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Abstract

Deep neural networks are proven to be vulnerable to
backdoor attacks. Detecting the trigger samples during the
inference stage, i.e., the test-time trigger sample detection,
can prevent the backdoor from being triggered. However,
existing detection methods often require the defenders to
have high accessibility to victim models, extra clean data,
or knowledge about the appearance of backdoor triggers,
limiting their practicality.

In this paper, we propose the test-time corruption ro-
bustness consistency evaluation (TeCo)1, a novel test-time
trigger sample detection method that only needs the hard-
label outputs of the victim models without any extra infor-
mation. Our journey begins with the intriguing observa-
tion that the backdoor-infected models have similar per-
formance across different image corruptions for the clean
images, but perform discrepantly for the trigger samples.
Based on this phenomenon, we design TeCo to evaluate test-
time robustness consistency by calculating the deviation of
severity that leads to predictions’ transition across different
corruptions. Extensive experiments demonstrate that com-
pared with state-of-the-art defenses, which even require ei-
ther certain information about the trigger types or acces-
sibility of clean data, TeCo outperforms them on different
backdoor attacks, datasets, and model architectures, enjoy-
ing a higher AUROC by 10% and 5 times of stability.

1https://github.com/CGCL-codes/TeCo

1. Introduction

Backdoor attacks have been shown to be a threat to
deep neural networks (DNNs) [14, 26, 32, 38]. A backdoor-
infected DNN will perform normally on clean input data,
but output the adversarially desirable target label when the
input data are tampered with a special pattern (i.e., the back-
door trigger), which may cause serious safety issues.

A critical dependency of a successful backdoor attack
is that the attacker must provide the samples with back-
door triggers (we call them trigger samples for short here-
after) to the infected models on the inference stage, other-
wise, the backdoor will not be triggered. Thus, one way
to counter the backdoor attacks is to judge whether the test
data have triggers on it, i.e., the test-time trigger sample de-
tection (TTSD) defense2 [5, 12, 42]. This kind of defense
can work corporately with other backdoor defenses such as
model diagnosis defense [9, 15, 46] or trigger reverse engi-
neering [40, 43], and also provide prior knowledge of the
trigger samples in a comprehensive defense pipeline, which
can help the down-steam defenses to statistically analyze
the backdoor samples and mitigate the backdoor more ef-
fectively.

On the other hand, the TTSD method, especially the
black-box TTSD method can also serve as the last line of
defense when someone adopts models with unknown cred-
ibility and has no authority to get access to the training data
or model parameters, this scenario exists widely in the pre-

2Some paper also call it online backdoor defense [30, 39].
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vailing machine-learning-as-a-service (MLaaS) [19, 35].
However, with the development of backdoor attacks,

the TTSD defense is facing great challenges. One of
the major problems is that different types of triggers have
been presented. Unlike the early backdoor attacks whose
triggers are universal [3, 14] for all the images and usu-
ally conspicuous to human observers, recent works intro-
duced sample-specific triggers [32] and even invisible trig-
gers [8, 21, 26, 33, 49], making it harder to apply pattern
statistics or identify out-liners in the image space. An-
other main problem is the hardship of accomplishing the
TTSD defense without extra knowledge such as supplemen-
tal data or model accessibility. On the other hand, exist-
ing TTSD methods require certain knowledge and assump-
tion. Such assumptions include that the trigger is a specific
type [12, 42], the defenders have white-box accessibility to
victim models, the predicted soft confidence score of each
class [5, 12] or extra clean data for statistical analysis [48],
limiting the practicality for real-world applications.

In this paper, we aim to design a TTSD defense free
from these limitations. Specifically, we concentrate on a
more practicable black-box hard-label backdoor setting [15]
where defenders can only get the final decision from the
black-box victim models. In addition, no extra data is acces-
sible and no assumption on trigger appearance is allowed.
This setting assumes the defenders’ ability as weak as pos-
sible and makes TTSD hard to achieve. To the best of our
knowledge, we are the first to focus on the effectiveness of
TTSD in this strict setting, and we believe it is desirable
to develop TTSD methods working on such a scenario be-
cause it is very relevant to the wide deployment of cloud AI
service [4, 11] and embedded AI devices [1].

Since the setting we mentioned above has restricted the
accessibility of victim models and the use of extra data, we
cannot analyze the information in feature space [30, 39] or
train a trigger sample detector [10, 48] like existing works.
Fortunately, we find that the backdoor-infected models will
present clearly different corruption robustness for trigger
samples influenced by different image corruptions, but have
relatively similar robustness throughout different image cor-
ruptions for clean samples, leaving the clue for trigger sam-
ple detection. We call these findings the anomalous cor-
ruption robustness consistency of backdoor-infected mod-
els and describe them at length in Sec. 3. It is not the first
time that image corruptions are discussed in backdoor at-
tacks and defenses [27, 28, 34]. However, previous works
fail to explore the correlations between robustness against
different corruptions, as discussed in Sec. 3.3.

