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Abstract

Normalizing flows (NFs) provide a powerful tool to con-
struct an expressive distribution by a sequence of trackable
transformations of a base distribution and form a proba-
bilistic model of underlying data. Rotation, as an important
quantity in computer vision, graphics, and robotics, can ex-
hibit many ambiguities when occlusion and symmetry oc-
cur and thus demands such probabilistic models. Though
much progress has been made for NFs in Euclidean space,
there are no effective normalizing flows without discontinu-
ity or many-to-one mapping tailored for SO(3) manifold.
Given the unique non-Euclidean properties of the rotation
manifold, adapting the existing NFs to SO(3) manifold is
non-trivial. In this paper, we propose a novel normaliz-
ing flow on SO(3) by combining a Mobius transformation-
based coupling layer and a quaternion affine transforma-
tion. With our proposed rotation normalizing flows, one
can not only effectively express arbitrary distributions on
SO(3), but also conditionally build the target distribution
given input observations. Extensive experiments show that
our rotation normalizing flows significantly outperform the
baselines on both unconditional and conditional tasks.

1. Introduction

Endowing a neural network with the ability to express
uncertainty along with the prediction is of crucial influence
to safety and interpretability-critical systems and provides
valuable information for downstream tasks [4, 19, 32]. As
a widely used technique in computer vision and robotics,
rotation regression can also benefit from such uncertainty-
aware predictions and enable many applications [5, 14, 31].

To this end, recent years have witnessed much effort in
modeling the uncertainty of rotation via probabilistic mod-
eling of the SO(3) space, including von Mises distribu-
tion for Euler angles [27], Bingham distribution for quater-
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nions [6, 13], matrix Fisher distribution for rotation ma-
trices [24], etc. Those distributions are all single-modal,
which fall short on modeling objects with continuous sym-
metry, which are ubiquitous in our daily life. Taking cup as
an example, it exhibits rotational symmetry for which mod-
eling with the unimodal or the mixture of distributions is
clearly insufficient. How to model an arbitrary distribution
on SO(3) manifold is still a challenging open problem.

Normalizing flows [28], which maps samples from a
simple base distribution to the target distributions via in-
vertible transformations, provides a flexible way to express
complex distributions and has been widely used in express-
ing arbitrary distributions in Euclidean space [1, 2, 7, 8, 16,
17]. However, developing normalizing flows on SO(3)
manifold is still highly under-explored.

Some works rely on normalizing flows in Euclidean
space and adapt them to handle rotations. ReLie [9] pro-
poses normalizing flows for general Lie group via Lie alge-
bra in Euclidean space. However, it suffers from discontin-
uous rotation representations [37] and leads to inferior per-
formance. ProHMR [18] considers rotations as 6D vectors
in Euclidean space and leverages Glow [17] to model distri-
butions, where a many-to-one Gram-Schmidt projection is
needed to close the gap between the two spaces. Although
composed of bijective transformations in Euclidean space,
the many-to-one mapping from Euclidean space to SO(3)
breaks the one-to-one regulation of normalizing flows [28].

Other works propose general normalizing flows for non-
Euclidean spaces. Mathieu et al. [23], Lou et al. [21] and
Falorsi et al. [10] propose continuous normalizing flows
for general Riemannian manifold, without considering any
property of SO(3) space, which leads to unsatisfactory per-
formance for probabilistic rotation modeling. Rezende et al.
[29] introduce normalizing flows on tori and spheres. Note
that despite unit quaternions lying on S3 space, [29] does
not exhibit the antipodal symmetry property of quaternions
and thus is not suitable for modeling rotations in SO(3).

In this work, we introduce novel discrete normalizing
flows for rotations on the SO(3) manifold. The core build-
ing block of our discrete rotation normalizing flow consists
of a Mobius coupling layer with rotation matrix representa-
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tion and an affine transformation with quaternion represen-
tation, linked by conversions between rotations and quater-
nions. In the Mobius coupling layer, one column of the ro-
tation matrix acts as the conditioner, remaining unchanged.
Another column serves as the transformer, undergoing Mo-
bius transformation conditioned on the conditioner, while
the remaining column is determined by the cross-product.
By combining multiple Mobius coupling layers, we en-
hance the capacity of our vanilla design for rotation nor-
malizing flows.

To further increase expressivity, we propose an affine
transformation in quaternion space. This quaternion affine
transformation complements the Mobius coupling layer,
functioning as both a global rotation and a means for con-
densing or dilating the local likelihood. Despite quaternions
being a double coverage of the SO(3) manifold, this trans-
formation remains bijective and diffeomorphic to SO(3).

