]. The degradation level of each degradation
type is sampled randomly within a predefined range, which
is described in the supplementary file.

Encoder. For any given degraded image, our encoder E
produces the low-level feature representation, which will be
used to generate diverse outputs in the decoder. At present,
there is no unified architecture that can achieve the best re-
sults on all low-level vision tasks. Therefore, we use three
state-of-the-art Transformer architectures in low-level vi-
sion – SwinIR [38], Uformer [64], and Restormer [71] as
our encoder. These three architectures have different pref-
erences in handling various tasks. SwinIR mainly performs
well on super-resolution and denoise. While Restormer ob-
tains the best performance in derain and dehaze. Uformer
could achieve state-of-the-art results in motion deblur. We
modify the channel number of the last convolution layer
from 3 to 64 for adaptation to the subsequent decoder.

Decoder. Our decoder D accepts the latent feature repre-
sentation and produces one or more forms of the original
clean images. The decoder is a pure CNN architecture that
contains four residual blocks [23]. A degradation injection
module (implemented referring to [19]) is introduced for
the decoder to generate diverse output images. Specifically,
the degradation injection module accepts a degradation em-
bedding and then outputs the modulators to modulate the
intermediate features of the decoder. Inspired by the anal-

ysis of deep representations of SR networks [43], we use
a degradation representor ϕ that contains a pretrained SR-
GAN [31] model and several downsampling layers to pro-
duce the degradation embeddings based on the given de-
graded reference images. Formally, given the degraded in-
put image ID1 and the degraded reference image ID2

ref , we
have ÎD2 = D(E(ID1), ϕ(ID2

ref )), where ÎD2 is the output
image, which is expected to be close to the target image
ID2 . Note that the reference ID2

ref could also be a clean im-
age and then the corresponding output image is expected to
be clean. In particular, if we set all reference images to clean
images, our method will degenerate to previous multi-task
restoration pretraining [4], which is a special case of ours.
The DegAE decoder is only used in the pretraining stage. It
will be replaced by a single convolution layer as the output
head during downstream finetuning. The decoder design
plays a key role in determining the effectiveness of image
representation. The designing philosophy of DegAE is il-
lustrated in the supplementary file.
Reconstruction Target. We adopt four losses to train De-
gAE: content reconstruction loss Lcontent, perceptual loss
Lper, adversarial loss Ladv , and embedding loss Lembed.
Content Reconstruction Loss: For content consistency, we
apply a simple Gaussian blur kernel k on the output images
as well as the target images, and then calculate L2 loss be-
tween the blurred output image and blurred target image in
the pixel space: Lcontent = ||ID2 ⊗ k, ÎD2 ⊗ k||2.
Adversarial Loss: We use generative adversarial learning
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Figure 3. Visual results of three low-level vision tasks. We choose three representative backbones (SwinIR, Uformer and Restormer) to
verify the effectiveness of DegAE pretraining, since different architectures have their preferences in handling different tasks.

to close the gap between the output distribution and the
target distribution. Practically, we adopt the discrimina-
tor D of PatchGAN [81] for adversarial training. Ladv =
[logD(ID2) + log(1−D(ÎD2))].
Perceptual Loss: We use VGG19 [57] as the feature ex-
tractor, and calculate L2 loss in the feature space: Lper =

||V GG(ID2), V GG(ÎD2)||2.
Embedding Loss: To guarantee that the output image shares
similar degradation embedding with the reference degrada-
tion, we calculate the L2 loss between their corresponding
embedding vectors. The embedding loss is illustrated as
Lembed = ||ϕ(ID2), ϕ(ÎD2)||2.

Finally, the above losses are combined together:
LDegAE = λcontent ∗ Lcontent + Lembed + Lper + λadv ∗
Ladv , where λcontent = 0.1 and λadv = 0.005. These
losses are commonly-used in existing GAN-based SR meth-
ods. In the supplementary file, we show that GAN loss and
perceptual loss are essential for learning complex degrada-
tions and Lcontent can maintain the image contents.

5. Experiments

We evaluate the proposed pretraining method on several
downstream tasks, including image dehaze, motion deblur,
derain, denoise, and super-resolution (SR). In practice, pre-
training can bring a large improvement for high-cost tasks
(dehaze, motion deblur, and complex derain), but obtains
marginal improvement for low-cost tasks (denoise and SR).

Table 2. Quantitative comparisons on dehaze dataset. DegAE pre-
training can significantly improve the model performance.