Based on our findings above, we propose test-time
corruption robustness consistency evaluation (TeCo), a
novel test-time trigger sample detection method. At the in-
ference stage of backdoor-infected models, TeCo modifies
the input images by commonly used image corruptions [18]

Method
Black-box Access No Need of Trigger Aussmptions

Logits-based Decision-based Clean Data Universal Sample-specific Invisible
SentiNet [5] # # #  # #
SCan [39] # # #  # #

Beatrix [30] # # #    
NEO3 [42]    # # #
STRIP [12]  # #  # #

FreqDetector [48]   #    
TeCo (Ours)       

Table 1. The model’s accessibility, the use of clean data, and the
assumptions on backdoor triggers required by various TTSD meth-
ods. We detail on some most related defenses in Sec. 2. ” ” rep-
resents the TTSD method supports this condition.

with growing severity and estimates the robustness against
different types of corruptions from the hard-label outputs of
the models. Then, a deviation measurement method is ap-
plied to calculate how spread out the results of robustness
are. And TeCo makes the final judgment of whether the in-
put images are with triggers based on this metric. Extensive
experiments show that compared with the existing advanced
TTSD method, TeCo improves AUROC about 10%, has a
higher F1-score of 14%, and achieves 5 times of stability
against different types of trigger.

Finally, we take a deep investigation into our observa-
tions by constructing adaptive attacks against TeCo. From
the results of feature space visualization and quantification
of adaptive attacks, we speculate that the anomalous behav-
ior of corruption robustness consistency derives from the
widely-used dual-target training in backdoor attacks and it
is hard to be avoided by existing trigger types. We hope
these findings can shed light on a new perspective of back-
door attacks and defenses for the community. In summary,
we make the following contributions:

• We propose TeCo, a novel test-time trigger sample de-
tection method that only requires the hard-label out-
puts of the victim models and without extra data or
assumptions about trigger types.

• We discover the fact of anomalous corruption robust-
ness consistency, i.e., the backdoor-infected models
have similar performance across different image cor-
ruptions for clean images, but not for the trigger sam-
ples.

• We evaluate TeCo on five datasets, four model archi-
tectures (including CNNs and ViTs), and seven back-
door attacks with diverse trigger types. All experimen-
tal results support that TeCo outperforms state-of-the-
art methods.

• We further analyze our observations by constructing
adaptive attacks against TeCo. Experiments show that
the widely-used dual-target training in backdoor at-
tacks leads to anomalous corruption robustness consis-
tency and it is hard to be avoided by existing backdoor
triggers.

3NEO assumes the backdoor trigger is localized [14] thus will be in-
valid on distributed or global triggers [3, 8, 32, 48], including universal,
sample-sepcific, and invisible ones.
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2. Related Works

2.1. Backdoor Attacks

Badnets [14] is the first work that describes how to em-
bed a backdoor into the DNNs by poisoning part of the
training data. Many backdoor attacks have been developed
after Badnets. To categorize these works, a reasonable way
is to divide them by the triggers’ appearance of these at-
tacks, i.e., the trigger types. The universal trigger is a clas-
sical trigger type that is leveraged in many works such as
Badnets [14], Blended [3], and Low-frequency [48]. Uni-
versal trigger represents that for any input images tampered
with the same trigger, the backdoor-infected model will give
the predefined predictions. Then, the sample-specific trig-
ger is invented [26,32,37]. Unlike universal triggers, the ap-
pearance of sample-specific triggers depends on the images
that the trigger attaches. Another research topic in back-
door attacks is the imperceptibility of the backdoor trig-
gers, i.e., the invisible backdoor attacks, such as Wanet [33],
LIRA [8], and SSBA [26]. The triggers generated by this
kind of attack only lead to subtle modifications in images,
and humans can hardly perceive the existence of backdoor
triggers. A backdoor attack can meet the sample-specific
and invisible conditions simultaneously, for example, the
SSBA attack [26].

2.2. Backdoor Defenses

In this paper, we mainly discuss the works which use
trigger sample detection as a defense method. Since the suc-
cess of backdoor attacks depends on the existence of trigger
samples, detecting those trigger samples in training data or
test data is a reasonable way to defend against backdoor
attacks. Some detection methods focus on filtering trigger
samples in the training stage and attempt to eliminate the
backdoor attacks by preventing them from poisoning train-
ing data [2, 16, 41]. On the other hand, the test-time trigger
sample detection (TTSD) is developed since defenders can-
not always control the training process of victim models.