We conduct extensive experiments to validate the ex-
pressivity and stability of our proposed rotation normaliz-
ing flows. The results show that our rotation normalizing
flows are able to either effectively fit the target distributions
on SO(3) with distinct shapes, or regress the target distri-
bution given input image conditions. Our method achieves
superior performance on both tasks over all the baselines.

2. Related Work
Normalizing flows on Euclidean space Most of the Nor-
malizing flows are constructed in Euclidean space. Many
of them are constructed using coupling layers [7, 8], and
Glow [17] improves it using 1 × 1 convolution for flex-
ible permutation. Flow++ [16] combines multiple cumu-
lative distribution functions to make the transformation in
the coupling layer more expressive. Invertible ResNet [1]
and Residual Flow [2] propose residual flow which is more
flexible and is also possible to be extended to SO(3). Neu-
ral ODE [3] and FFJORD [15] treat the transformation as a
continuous movement of the vectors with ordinary differen-
tial equation (ODE), and RNODE [11] further improves it
by adding constraints to smooth the dynamics.
Normalizing flows on non-Euclidean, SO(3)-relevant
manifolds ReLie [9] and ProHMR [18] both perform nor-
malizing flow on the Euclidean space and then use a map
from RN to SO(3), however, they suffer from either discon-
tinuity or infinite-to-one mapping due to SO(3)’s special
topological structure as shown in Supplementary Material.
Rezende et.al. [29] propose three methods to construct flow
on tori and sphere: Mobius transformation, circular splines,
and non-compact projection, and here we use Mobius trans-
formation to build our flow on SO(3). Also, Mathieu et
al. [23], Lou et al. [21] and Falorsi et al. [10] extend contin-
uous normalizing flow to Riemann manifold by parameter-
izing the “velocity” in the tangent space and this can also be
applied to SO(3). Moser Flow [30] further improves it by

parametrizing the density as the prior density minus the di-
vergence of a learned neural network, however, the model’s
effectiveness is limited when density is too high or too low,
as it models probability instead of log probability.
Distributions for rotation Several works leverage proba-
bilistic distributions on SO(3) for the purpose of rotation re-
gression. Prokudin et al. [27] use the mixture of von Mises
distributions over Euler angles. Gilitschenski et al. [13] and
Deng et al. [6] utilize Bingham distribution over quaternion
to jointly estimate a distribution over all axes.

Mohlin et al. [24] leverage matrix Fisher distribution for
deep rotation regression with unconstrained Euclidean pa-
rameters. Different from the parametric distributions above,
Murphy et al. [25] represents distributions implicitly by
neural networks, where it predicts unnormalized log proba-
bility first and

then normalize it by discretization sampling on SO(3).
In this work, we use normalizing flows to directly generate
normalized distributions.

3. Normalizing Flows on Riemannian Manifold
Normalizing flows (NFs) provide a flexible way to con-

struct complex distributions in high-dimensional Euclidean
space by transforming a base distribution through an invert-
ible and differential mapping. Base distributions are often
chosen to be easily evaluated and sampled from, like gaus-
sian distribution in Euclidean space. NFs can be extended
to Riemannian manifolds embedded in a higher dimen-
sional space [12, 26]. Formally, normalizing flows trans-
form base distributions π(u), u ∈ M to target distributions
p(x), x ∈ N , where M,N are Riemannian manifold and
have the same topology, via diffeomorphisms T : M → N .
The probability density function(pdf) of x can be calculated
by change of variable formulas:

p(x) = π(T−1(x))|det JT−1(x)|, (1)

where Jacobian matrix JT−1(x) = ∂(T−1(x))
∂x is the D ×D

partial derivatives of T−1 at x.
As diffeomorphisms are composable, in practice, the

transformation T is often implemented via a sequence of
simple transformations T = TK ◦ · · · ◦ T2 ◦ T1, whose Ja-
cobian determinants are easy to evaluate. The determinant
of the composed transformation is given by:

det(JT−1(x)) = Πk
i=1 det(JT−1

i
(T−1

K ◦· · ·◦T−1
i+1(x))) (2)

Normalizing flows enable both forward and inverse pro-
cesses and one can calculate p(x) through the process. We
can fit the target distribution by minimizing the negative
log-likelihood (NLL) of training data in the inverse process
and sample via mapping samples from the base distribution
in the forward process.
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4. Method
Our normalizing flows comprise two key building mod-

ules that operate on the SO(3) manifold. First, we utilize a
Mobius coupling layer that interprets the rotation matrix as
three orthonormal 3-vectors, with one vector held fixed and
the remaining part transformed using the Mobius transfor-
mation with the fixed vector as condition.

Second, we employ a quaternion affine transformation
that uses the quaternion representation while retaining an-
tipodal symmetry, making it a diffeomorphism on real pro-
jective space RP3. Affine transformation resembles the
1× 1 convolution in Glow [17], but is applied to the quater-
nion representations rather than the channels.