Method SOTS-ITS
PSNR (dB) SSIM

DCP [22] 16.62 0.818
GFN [55] 22.30 0.880
PFDN [13] 32.68 0.976
GridDehazeNet [42] 32.16 0.984
MSBDN [12] 33.67 0.985
FFA-Net [50] 36.39 0.989
AECR-Net [65] 37.17 0.990
DehazeFormer-B [58] 37.84 0.994
DehazeFormer-M [58] 38.46 0.994

SwinIR 29.83 0.973
DegAE (SwinIR) 36.71 (+6.88) 0.991
Uformer 31.98 0.984
DegAE (Uformer) 35.20 (+3.22) 0.989
Restormer 39.01 0.995
DegAE (Restormer) 39.39 (+0.38) 0.995

This observation is consistent with the analysis conducted
in Section 3.2. Due to the space limit, the results of low-
cost tasks are described in the supplementary file.
Implementation Details. For pretraining, the learning rate
is initialized as 2e-4 and is halved at [50K, 100K, 200K,
300K] iteration. Adam optimizer [28] with β1 =0.9 and
β2 =0.99 is adopted. We randomly crop 128×128 image
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patches from DF2K [1, 61] dataset for training. The batch
size is set to 2. A total of 600K iterations are executed.
After pretraining, we finetune the model on specific down-
stream datasets. For fairness and convenience, we adopt the
same training policy for different backbones. Therefore, the
results may observe slight deviations from their original pa-
pers, but it does not affect the validation of our method.
One can easily exploit more tailored settings for better per-
formance. More details are in the supplementary file.

5.1. Experiment on Image Dehaze

Following [42, 50, 58], the Indoor Training Set (ITS) of
RESIDE dataset [32] is adopted for training, which con-
tains a total of 13,990 pairs. The corresponding testing set
(SOTS-indoor) consists of 500 indoor images. We com-
pare the quantitative performance of the proposed DegAE
pretraining scheme and baselines. Besides, we also re-
port the results of other state-of-the-art methods, includ-
ing DCP [22], GFN [55], PFDN [13], GridDehazeNet [42],
MSBDN [12], FFA-Net [50], AECR-Net [65] and Dehaze-
Former [58]. Visual results are shown in Fig. 3.

The quantitative results are summarized in Tab. 2.
Compared to training from scratch, DegAE pretraining
significantly improves the model’s dehaze performance,
especially for SwinIR and Uformer. The PSNR val-
ues of SwinIR and Uformer improve from 29.83dB to
36.71dB and from 31.98dB to 35.20dB, with a perfor-
mance gain of 6.88dB and 3.22dB, respectively. The results
clearly demonstrate the effectiveness of the proposed self-
supervised pretraining paradigm. Qualitatively, as shown
in Fig. 4, DegAE pretraining can help suppress the gener-
ated artifacts, e.g., inhomogeneous background, abnormal
colors, and box artifacts. This is due to the fact that the
designed pretraining paradigm can enable the model to ob-
tain effective prior visual representations of natural images,
making the results closer to the natural clean images. Both
quantitative and qualitative results demonstrate the potential
of DegAE pretraining.

5.2. Experiment on Image Derain

We train the models on Rain13K dataset, which is
newly-adopted in [6, 64, 71, 72]. Rain13K includes 13,712
clean-rain image pairs collected from multiple datasets
[16, 35, 36, 46, 70]. We evaluate the derain performance on
Rain100L [69], Rain100H [69], Test100 [74], Test1200 [73]
and Test2800 [17] datasets. Similar to previous literatures,
we calculate the PSNR and SSIM values on the Y channel
in the YCbCr color space. We report the results of DegAE
along with existing derain methods DerainNet [16], RES-
CAN [35], PreNet [53], MSPFN [25] and MPRNet [72]. A
visual result is shown in the second row of Fig. 3.

From Tab. 3, we can see that DegAE pretraining helps
improve the model performance on all five benchmark
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Figure 4. Visual comparison of training from scratch and DegAE
pretraining on dehaze and derain effects. DegAE pretraining can
reduce the generated artifacts and help remove the haze/rain more
thoroughly, compared to training from scratch.

datasets. Specifically, SwinIR yields a 1.27dB improvement
on Rain100L dataset with DegAE pretraining. Uformer
achieves 0.54dB gain on Test100 dataset with DegAE pre-
training. Although Restormer trained from scratch has al-
ready achieved state-of-the-art performance, DegAE pre-
training can still bring improvement. The visual effects are
portrayed in Fig. 4, for the model trained from scratch, there
are lots of rain residuals in the output images, while pre-
training can help remove the rain more thoroughly.