The first black-box TTSD method is STRIP [12]. STRIP
superimposes various clean images on the suspicious sam-
ples and evaluates the randomness of the model’s logits out-
puts. NEO [42] assumes the backdoor trigger is localized
and detects the trigger samples by masking random areas of
the suspicious samples and repainting them with the dom-
inant color. FreqDetector [48] finds that backdoor triggers
often cause artifacts in the frequency space of the suspicious
samples, and detects the trigger samples by training a fre-
quency detector on clean images with data augmentations.
Some other works assume they have white-box accessibility
of the backdoor-infected models and detect the trigger sam-
ples by the salient maps [5] or the features of intermediate
layers [30, 39].

Since TTSD methods often make judgments based on

certain statistical patterns of trigger samples, the advances
in trigger types mentioned above put great threats to the
TTSD methods with no doubt. As shown in Tab. 1, we
conclude that existing TTSD methods have relaxed their re-
strictions of defenders to achieve satisfying performance,
leading to incomplete black-box settings, such as the re-
quirement for model accessibility [5, 7, 22, 30, 39], use of
clean data [6, 10, 12, 28, 48], and assumptions on specific
trigger type [7, 12, 39, 42].

3. Corruption Robustness Consistency
Before introducing our black-box trigger sample de-

tection method, we first delineate the important findings
that we discover from backdoor-infected models: given a
backdoor-infected model, it will show clearly different ro-
bustness for trigger samples influenced by different image
corruptions. However, for the clean images, the model will
show similar robustness against the majority of image cor-
ruptions. We stress that these phenomena exist widely in
different backdoor-infected models.

3.1. Corruption Robustness Consistency Test
We gain our findings by conducting Corruption Robust-

ness Consistency (CRC) test on backdoor-infected models.
Given an infected model Cθ, and an image corruption set
DN

K which has K corruption types and N levels of severity,
CRC test computes the clean accuracy (ACC) of the clean
images tempered with different image corruptions, or eval-
uates the attack success rate (ASR) of the trigger samples
tempered with different image corruptions. CRC test builds
a list LK,N of ACC or ASR, where each element in this list
is calculated by:

Lk,d =


1

I

I∑
i=1

I(Cθ(D
k
n(xi)) = yi), for clean samples

1

J

J∑
j=1

I(Cθ(D
k
n(x̂j)) = yt), for trigger samples

(1)

where I is the number of clean images, J is the number
of trigger samples, xi represents the clean image, x̂j rep-
resents the trigger sample, and Dk

n represents the k-th im-
age corruption in the corruption set DN

K with severity n.
yi is the ground-truth label of xi, yt is the target label that
the adversaries want the infected model to predict when the
trigger sample is given. I(·) is an indicator function, where
I(A) = 1 if and only if A is true.

3.2. Anomalous CRC of Backdoor-infected Models

The list LK,N built in CRC test can be used to measure
the corruption robustness of backdoor-infected models. We
choose the image corruption set described in [18], where the
common image corruptions are categorized into 15 classes
and each kind of corruptions has 5 levels of severity, then
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(a) The curves of ASR on trigger samples

(b) The curves of ACC on clean images
Figure 1. (a): The backdoor-infected model’s attack success rate (ASR) when trigger samples are tempered with different corruptions
and levels of severity. (b): The accuracy (ACC) of clean images tempered with different corruptions and levels of severity. The curves
separate loosely in (a), while the majority of curves gather more tightly in (b). This indicates that the backdoor-infected models have
varied corruption robustness against different image corruptions on trigger samples, but have similar robustness against different image
corruptions on clean samples.

(a) ASR of trigger samples (b) ACC of clean samples
Figure 2. Take input-aware attack infected model as an example.
Compared with clean samples, trigger samples have a more uneven
heat map, which means that the backdoor-infected model are very
robust on certain corruptions but also pretty vulnerable to some
other corruptions.

conduct CRC test on models infected by five backdoor at-
tacks. From the visualization results in Fig. 1(b), the major-
ity of curves are relatively clustered and show a downward
trend. We describe this phenomenon as the model has good
corruption robustness consistency, because the model per-
forms similarly on different image corruptions.

However, in Fig. 1(a), the curves are more separated, in-
dicating that the model has contrasting robustness against
different image corruptions. Consequently, the model can
be regarded as having bad corruption robustness consis-
tency on trigger samples. Compared with the observations
about Fig. 1(b), the backdoor-infected models are suspi-
cious to have different corruption robustness consistency on
clean samples and trigger samples, i.e., the phenomenon of
anomalous CRC.

3.3. Difference Between CRC and Previous Works
Some previous works have discussed the corruption (or

transformation) robustness of backdoor-infected models be-
fore [27,28,34]. Specifically, Gaussian noise is investigated

in [28], where the authors argue that adding this kind of
noise can lead to abnormal behavior of backdoor-infected
models on trigger samples. In [34], image transformations
are used in a two-stage defense pipeline, where the defend-
ers first fine-tune the infected models on one set of trans-
formations and uses another set of transformations on the
inference stage. This work is different from ours since it
changes the parameters of backdoor-infected models, while
we mainly focus on the characteristics of backdoor-infected
models without modifications. In [27], the authors evaluate
the robustness of backdoor-infected models against multiple
image transformations. They argue that some image trans-
formations can mitigate the backdoor while others cannot,
which is similar to our findings. But they still rely on a sin-
gle transformation to defend against backdoor attacks and
thus fail to leverage the difference of robustness.