Mobius coupling layers are generally effective at mod-
eling various distributions, while affine transformations are
more suitable for uni-modal distributions. By combining
these two building blocks, we can construct more powerful
normalizing flows that perform better and converge faster.
Our model consists of multiple blocks of layers, each of
which comprises a Mobius coupling layer and a quaternion
affine transformation. Figure 1 illustrates our model.

4.1. Mobius Coupling Layer

Mobius Transformation is defined on a D-dimensional
sphere SD. Rezende et al. [29] have applied it to build ex-
pressive normalizing flows on the 2D circle S1. However,
with the unique topology of SO(3), it’s non-trivial to ap-
ply Mobius transformation to SO(3) manifold. We present
a coupling layer method that fully utilizes the geometry of
SO(3) and provides a

√
2
2 trick to solve the discontinuity

encountered in combining multiple transformations.
Revisit Mobius transformation Mobius Transformation
on SD can be parameterized by an ω ∈ RD+1 satisfying
∥ω∥ < 1. For a point c ∈ SD, Mobius transformation fω is
defined as:

fω(c) =
1− ∥ω∥2

∥c− ω∥
(c− ω)− ω (3)

This transformation has a very straightforward geomet-
ric meaning: first extend the line cω and find the intersec-
tion point between it and the sphere c̃, then output the point
symmetric to c̃ about the origin c′ = −c̃, as shown in Figure
3 Left. When ω is at the origin, fω becomes identity trans-
formation; when ω is not at the origin, fω concentrates part
away from ω; and when ω is near to surface of unit sphere
SD, fω maps almost all points on SD to nearing of −ω.
Mobius coupling layer A 3×3 rotation matrix R ∈ SO(3)
satisfies RRT = I and detR = +1. It thus can be ex-
pressed as three orthonormal vectors [c1, c2, c3] that satisfy
||ci|| = 1 (meaning ci ∈ S2) and ci · cj = 0 for all i ̸= j.

To build a normalizing flow on SO(3), we thus consider
applying the idea of coupling layer introduced in [7, 8] to

the orthonormal vectors. In each coupling layer, the in-
put x is divided into the conditioner x1 that remains un-
changed after the flow and the transformer x2 that changes
according to the condition part, which can be written as
x′
1 = x1, x

′
2 = f(g(x1), x2). As the calculation of the Ja-

cobian determinant only involves ∂f
∂x2

, g can be arbitrarily
complex which enables high expressivity and here we use a
neural network to parameterize it.

We utilize a similar structure to build Mobius transfor-
mation for rotation matrices. We divide a rotation matrix
into 2 parts, the conditioner is ci (i = 1, 2, 3) and the trans-
former is the rest two columns {cj | j ̸= i}. Taking i = 1
as an example: conditioning on c1, we can transform c2 to
c′2. Then c′3 is already determined by c′3 = c′1 × c′2where
c′1 = c1. The coupling layer needs to ensure that: 1)
||c′2|| = 1, i.e. c′2 ∈ S2; and 2) c′2 is orthogonal to c′1.

Given condition 1), we thus consider using a Mobius
transformation on S1 to transform c2. To further meet con-
dition 2), we notice that all valid c2 and c3 form a plane P
that passes the origin and is perpendicular to c1. After the
transformation, c′2 needs to stay in P . This can be achieved
by constraining ω inside P . Therefore, we propose to learn
a neural network that maps the condition c1 to R3 and then
projects it to P , as shown below:

ω = ω′ − c1(c1 · ω′) (4)

where ω′ is the unconstrained parameters generated by the
neural network. The structure of our Mobius coupling layer
is illustrated in Figure 2 and Figure 3 Middle.

Note that, given c1, there is only 1 Degree of Freedom
left for the rest two columns. So, our Mobius coupling layer
is essentially rotating c2 and c3 about c1 simultaneously by
an angle θ conditioned on c1and c2.
Linear combination of multiple Mobius transformations
To further increase the expressivity of the Mobius transfor-
mation, we leverage linear combination of Mobius transfor-
mation presented in [29]. It is done by first transforming c2
into {c′2i} using a set of ωs, {ωi}, and then calculate the
weighted sum θ′ =

∑
wiθi, where wi is the weight gener-

ated by a neural network conditioned on c1 and normalized
with softmax, and θi is the angle between c′2i and c2. The
result of combined transformation c′2 can then be calculated
by rotating c2 with θ′.