5.3. Experiment on Image Motion Deblur

The DegAE pretraining can also bring considerable im-
provement on motion deblur task. We adopt GoPro [47]
dataset for training and testing. It consists of 2,103 image
pairs for training and 1,111 pairs for testing. Besides, we
also test the model on HIDE [56] dataset. We report the re-
sults of existing methods for reference: DeblurGAN [29],
DeblurGAN-v2 [30], SRN [60], SPAIR [49], HINet [6],

23298



Table 3. Image derain results on benchmark datasets. DegAE pretraining can bring improvements up to 1.27dB for SwinIR backbone.

Method Rain100L Ran100H Test100 Test1200 Test2800

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

DerainNet [16] 27.03 0.884 14.92 0.592 22.77 0.810 23.38 0.835 24.31 0.861
RESCAN [35] 29.80 0.881 26.36 0.786 25.00 0.835 30.51 0.882 31.29 0.904
PreNet [53] 32.44 0.950 26.77 0.858 24.81 0.851 31.36 0.911 31.75 0.916
MSPFN [25] 32.40 0.933 28.66 0.860 27.50 0.876 32.39 0.916 32.82 0.930
MPRNet [72] 36.40 0.965 30.41 0.890 30.27 0.897 32.91 0.916 33.64 0.938

SwinIR 35.68 0.962 30.02 0.888 29.43 0.897 30.36 0.904 33.39 0.937
DegAE (SwinIR) 36.95 0.969 30.10 0.891 30.16 0.902 30.53 0.905 33.48 0.938
Uformer 36.26 0.968 27.01 0.884 28.19 0.902 32.09 0.904 27.36 0.916
DegAE (Uformer) 36.80 0.970 27.47 0.885 28.73 0.902 32.17 0.908 27.44 0.917
Restormer 38.38 0.975 32.19 0.911 31.65 0.924 32.88 0.923 33.61 0.943
DegAE (Restormer) 38.83 0.977 32.19 0.911 31.77 0.924 32.99 0.925 33.66 0.944

Table 4. Image motion deblur results (PSNR) on GoPro dataset
and HIDE dataset.

Method GoPro HIDE

DeblurGAN [29] 28.70 24.51
DeblurGAN-v2 [30] 29.55 26.61
SRN [60] 30.26 28.36
SPAIR [49] 32.06 30.29
HINet [6] 32.71 –
MPRNet [72] 32.66 30.96
IPT [4] 32.52 –
NAFNet [5] 32.85 –

SwinIR 31.43 29.15
DegAE (SwinIR) 31.90 (+0.47) 29.60 (+0.45)
Restormer 32.60 31.10
DegAE (Restormer) 33.03 (+0.43) 31.43 (+0.33)
Uformer 33.04 30.92
DegAE (Uformer) 33.16 (+0.12) 31.00 (+0.08)

MPRNet [72], IPT [4], NAFNet [5]. Note that, for all com-
pared methods in this paper, we do not apply Test-time Lo-
cal Converter (TLC) proposed in [8] to improve test-time
performance. The third row of Fig. 3 shows an example.

The quantitative results of motion deblur are shown
in Tab. 4. By introducing DegAE pretraining, SwinIR
achieves 0.47dB and 0.45dB improvement on GoPro and
HIDE test set. Restormer yields a 0.43dB improvement on
GoPro test set. In addition, compared with other methods,
Uformer trained from scratch has already achieved the best
performance, while DegAE pretraining can further enhance
its performance, making it a new state-of-the-art model.

6. Conclusion

In this paper, we provide a comprehensive review of
current pretraining methods for both high-level and low-
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Figure 5. Visual comparison of training from scratch and the pro-
posed DegAE pretraining on motion deblur effects.

level vision tasks. We categorize low-level vision tasks
into low-cost task and high-cost task based on the diffi-
culty of data acquisition. We claim that the pretrain-finetune
scheme should prioritize high-cost downstream tasks. We
introduce a new pretraining paradigm for low-level vision,
called degradation autoencoder (DegAE). This approach ef-
fectively extracts informative representations that lead to
significant improvements in model performance across var-
ious downstream tasks.

Limitation. Although we have successfully validated the effective-
ness of our design on several downstream tasks, there are myriad low-level
vision tasks to explore. As the first general low-level vision pretraining
paradigm, it can be further optimized. More effective pretraining solutions
tailored to low-level vision are expected to emerge.
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