4. Test-time CRC Evaluation (TeCo)
In this section, we describe how we build our method

based on the phenomenon of anomalous CRC.

4.1. Preliminaries
The objective of backdoor attacks is to make the infected

model behave normally on clean images but give predefined
predictions on trigger samples. Thus, the target [15, 25] of
backdoor attackers is training an infected model C with pa-
rameters θ by:

θ = argmin
θ

E(x,y)∼PS
J (C(x; θ), y)

+E(x̂,yt)∼P
Ŝ
J (C(x̂; θ), yt),

(2)

where S, Ŝ represent the clean data and trigger data, respec-
tively, and J is the loss function.
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TTSD methods work on a trained backdoor-infected
model Cθ and a test dataset which contains clean samples
and trigger samples T = {T ∪ T̂}. The goal of designing
TTSD is to find a method M :

M = argmax
M

E(x)∼PT
I(M(x,Cθ) = 0)

+E(x̂)∼P
T̂
I(M(x̂, Cθ) = 1).

(3)

4.2. Test-time CRC Evaluation

To achieve Eq. (2), the trigger sample detection meth-
ods should leverage contrasting characteristics of clean im-
ages and trigger samples. We have revealed in Sec. 3 that
backdoor-infected models have anomalous corruption ro-
bustness consistency, which is supported by the ACC and
ASR evaluated from the entire test dataset. However, a
question is how we can measure this property in test-time
based on single input data.

A reasonable understanding is that the reduction of ACC
or ASR is equivalent to the transitions of prediction labels.
For example, if a model loses its accuracy on clean im-
ages with Gaussian noise, it can be regarded as the predic-
tion labels of these images have changed compared with
the original images’. Consequently, we can evaluate the
corruption robustness consistency in the inference stage
by adding image corruptions with growing severity, and
recording the severity when the model’s hard-label predic-
tion gets changed. For different image corruptions, if the
recorded severity levels are very similar, we can extrapo-
late that the corruption robustness consistency on the input
image is high.

After recording the levels of severity, the final step is to
measure their dispersion. It is not hard to find such a metric
since simply calculating the standard deviation is already
effective according to our experiments. Alg. 1 describes
the detailed algorithm. TeCo maps the input image x to a
linearly separable space, and defenders can make judgments
by a threshold γ:

Γ(TeCo(x)) =

{
1, T eCo(x) > γ

0, T eCo(x) ≤ γ
(4)

5. Experiments
5.1. Experimental Settings

Implementation details. We take the common image
corruptions introduced in [18] as the image corruption set
DN

k in Alg. 1. This corruption set has 15 diverse image cor-
ruptions with the severity ranging from 1 to 5. We choose
standard deviation as the deviation measurement method4.

Attack methods. We evaluate our method against seven
backdoor attacks, including Badnets attack [14], Blended

4We investigate the choice of image corruption set and deviation mea-
surement method in the supplementary.

Algorithm 1: Test-time CRC Evaluation (TeCo)
Input: Test sample x; test model Cθ; deviation

measurement method Dev;image corruption
set DN

K , where K is the number of
corruption types, and N is the maximum of
severity.

Output: Prediction score of test sample x.
1 Initialize L ← {}, Porg ← Cθ(x);
2 for k = 1 to K do
3 L← N + 1;
4 for n = 1 to N do
5 if Cθ(D

n
k (x)) ̸= Porg then

6 L← n;
7 break;
8 end
9 end

10 L ← L ∪ {L};
11 end
12 deviation← Dev(L);
13 return deviation

attack [3], Low-frequency (LF) attack [48], Input-aware at-
tack [32], Wanet attack [33], LIRA attack [8], and SSBA
attack [26]. We follow an open-sourced backdoor bench-
mark [45] for the training settings of these attacks. To en-
sure the attacks’ strength, 10% of the training set are poi-
soned. As illustrated in Tab. 3, the attacks in our experi-
ments contain different trigger types.

Datasets and backbones. Five datasets and four back-
bones are involved in our experiments. The datasets in-
clude CIFAR10 [23], CIFAR100 [23], GTSRB [20], Tiny-
ImageNet [24], and ImageNet200 [36] which is used
in [26]. For images in relatively low size, we use Pre-
ActResNet18 [17] and MobileViT-xs [31] as the back-
bones. And for ImageNet200, we use WideResNet101-
2 [47] and SwinTransformer-Base [29], and fine-tune them
from checkpoints [44] pre-trained on ImageNet1K.