However, such naive implementation has the problem of
discontinuity. Take two combination points with weights
[0.5, 0.5] for example. Assume θ1 is 30◦, θ2 is −178◦,
the combined angle θ is −74◦. However, when θ2 slightly
changed to −182◦ that is 178◦ as θ ∈ [−π, π], the combined
angle θ becomes 104◦. This discontinuity of slight change
of θi resulting in a huge jump in combined θ can reduce the
networks’ performance and add difficulties in learning.√

2
2 trick We present a

√
2
2 trick to alleviate this discontinu-

ity. If ∥ω∥ is small, c′2 will be close to c2. And if all {c′2i}
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Coupling Layers

(Rotation matrix)

Affine 

Transformation

(Quaternion)

× 𝑵

Rotation Normalizing Flow

𝐑 → 𝐪 𝐪 → 𝐑

Base distribution Target distribution

Figure 1. Pipeline overview. Our flow model takes rotations as input and outputs transformed rotations and log determinants of Jacobian,
transforming a base distribution to a target one. Our flow is done by iteratively alternating Mobius coupling on Rotation matrix representa-
tion and affine transformation on quaternion for N times. For probability inference, data are fed into the flow to the corresponding rotation
which is of base distribution and predicts log-likelihood; while in the sampling process, our flow runs inversely, generating new data by
transforming samples from the base distribution. The distribution visualization is borrowed from [25] where SO(3) is projected to a 2D
sphere by Hopf fibration, points on the 2D sphere indicate the direction of a canonical z-axis, the colors represent the tilt angle about that
axis, the direction of a canonical z-axis and the sizes of points show the probability density.
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Figure 2. Computational graphs of Mobius coupling layer.
c1, c2, c3 indicate different columns for rotation matrix and
c′1, c

′
2, c

′
3 indicate the columns for transformed rotation matrix.

Mobius coupling layer applies the Mobius transformation to col-
umn c2 conditioned on the unchanged column c1.
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Figure 3. Left: Geometric illustration of Mobius transformation.
The transformation is implemented by first connecting a straight
line between c and ω which intersects the sphere with c̃, and the
result c′ is the opposite point of c̃. Middle: Geometric illustration
of Mobius coupling layer. This sketch is viewed parallel to the
unchanged c1. An MLP conditioned on c1 gives output ω′ which
is then projected to ω orthogonal to c1. c2 is then transformed
into c′2 via Mobius transformation with parameter ω. c′3 is then
computed by cross product of c′1 = c1 and c′2. Right: Illustration
of

√
2

2
trick. ω are restricted in the blue circle and resulting in

{c′2i} on the semi-circle of blue lines. Therefore the combined c′2
are restricted on the semi-circle of blue lines. Thus slight change
of {θi} won’t cause jump (about π) in θ, solving the discontinuity.

lie on a small neighborhood of c2, there won’t be disconti-
nuity issues as circle is locally linear, whereas the expres-
siveness will be limited if {c′2i} are too close to c2. It can

be shown that the biggest range of c′2 with no discontinuity
in combination is a semi-circle whose center is c2 and the
corresponding range of ∥ω∥ is [0,

√
2
2 ) as shown in Figure 3

Right.
By linear combination, the inverse of transformation

can’t be calculated analytically, we alleviate binary search
presented in [29] to find the inverse as θ ∈ (−π/2, π/2).
Though the restriction of ∥ω∥ may reduce the expressivity
of our flows, the avoidance of discontinuity stabilizes our
network so in general it is beneficial. (See Supplementary
Material for details)

4.2. Quaternion Affine Transformation

Bijective transformation on SO(3) manifold Quaternion
is another representation of rotation, defined as a unit vector
on the 4D sphere. Let θ be the angle of the rotation and
(x, y, z) be the axis of rotation, then q can be computed as
(cos θ

2 , x sin
θ
2 , y sin

θ
2 , z sin

θ
2 ).

However, quaternion representation of SO(3) has the
topology of antipodal symmetry, meaning that q and −q
represent the same rotation R. To be bijective on SO(3),
transformation on quaternion should keep antipodal sym-
metry, i.e. transform −q to −f(q). Our proposed affine
transformation satisfies such requirement and is thus a bi-
jective transformation on SO(3).
Affine transformation

Our proposed quaternion affine transformation consists
of a linear transformation of 4D vectors q followed by a
projection to the unit sphere S3. The explicit expression for
this transformation is as follows:

g(q) =
Wq

∥Wq∥
(5)

where W is a 4 × 4 invertible matrix, q is the quaternion
representation of a rotation. The inverse of the transforma-
tion can be calculated by simply replacing W by its inverse
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Figure 4. Illustration of quaternion affine transformation. Top:
Effect of quaternion affine transformation. Let e1, e2, e3, e4 cor-
respond to the standard basis of S3, i.e. w, x, y, z unit vectors.
The affine transformation first rotates q by V T , followed by the
scaling and normalizing part which concentrates points near the
axis V T ei with large si and expands the others, and followed by
a rotation U . Bottom: Forward and inverse sketch of scaling and
normalization part in affine transformation. The sketch is viewed
in 2D w− x section. q is transformed to q̃ by multiplying scaling
factors s1 = 2, s2 = 1, s3 = 1, s4 = 1, and then normalized to
q

′
. The inverse transformation is similar to forward process with

s′1 = 1/s1, s
′
2 = 1/s2, s

′
3 = 1/s3, s

′
4 = 1/s4. This feature is

closely related to the geometry of affine transformation of an el-
lipse and more discussions are given in Supplementary Material.

W−1. The transformation looks similar to the 1×1 convolu-
tion in Glow [17], in which an invertible matrix is multiplied
on picture channels. We present a geometric explanation for
its effect and explain the meaning of its name.
Geometric explanation of affine transformation We
name this transformation affine, since it resembles the affine
transformation in Eucliean space f = ax+b, where a is the
scaling parameter, and b is a displacement term. By SVD
decomposition W = USV T , the 4 × 4 invertible matrix
can be decomposed into an orthogonal matrix U , multiplied
by a diagonal matrix S and another orthogonal matrix V T .
Multiplying U, V T globally rotates the distribution pattern
and acts as a displacement on SO(3) manifold, while the
diagonal matrix S serves as the scaling term.

As multiplying an orthogonal matrix will not change the
length of a vector, the term ∥Wq∥ is equal to ∥S(V Tq)∥,
so affine transformation can be decomposed into:

g(q) = U
S

∥S(V Tq)∥
(V Tq) (6)

This can be seen as a 4-step transformation, first rotate q
to V Tq, then multiply each coordinate by scaling factors
si, (i = 1, · · · , 4) and normalize it to a unit vector, and fi-
nally rotate the quaternion with U . An illustration of quater-
nion affine transformation is shown in Figure 4 Top.

We present 2 methods to parameterize 4 × 4 invertible
matrix W . The first one is to use an unconstrained 4 × 4
matrix as the probability for a non-invertible matrix is near

zero. It’s numerically stable and safe in our implementa-
tion. We also tried LU decomposition W = PL(U + S) as
presented in [17], where P is a fixed permutation matrix, L
is a lower triangular matrix with ones on the diagonal, U is
an upper triangular matrix with zeros on the diagonal, and S
is a vector with non-zero coordinate. See more discussions
in Supplementary Material.
Why rotation U, V is needed? Our Mobius coupling layer
allows distribution to flow in the vertical plane of ci, how-
ever, it is very difficult to learn a global rotation of dis-
tributions on SO(3). The introduced rotation operation in
quaternion space exactly alleviates this problem. Rotating
quaternions also serve as a generalization of permutation in
splitting condition or transformed columns of rotation ma-
trix, which has similar effects to the 1 × 1 Convolution in-
troduced in Glow [17].
Why scaling and normalization? Multiplying diagonal
matrix S results in multiplying coordinate of a quaternion
q = (w, x, y, z) by scaling s1, s2, s3, s4,

(w, x, y, z) −→ (s1w, s2x, s3y, s4z) (7)

transforming the unit sphere to an ellipsoid, as shown in
Figure 4 Bottom. A point q on the sphere S3 is transformed
to a point on the oval q̃. It is followed by a projection to
sphere: term 1/∥Sq̃∥ normalizes the transformed vector.
The final point q′ is the intersected point of O − q̃ on the
sphere S3.

The explicit expression for scaling and normalization is:

f(s1,s2,s3,s4)(w, x, y, z) =
(s1w, s2x, s3y, s4z)

||(s1w, s2x, s3y, s4z)||
(8)

When s1 = s2 = s3 = s4, the scaling and normalization
transformation is identity, otherwise it concentrates proba-
bility to the axis with large s. Scaling and normalization
can create a high peak by transforming S3 to an elongated
ellipsoid and then projecting back to S3.

4.3. Interchange of Rotation Matrix and Quater-
nion Representation

We iteratively compose Mobius coupling layer and
quaternion affine transformation to build our flow model
and switch between rotation matrix representation and
quaternion representation in the process.