Competitors. Since TeCo is the first test-time trigger
sample detection method that works in hard-label black-
box settings and has no extra dependency, We compare
our method with two trigger sample detection methods that
work in looser conditions but still meet the black-box re-
quirement. To the best of our knowledge, STRIP [12] is
the first black-box TTSD method, and it still serves as a
baseline in many recent works [30, 48]; Frequency detector
(FreqDetector) [48] is the state-of-the-art trigger sample de-
tection method. We implement them following their official
codes. STRIP needs the logits-based black-box accessibil-
ity, while FreqDetector has no requirement for accessing
the backdoor models. In addition, both of them need extra
clean data to accomplish the trigger detection task.
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Dataset Model
Attack→ Badnets [14] Blended [3] LF [48] Input-aware [32] Wanet [33] LIRA [8] SSBA [26] AVG(↑) STD(↓)

Detection↓ AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score

CIFAR10

PreActResNet18
STRIP 0.790 0.743 0.726 0.685 0.973 0.937 0.283 0.526 0.395 0.526 0.555 0.661 0.364 0.526 0.584 0.658 0.236 0.140

FreqDetector 0.989 0.955 0.966 0.904 0.886 0.809 1.000 0.993 0.566 0.550 0.912 0.840 0.896 0.824 0.888 0.839 0.138 0.134
Ours 0.911 0.917 0.935 0.946 0.939 0.937 0.905 0.921 0.915 0.905 0.953 0.934 0.868 0.883 0.918 0.920 0.026 0.020

MobileViT-xs
STRIP 0.736 0.710 0.533 0.549 0.912 0.859 0.390 0.526 0.460 0.526 0.465 0.592 0.379 0.526 0.554 0.613 0.184 0.118

FreqDetector 0.989 0.955 0.966 0.904 0.834 0.763 0.996 0.972 0.510 0.526 0.980 0.940 0.896 0.824 0.882 0.841 0.161 0.146
Ours 0.682 0.724 0.927 0.924 0.917 0.910 0.811 0.786 0.913 0.902 0.964 0.929 0.920 0.911 0.876 0.870 0.090 0.075

GTSRB

PreActResNet18
STRIP 0.871 0.840 0.883 0.849 0.991 0.981 0.310 0.501 0.356 0.501 0.778 0.791 0.641 0.625 0.690 0.727 0.247 0.173

FreqDetector 0.981 0.939 0.993 0.960 0.964 0.901 0.925 0.848 0.483 0.503 0.595 0.562 0.544 0.548 0.784 0.752 0.213 0.188
Ours 0.869 0.835 0.917 0.913 0.947 0.962 0.956 0.959 0.954 0.961 0.997 0.986 0.943 0.967 0.940 0.940 0.036 0.048

MobileViT-xs
STRIP 0.947 0.939 0.875 0.856 0.962 0.937 0.285 0.501 0.438 0.501 0.616 0.687 0.544 0.552 0.667 0.710 0.246 0.184

FreqDetector 0.981 0.939 0.993 0.960 0.922 0.840 1.000 0.999 0.471 0.511 0.870 0.784 0.544 0.548 0.826 0.797 0.207 0.182
Ours 0.914 0.903 0.924 0.935 0.993 0.988 0.847 0.879 0.973 0.960 0.987 0.952 0.939 0.959 0.940 0.939 0.047 0.034

CIFAR100

PreActResNet18
STRIP 0.860 0.812 0.769 0.719 0.955 0.898 0.249 0.502 0.485 0.503 0.589 0.590 0.685 0.651 0.656 0.668 0.221 0.140

FreqDetector 0.979 0.923 0.961 0.897 0.837 0.783 0.997 0.976 0.440 0.503 0.954 0.896 0.889 0.807 0.865 0.826 0.181 0.146
Ours 0.939 0.921 0.939 0.945 0.834 0.838 0.878 0.873 0.971 0.959 0.913 0.826 0.968 0.968 0.920 0.904 0.046 0.054

MobileViT-xs
STRIP 0.847 0.798 0.800 0.744 0.940 0.888 0.430 0.519 0.479 0.503 0.609 0.639 0.808 0.750 0.702 0.692 0.181 0.133

FreqDetector 0.979 0.923 0.961 0.897 0.914 0.838 0.999 0.990 0.426 0.503 0.941 0.877 0.889 0.807 0.873 0.834 0.186 0.146
Ours 0.905 0.909 0.946 0.957 0.972 0.967 0.940 0.932 0.898 0.881 0.991 0.965 0.956 0.955 0.944 0.938 0.031 0.030

Tiny-ImageNet

PreActResNet18
STRIP 0.852 0.788 0.949 0.892 0.995 0.976 0.430 0.504 0.681 0.640 0.511 0.545 0.767 0.722 0.741 0.724 0.198 0.162