The composed flows perform better and learn faster, as
the quaternion affine transformation makes up for some
problems in Mobius coupling layer, and increases its ex-
pressiveness. The rotation operation in quaternion affine
transformation allows a global rotation of distributions on
SO(3), and serves as a generalization of permutation in
splitting condition or transformed columns of rotation ma-
trix. The scaling and normalization operation makes it pos-
sible to quickly create high peak distributions. This allows
for quick concentrate distribution to target predictions and
accelerates the convergence concerning rotation regression.
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4.4. Conditional normalizing flow

There are cases when we need to infer a distribution de-
pending on condition, for example when we need to infer
the rotation of a symmetric or occluded object in an im-
age. Our flow can be easily extended to be conditional us-
ing methods in [34] as we can simply concatenate the con-
dition with fixed columns to generate parameters for Mo-
bius flow, and use a neural network to output the matrix
W in quaternion affine transformation. Moreover, apart
from using uniform distribution as base distribution, we
can pretrain a neural network to fit the target distribution
using commonly-used unimodal distributions (e.g. Matrix
Fisher distribution [24]) as the base distribution. We show
examples of our conditional normalizing flow on learning
multi-mode rotation distribution from symmetric object im-
ages and on predicting single pose given images(see Experi-
ments for detail). The conditional features can be computed
by a ResNet or other CNN network in this task.

5. Experiments
In this section, we conduct multiple experiments to val-

idate the capacity of our proposed normalizing flows to
model distributions on SO(3). We train all experiments
with negative log-likelihood (NLL) loss. The invertible ma-
trix W for quaternion affine transformation is parameter-
ized as a 4 × 4 unconstrained matrix. Implementation de-
tails and results of LU decomposition parameterization for
W are reported in Supplementary Material.

5.1. Learning to Model Various Distributions

As in common, we first evaluate and compare our nor-
malizing flows and baseline methods by learning to fit dis-
tributions on SO(3) with distinct properties.
Datasets We design four challenging distributions on
SO(3): a very sharp single modal distribution, a 24-peaked
multi-modal distribution, a cyclic distribution, and a 3-line
distribution. The 24-peaked distribution and the cyclic dis-
tribution are designed to simulate the symmetry property
of cube and cone solids. We adopt the visualization tool
of [25] and show the target distributions as follows.
Baselines [9] introduces the reparameterization trick for Lie
groups and allows for constructing flows on the Lie algebra
of SO(3). [23] proposes continuous normalizing flows on
Riemannian manifold, and we apply it to SO(3) manifold.
[25] models the distribution implicit by the neural networks,
where the SO(3) space is uniformly discretized. Finally, we
compare the mixture of matrix Fisher distribution with 500
components.
Results The results are reported in Table 1, where our
model(Mobius + Affine) consistently achieves state-of-the-
art performance among all baselines, demonstrating the
ability of our method to fit arbitrary distributions in various

shapes. We also report results of flows composed of single
transformation, i.e. Mobius coupling layer or quaternion
affine transformation. Results demonstrate that Mobius
coupling layers can generally perform well while quater-
nion affine transformations are more suited for uni-modal
distributions and infinite-modal distributions. Improvement
by composing Mobius coupling layers and quaternion affine
transformation is more demonstrated in conditional tasks, as
shown in Sec. 5.4.

In our experiment, baseline [9] fails to fit the sharp distri-
bution due to numerical unstable. For detailed discussions,
see Supplementary Material.

Table 1. Comparisons on learning to fit various distributions.
We adopt log-likelihood as the evaluation metric and use uniform
distribution in SO(3) as base distribution.

log likelihood ↑ avg. peak cone cube line

Riemannian [23] 5.82 13.47 8.82 1.02 -0.026
ReLie [9] - - 5.32 3.27 -6.97
IPDF [25] 4.38 7.30 4.75 4.33 1.12
Mixture MF [24] 6.04 10.52 8.36 4.52 0.77
Moser Flow [30] 6.28 11.15 8.22 4.42 1.38
Ours(Mobius) 7.28 13.93 8.98 4.81 1.38
Ours(Affine) 5.59 13.50 8.84 0.00 0.00
Ours(Mobius+Affine) 7.28 13.93 8.99 4.81 1.38

Figure 5. Visualization of learned distributions for synthetic
dataset. Top: our learned distributions. Bottom: ground truth of
density distributions. From the left to right are respectively peak,
cone-like, cube-like, and line distributions. The distribution visu-
alization is the same as Figure 1.

5.2. Rotation Regression with Conditional Normal-
izing Flows

In this experiment, we leverage our normalizing flows on
conditional rotation regression given a single image.

5.2.1 SYMSOL I/II

Datasets We experiment on SYMSOL dataset introduced
by [25]. SYMSOL I dataset contains images with solids
with high order of symmetry, e.g., tetrahedron, cube, cone,
cylinder, which challenges probabilistic approaches to learn
complex pose distributions. SYMSOL II dataset includes
solids with small markers to break the regular symmetries.
We follow the experiment settings of [25].
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Figure 6. Visualization of learned distributions for SYMSOL.
The ground truth is shown as a big circle around the point on the
sphere which corresponds to the first axis and is colored accord-
ing to the rotation of the axis. a: The cone possesses rotational
symmetry and has a circle of equivalent poses. b,c: 24-modal dis-
tribution of cube and 12-modal distribution of tetrahedron are well
fitted by our flow model. d,e,f: (d)Cylinder without a mark has
2 circles of equivalent rotations under 2-fold rotation symmetry.
(e,f)The cylinder is marked with a dot. When the dot is invisible,
orientations with the mark on the hidden side are possible, thus
our model predicts 2 half circles of rotations. When dot is visible,
our model gives a single and accurate prediction.

Baselines We compare our method to Implicit-PDF [25] as
well as several works which parameterize multimodal dis-
tributions on SO(3) for the purpose of pose estimation, in-
cluding von-Mises distribution [27] and Bingham distribu-
tion [6, 13]. We quote numbers of baselines from [25].
Results The log-likelihood scores are reported in Table 2.
We can see that on both SYMSOL I and II datasets, our
proposed rotation normalizing flows obtain a significant and
consistent performance improvement over all the baselines.
We further evaluate our method under spread metric in Ta-
ble 3. Spread, also referred to as the Mean Absolute An-
gular Deviation (MAAD) [13, 25, 27], measures the mini-
mum expected angular deviation to the equivalent ground
truth ER∼p(R|x)[minR′∈{RGT } d(R,R′)] and d(R,R′) is
the geodesic distance between rotations. Results show that
our model learns to predict accurate and concentrated rota-
tion pose, with an average MAAD less than 1◦.

5.2.2 ModelNet10-SO3

Dataset ModelNet10-SO3 dataset [20] is a popular dataset
widely used in the task of regressing rotations from single
images. It is synthesized by rendering the CAD models of
ModelNet10 dataset [35] that are uniformly rotated.
Baselines We have established our baselines using recent
works on probabilistic rotation regression, including von
Mises distribution [27], Bingham distribution [6], matrix
Fisher distribution [24] and Implicit-PDF [25].
Results We leverage the common acc@15◦, acc@30◦ and
median error metrics to evaluate the performance, and the
detailed results are shown in Table 4. We show results of

using uniform distribution as base distribution (Ours(Uni.))
and a pre-trained fisher distribution as base distribution
(Ours(Fisher)). As shown in the table, our method yields
superior in the task of unimodal rotation regression. Note
that the main advantage of our normalizing flows over other
parametric distributions is the superiority to model complex
distributions on SO(3), however, the results of unimodal
rotation regression further demonstrate the robustness and
wide applications of our method.

5.3. Pascal3D+

Dataset Pascal3D+ dataset [36] is also a popular dataset
in rotation regression with a single image as input and it
consists of real images with no symmetry.
Baselines Our baselines consist of recent works for prob-
abilistic rotation regression, including von Mises distri-
bution [27], matrix Fisher distribution [24] and Implicit-
PDF [25] and non-probabilistic rotation regression methods
including [20], [33] and [22].
Results As shown in Table 5, by pretraining a neural net-
work which uses Matrix Fisher distribution [24] to estimate
rotation and then using the learned distribution as the base
distribution in our flow, our method can achieve the high-
est acc@30◦ rate and the lowest median error. This is be-
cause the pre-trained conditional Matrix Fisher distribution
can serve as a better initialization to our flow, and our flow
can further improve the performance as it is able to model
more complex distributions and can thus approximate the
underlying distribution better. This result shows that our
method can collaborate with other probabilistic methods to
get better performance.

5.4. Ablation Study

In this experiment, we evaluate the effectiveness of each
proposed component in our rotation normalizing flows. To
show the 2 functions of affine transformation, we imple-
ment Mobius with Rotation only, where W of affine trans-
formation is replaced by R = UV T of its SVD decomposi-
tion W = USV T . The experiment settings are the same as
Sec. 5.2 and the results are reported in Table 6.

As shown in Table 6, Mobius coupling layers are of cru-
cial importance while only quaternion affine transformation
is not capable to tackle such complex distributions. Quater-
nion affine transformation performs as an enhancement to
Mobius coupling layers and accelerates learning.

For spread, as illustrated in Figure 7, it takes Mobius
with affine about 100k iterations for convergence, whereas
Mobius without affine continued to decrease for 900k itera-
tions. Comparison between Mobius with affine and Mobius
with rotation shows the effects of scaling and normalization
part to accelerate learning speed as it can quickly concen-
trate distributions and approximate high mode.

Though spread quickly converges, the log-likelihood
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Table 2. Results of rotation regression with conditional normalizing flows on SYMSOL I and II. We adopt log-likelihood as the
evaluation metric and use uniform distribution in SO(3) as base distribution. Note that we use the convention that a minimally informative
uniform distribution has an average log likelihood of 0, which is different from IPDF’s convention of -2.29.