FreqDetector 0.710 0.652 0.999 0.989 0.920 0.828 1.000 0.996 0.655 0.617 0.960 0.910 0.992 0.958 0.891 0.850 0.135 0.147
Ours 0.987 0.982 0.977 0.978 0.993 0.989 0.978 0.974 0.888 0.889 0.977 0.974 0.983 0.977 0.969 0.966 0.033 0.032

MobileViT-xs
STRIP 0.737 0.688 0.872 0.809 0.991 0.964 0.421 0.516 0.647 0.615 0.585 0.655 0.766 0.716 0.717 0.709 0.174 0.134

FreqDetector 0.689 0.638 0.998 0.984 0.938 0.865 1.000 0.999 0.631 0.602 0.770 0.696 0.982 0.934 0.858 0.817 0.146 0.156
Ours 0.979 0.981 0.974 0.975 0.982 0.973 0.984 0.983 0.986 0.975 0.938 0.874 0.975 0.971 0.974 0.962 0.015 0.036

ImageNet200

WideResNet101-2
STRIP 0.921 0.869 0.959 0.903 - - 0.421 0.502 0.584 0.567 0.693 0.668 0.765 0.695 0.724 0.701 0.186 0.146

FreqDetector 0.526 0.520 0.998 0.986 - - 1.000 1.000 0.484 0.517 0.979 0.949 0.994 0.970 0.830 0.824 0.230 0.216
Ours 0.974 0.979 0.982 0.983 - - 0.937 0.920 0.987 0.977 0.997 0.996 0.922 0.938 0.966 0.965 0.027 0.027

SwinT-Base
STRIP 0.992 0.968 0.939 0.875 - - 0.944 0.873 0.726 0.672 0.993 0.974 0.715 0.659 0.885 0.837 0.118 0.128

FreqDetector 0.526 0.520 0.998 0.986 - - 1.000 1.000 0.455 0.504 0.974 0.940 0.994 0.970 0.825 0.820 0.237 0.218
Ours 0.978 0.978 0.978 0.979 - - 0.990 0.988 0.985 0.970 0.999 0.998 0.980 0.975 0.985 0.981 0.007 0.009

* LF is computationally infeasible on ImageNet200.

Table 2. The evaluation results on different attacks, datasets, and backbones. The last two columns show the average performance and the
standard deviation of performance across different attacks. The best results are in bold. We highlight that our method not only has good
effectiveness, but also keeps outstanding stability (about 5 times of the runner-ups’ on average) against different backdoor attacks including
universal, sample-specific, and invisible ones.

Types↓ Attacks→ Badnets Blended LF Input-aware Wanet LIRA SSBA
Universal ! ! !

Sample-specific ! ! !

Invisible ! ! !

Table 3. The backdoor attacks involved in our evaluations have
covered the majority of trigger types.

Evaluation metrics. Two metrics are used: (1) The
Area Under Receiver Operating Curve (AUROC), which
is a widely-used metric to measure the trade-off between
the false positive rate for clean samples and true positive
rate for trigger samples for a detection method. (2) The F1
score. We calculate the best F1 score of detection methods
to evaluate their optimal performance. The F1 score in our
experiments is computed by:

F1 score = max
γ∈Γ

2× (precisionγ × recallγ)
(precisionγ + recallγ)

, (5)

where Γ represents all possible thresholds.
We also include additional metrics such as FAR, FRR,

and Backdoored Data Rejection Rate (BDR). For more im-
plementation details and evaluations, please also refer to the
supplementary.

5.2. Effectiveness Studies

We first evaluate the performance of TeCo on different
backdoor-infected models comprehensively. As shown in
Tab. 2, TeCo can precisely detect the trigger samples in
the inference stage with the average AUROC ≥ 0.876 for
different backdoor attacks on diverse datasets and back-
bones. In addition, since in the real-world scenario, the
TTSD methods should have solid effectiveness against dif-

ferent types of backdoor triggers, we investigate the stabil-
ity of our method by calculating the standard deviations of
its performance on different backdoor attacks with the same
dataset and backbone. We highlight that TeCo achieves
overall average AUROC = 0.9433 and F1 score = 0.9386,
with the standard deviation of AUROCs and F1 scores equal
to 0.0360 and 0.0364 respectively. These results indicate
that TeCo outperforms the runner-up by about 10% in terms
of AUROC, 14% in terms of F1-score, and achieves 5 times
of stability against different types of trigger. In summary,
our work maintains stable effectiveness among different
trigger types, with only hard-label black-box model acces-
sibility and no need for extra knowledge.

There are also some interesting results about baselines.
Since the Low-frequency (LF) attack is designed to avoid
FreqDetector [48], FreqDetector should have low effective-
ness against this attack. However, we implement them fol-
lowing the official codes and find that if we let FreqDe-
tector work in a binary classification manner and make
judgments based on thresholds, it will perform well on LF
attack. So we believe it is not unfair to involve LF at-
tack and FreqDetector simultaneously in our experiments.
Another interesting phenomenon is the success of STRIP
against input-aware and LIRA attacks on SwinTransformer-
base/ImageNet200. We further investigate it in our supple-
mentary and show that the performance of STRIP is some-
how influenced by the choice of backbones.