SYMSOL I (log likelihood ↑) SYMSOL II (log likelihood ↑)

avg. cone cube cyl. ico. tet. avg. sphX cylO tetX

Deng et al. [6] 0.81 2.45 -2.15 1.34 -0.16 2.56 4.86 3.41 5.28 5.90
Gilitschenski et al. [13] 1.86 6.13 0.00 3.17 0.00 0.00 5.99 5.61 7.17 5.19
Prokudin et al. [27] 0.42 -1.05 1.79 1.01 -0.10 0.43 2.77 -1.90 6.45 3.77
IPDF [25] 6.39 6.74 7.10 6.55 3.57 7.99 9.86 9.59 9.20 10.78
Ours 10.38 10.05 11.64 9.54 8.26 12.43 12.94 12.37 12.92 13.53

Table 3. Spread estimation on SYMSOL. This metric evaluates
how close the probability mass is centered on any of the equivalent
ground truths. We follow [25] to evaluate it on SYMSOL I, where
all ground truths are known at test time. Values are in degrees.

spread↓ avg. cone cube cyl. ico. tet.

Deng et al. [6] 22.4 10.1 40.7 15.2 29.5 16.7
IPDF [25] 4.0 1.4 4.0 1.4 8.4 4.6
Ours 0.7 0.5 0.6 0.5 1.1 0.6

Table 4. Numerical results of rotation regression on
ModelNet10-SO(3). We adopt 15◦ and 30◦ accuaracy and median
error as evaluation metric. Metrics are averaged over categories,
and the best performance is shown in bold while the second best
is underlined. See Supplementary Material for the complete table
with per-category metrics.

Acc@15°↑ Acc@30°↑ Med. (◦) ↓

Deng et al. [6] 0.562 0.694 32.6
Prokudin et al. [27] 0.456 0.528 49.3
Mohlin et al. [24] 0.693 0.757 17.1
IPDF [25] 0.719 0.735 21.5
Ours (Uni.) 0.760 0.774 14.6
Ours (Fisher) 0.744 0.768 12.2

Table 5. Numerical results of rotation regression on Pascal3D+
dataset. We adopt 30◦ accuaracy and median error as the evalu-
ation metrics. Metrics are averaged over categories, and the best
performance is shown in bold. See Supplementary Material for
the complete table with per-category metrics.

Acc@30◦ ↑ Med.(◦)↓

Liao et al. [20] 0.819 13.0
Mohlin et al. [24] 0.825 11.5
Prokudin et al. [27] 0.838 12.2
Tulsiani & Malik [33] 0.808 13.6
Mahendran et al. [22] 0.859 10.1
IPDF [25] 0.837 10.3
Ours (Uni.) 0.827 10.2
Ours (Fisher) 0.863 9.9

continues to increase, as the confidence of predictions is en-
hanced during training.

6. Conclusion
In this work, we show the capability of our proposed

novel discrete normalizing flows for rotations to learn var-

Table 6. Ablation study on Affine transformation on SYMSOL
I dataset. We adopt log-likelihood and spread as evaluation ma-
trice.

(log likelihood ↑) avg. cone cube cyl. ico. tet.

Mobius 9.41 10.52 9.68 10.00 5.35 11.51
Affine 1.96 9.79 0.00 0.00 0.00 0.00
Mobius + Rotation 10.06 10.65 9.91 9.99 7.97 11.78
Mobius + Affine (Ours) 10.38 10.05 11.64 9.54 8.26 12.43

(spread ↓) avg. cone cube cyl. ico. tet.

Mobius 1.60 0.45 1.00 0.42 5.18 0.96
Affine 35.49 0.51 41.16 56.45 29.05 50.29
Mobius + Rotation 0.87 0.40 1.63 0.43 1.06 0.84
Mobius + Affine(Ours) 0.67 0.50 0.60 0.53 1.08 0.64
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Figure 7. Ablation study on Affine transformation on SYM-
SOL I dataset. We plot log likelihood and spread evolving with
training iterations.

ious kinds of distributions on SO(3). The proposed flow
is numerically stable and very expressive, thanks to the
complementary role of our proposed Mobius coupling layer
and quaternion affine transformation. Our extensive exper-
iments demonstrate that our flows are able to fit complex
distributions on SO(3) and achieve the best performance in
both unconditional and conditional tasks.

The Mobius coupling can be elegantly interpreted as a
bundle isomorphism. It uses the fiber bundle with projec-
tion π : SO(3) → S2 and fiber S1 = SO(2). Choos-
ing the conditional dimension i = 1, 2, 3 defines one such
projection, for each base space point, there is a diffeomor-
phism over its fiber, which together form a base-space pre-
serving bundle isomorphism. Our Mobius coupling design
and affine transformation for accelerating may shed light on
normalizing flows for other fiber bundles.
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