5.3. Ablation Studies

The impact of different target labels. We further eval-
uate the effectiveness of TeCo against different predefined
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(a) Blended (b) SSBA (c) Wanet
Figure 3. Performance of TeCo against different target labels

target labels. We select 3 attacks (Blended, SSBA, and
Wanet) from the seven attacks mentioned above to rep-
resent the universal, sample-specific, and invisible back-
door attacks, and make them attack 10 different labels
that we randomly select from GTSRB. Thus we have 30
backdoor-infected models with different trojan labels and
trigger types. Fig. 3 illustrates the stability of TeCo against
backdoor attacks with different target labels. For Blended,
TeCo remains AUROC ≥ 0.874, and the standard devia-
tion (STD) of AUROC is about 0.021. For SSBA, TeCo
achieves AUROC ≥ 0.908 and STD ≈ 0.010. For Wanet,
TeCo achieves AUROC ≥ 0.919 and STD ≈ 0.017. These
results support that target trojan labels have little influence
on TeCo’s performance.

The impact of max severity N . We mark the com-
putational cost of vanilla inference process as O1(1) and
the average computational cost of image corruptions as
O2(1). The computational cost of TeCo in the worst case
is O1(N × K) + O2(N × K), where K is the number of
corruption types and N is the maximum of severity. Thus,
given fixed corruption types, the max severity has a critical
influence on the running efficiency. Here, we investigate
TeCo’s performance with N ranging from 1 to 5. As shown
in Tab. 4, TeCo maintains good effectiveness and stability
in different N . We illustrate some results in Fig. 4, which
shows that TeCo’s performance grows with the increasing
max severity N , and still gets satisfying effectiveness with
low N . In other words, TeCo also has competitive effec-
tiveness when the computational cost is limited.

Model
Dataset CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200

Metric AVG STD AVG STD AVG STD AVG STD AVG STD

CNNs
AUROC 0.918 0.000 0.930 0.012 0.884 0.055 0.970 0.000 0.949 0.019
F1 score 0.914 0.001 0.929 0.010 0.879 0.032 0.966 0.000 0.943 0.017

ViTs
AUROC 0.868 0.004 0.929 0.005 0.936 0.012 0.954 0.050 0.975 0.002
F1 score 0.857 0.004 0.931 0.006 0.928 0.016 0.946 0.033 0.969 0.003

Table 4. Performance of TeCo with a different maximum of sever-
ity. The average and standard deviation results suggest that TeCo
has high effectiveness in different max severity N and maintains
stable performance among different N .

5.4. Thresholds
Since TeCo maps the input image x to a linearly sepa-

rable space and defenders make judgments by a threshold
γ, questions are how we can get this threshold and what is
the influence of threshold for our method. Here, we evalu-
ate TeCo by setting an empirical threshold directly, which
does not break the “no need for extra data” characteristic
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(a) PreActResNet18 / CIFAR10
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(b) MobileViT-xs / Tiny-Imagenet
Figure 4. Illustration of TeCo’s performance with different max
severity. Despite TeCo’s performance grows with the increasing
max severity N , TeCo still has good performance with low N .

of TeCo. We use ACC as the evaluation metric, which is
calculated by:

ACC =
TP + TN

TP + TN + FP + FN
. (6)

Tab. 5 shows the average performance of TeCo in dif-
ferent attacks, datasets, and backbones when an empirical
threshold is given. The results suggest that even in the worst
case where no data is available for defenders to estimate an
appropriate threshold, by empirically setting threshold = 1,
TeCo can still get an average ACC ≈ 0.79, which still sur-
passes STRIP’s performance in optimal thresholds shown
in Tab. 2 and is competitive to FreqDetector. We defer a
more detailed discussion about thresholds in other different
settings to the supplementary.

CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200 AVG

CNNs 0.8521 0.9242 0.7735 0.6504 0.7613 0.7923
ViTs 0.8018 0.8366 0.7778 0.7569 0.7610 0.7868

Table 5. The accuracy of TeCo in the settings where only one
empirical threshold (γ = 1) can be set for all attacks

6. Analyses
6.1. Constructing Adaptive Attacks against TeCo

As formulated by Eq.( 2), the goal of backdoor attacks is
to make models perform normally on clean data but give a
specific prediction on trigger samples, the classic loss func-
tion for training such models can be defined as:

Jbd =

I∑
i=1

CE(Cθ(xi), yi) +

J∑
j=1

CE(Cθ(x̂j), yt), (7)

where CE(·) represents the cross entropy loss function.
This backdoor loss function is widely used in backdoor at-
tacks. However, we speculate that this dual-target loss func-
tion leads backdoor-infected models to act anomalously on
trigger samples in terms of corruption robustness. To reveal
this point, we first introduce an adaptive loss to attack our
method TeCo:

Jada =

J∑
j=1

K∑
k=1

N∑
n=1

MSE(MSE(Cθ(xj), Cθ(D
k
n(xj))),

MSE(Cθ(x̂j), Cθ(D
k
n(x̂j)))),

(8)

16369



(a) Badnets (b) LF (c) SSBA

Figure 5. Visualization of backdoor loss, adaptive loss, clean ac-
curacy, and attack success rate in the training process. We note
that with the drop of backdoor loss, the adaptive loss rises corre-
spondingly, which indicates a negative correlation between them.

Weight→ 0 10−3 10−4 10−5

Attack↓ AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score

BadNets 0.9112 0.9174 0.5763 0.5928 0.6571 0.6542 0.6745 0.6657
LF 0.9390 0.9367 0.8592 0.8483 0.9219 0.9154 0.8667 0.8858

SSBA 0.8683 0.8835 0.7125 0.7312 0.6477 0.7281 0.5909 0.6852

Weight→ 0 10−3 10−4 10−5

Attack↓ C.ACC ASR C.ACC ASR C.ACC ASR C.ACC ASR

BadNets 0.9153 0.9502 0.5105 0.7386 0.7980 0.3720 0.8546 0.3001
LF 0.9286 0.9888 0.8022 0.9443 0.8864 0.9504 0.8962 0.9476

SSBA 0.9270 0.9719 0.7129 0.9176 0.8925 0.9162 0.8978 0.9170

Table 6. Performance of TeCo against adaptive backdoor attacks

where xj is the original version of the trigger sample x̂j .
This adaptive loss aims to make models have the same
corruption robustness on corrupted clean samples and cor-
rupted trigger samples, which is aligned to the inference
logic of TeCo.

6.2. Results of Adaptive Attacks

We convert Badnets, LF, and SSBA to the adaptive ver-
sion by applying our adaptive loss in their training pro-
cess, and investigate these adaptive attacks on PreActRes-
Net18/CIFAR10. We first monitor the adaptive loss without
derivative in the training phases. As illustrated in Fig. 5,
the adaptive loss grows5 when the backdoor loss decreases,
which means the success on the dual-target loss function
may drive the model to behave differently in terms of cor-
ruption robustness. A reasonable hypothesis is the model
learns shortcuts [13] for the backdoor trigger guided by
the backdoor loss function, however, this trigger is not al-
ways robust in image space when facing different image
corruptions. These results support TeCo’s effectiveness by
showing the negative correlation between backdoor loss and
adaptive loss. And since the involved attacks contain differ-
ent characteristics, such as partial (Badnets), global (LF),
universal (Badnets, LF), sample-specific (SSBA), and in-
visible (SSBA), we suppose that this negative correlation is
hard to be avoided by changing trigger types, which con-
firms the stability of TeCo on the other hand.

Then we add the adaptive loss to the overall loss func-
tion: J = Jbd + αJada, where α is the weight factor.
Tab. 6 shows the TeCo’s effectiveness against adaptive at-
tacks and the performance of adaptive attacks. The results

5We scale the adaptive loss down to fit the figure by multiplying 10−3.

(a) Without adaptive loss (b) α = 10−5

(c) α = 10−4 (d) α = 10−3

Figure 6. The red points represent the trigger samples, and the
black points are clean samples from the target class. The points in
other colors are clean samples from other classes.

indicate that the adaptive attacks can avoid TeCo to some
degree, however they sacrifice attack performance once ap-
plying the adaptive loss.

Since SSBA has the best performance in Tab. 6, we fur-
ther visualize the clean and trigger samples in the latent
space of the SSBA-infected model. As illustrated in Fig. 6,
the adaptive loss pushes the trigger samples from the edge
of latent space to the center, making them have a similar
distance to different clean samples. Thus, a possible way
to attack TeCo is to embed trigger samples in the middle of
the latent space. However, this may be hard to achieve as
we have shown in Tab. 7, the proposed adaptive attack is not
stable enough on different datasets.

Dataset AUROC(↑) F1 score(↑) ACC(↑) FAR(↓) FRR(↓) BDR(↑)

GTSRB 0.9101 0.8900 89.00 13.09 8.90 91.10
CIFAR100 0.9141 0.9137 91.37 5.76 11.54 88.46

Table 7. TeCo against adaptive SSBA attack (10−5) on PreAc-
tResNet18

7. Conclusions, Limitations, and Future Work
In this paper, we propose TeCo, the first test-time trig-

ger sample detection method that only needs the hard-label
outputs of the victim models without requiring extra data
or assumptions. Extensive experiments support that TeCo
has outstanding effectiveness and stability against different
backdoor attacks. However, a limitation of TeCo is that us-
ing multiple image corruptions will increase the computa-
tional cost. Therefore, designing an effective and efficient
single corruption function will be our future work.
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