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Abstract

Reconstruction-based anomaly detection models achieve
their purpose by suppressing the generalization ability for
anomaly. However, diverse normal patterns are conse-
quently not well reconstructed as well. Although some ef-
forts have been made to alleviate this problem by modeling
sample diversity, they suffer from shortcut learning due to
undesired transmission of abnormal information. In this
paper, to better handle the tradeoff problem, we propose
Diversity-Measurable Anomaly Detection (DMAD) frame-
work to enhance reconstruction diversity while avoid the
undesired generalization on anomalies. To this end, we
design Pyramid Deformation Module (PDM), which mod-
els diverse normals and measures the severity of anomaly
by estimating multi-scale deformation fields from recon-
structed reference to original input. Integrated with an in-
formation compression module, PDM essentially decouples
deformation from prototypical embedding and makes the fi-
nal anomaly score more reliable. Experimental results on
both surveillance videos and industrial images demonstrate
the effectiveness of our method. In addition, DMAD works
equally well in front of contaminated data and anomaly-like
normal samples.

1. Introduction
Visual anomaly detection is a fundamental and important

problem in computer vision community, with wide applica-
tions in video surveillance and industrial inspection. It aims
to detect outliers from seen classes and novel patterns from
unseen classes. This task is very challenging because abnor-
mal data is diversely distributed and expensive to collect. So
we have to construct models based on only normal samples
under unsupervised setting, targeting at high discrimination
between normal and abnormal samples.

During the past decade, reconstruction-based methods
have achieved great progress in anomaly detection. These
methods use Autoencoders (AEs) [8, 9, 20, 24, 26, 29, 40] or
Generative Adversarial Networks (GANs) [1, 19, 32] to re-

Figure 1. Illustration of difficulty in anomaly detection in MNIST
dataset. The prototype is indicated by orange triangle and the
anomaly by red point. In this case, the anomaly can hardly
be detected based on reconstruction error or distance in high-
dimensional feature space. Our solution is illustrated in Fig. 2.

construct the normal counterparts from any input images or
video frames. AE-based methods firstly compress the in-
puts to discard the information beyond normal prototypes,
and then decode the embedding to reconstruct the inputs.
According to the estimated reconstruction error, the anoma-
lies can be detected.

However, the performance of reconstruction-based
methods for anomaly detection has long been limited by a
tough problem, i.e. the tradeoff between reconstructing di-
verse normals and detecting unknown anomalies. In order
to discriminate anomalies more easily, previous works [8]
imposes more constraints to suppress abnormal information
during autoencoding, which leads to high reconstruction er-
ror for diverse normal instances. For example, in Figs. 1
and 2g, the severely deformed normal (a.k.a. anomaly-like)
sample “7” has even higher error than the abnormal sam-
ple “4”. To better reconstruct diverse normals, each query
vector correspond to multiple prototypes in the memory,
which may be combined into abnormal embedding even if
abnormal projection is far away from the prototype. As
a consequence, anomalies that distribute in low likelihood
area between prototypical embedding are difficult to iden-
tify from diverse normals. MNAD [29] introduces skip-
connection for diverse reconstruction and additional con-
straints to get round the incorrect combination problem.
But the latter forces model transmit more unrestrained in-
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Figure 2. Illustration of our diversity-measurable method in ad-
dressing the detection difficulty. Numbers in white are anomaly
scores. a) Original input; b) Reconstructed reference; c) Coarse
deformation; d) Fine deformation; e) Measurement of diversity1;
f) Deformation-augmented error map assigns lower anomaly score
to the anomaly-like sample than the true anomaly; g) Pixel-wise
reconstruction error yields incorrect anomaly scores.

formation with abnormal part by skip-connection, resulting
in shortcut learning and undesired reconstruction of anoma-
lies.

A key to address the above tradeoff problem is to find
a proper measurement of diversity that normal and abnor-
mal samples have, which is positively correlated with the
severity of anomaly. With such a measure, we do not need
to fight against imperfect reconstruction of normals or un-
desired reconstruction of anomalies, because anomalies can
be detected more accurately by the diversity measure to-
gether with the reconstruction error. Note that pixel-wise
reconstruction error is not an ideal measurement of diver-
sity, because the high-error region often confuses anomalies
with diverse normals, e.g. normals with structural deforma-
tion and anomalies with colors close to the background may
yield unreliable reconstruction error.

In this paper, we propose a Diversity-Measurable
Anomaly Detection (DMAD) framework to enhance the
measurability of reconstruction diversity so as to measure
abnormality more accurately. Our basic idea is to decouple
the reconstruction into compact representation of prototyp-
ical normals and measurable deformations of more diverse
normals and anomalies. The under-estimated reconstruc-
tion error can be compensated by the diversity, which can
be properly measured. To this end, the DMAD framework
includes a Pyramid Deformation Module (PDM) to model
and measure the diversity and an Information Compression
Module (ICM) to learn the prototypical normal patterns.

Inspired by [4, 15], we assume anomalies (e.g. in video
surveillance) can be represented as significant deformation
of appearances, including positional changes and fine mo-
tions. In contrast, diverse normal samples can be repre-
sented as weaker deformations thus easily distinguished

1In this case, we only count fine deformation because deformations in
position and angle are considered as normal. In real-world experiments,
we consider both coarse and fine deformations.

from the abnormal ones. Therefore, we design PDM to
model the diversity of normals as well as the severity of
anomalies. More specifically, PDM learns hierarchical two-
dimensional deformation fields (Fig. 2c,d) that describe the
pixel-level transformation direction and distance from ref-
erence (Fig. 2b, which is reconstructed from prototypes in
memory) to original input. In ICM, we learns compressed
representation as sparse prototypes. As a result, a sin-
gle memory item is enough to represent each normal clus-
ter. This is more compact than other memory-based works
which require multiple memory items. Integrating PDM
with ICM, DMAD essentially decouples the deformation
information (Fig. 2e) from class prototypes and makes the
final anomaly score more discriminative (Fig. 2f).

We evaluate our anomaly detection framework in scenar-
ios of video surveillance and industrial defect detection. To
apply DMAD in the latter scenario, we propose a variant of
PDM, PPDM, to deal with the false positive issue in texture
reconstruction. Extensive experimental results verify the ef-
ficacy of our approach. Moreover, our method works well
even in front of contaminated data and anomaly-like nor-
mals. The main contributions of our work are as follows:

• We introduce diversity-measurable anomaly detection
framework which allows reconstruction-based models to
achieve better tradeoff between reconstructing diverse
normals and detecting unknown anomalies.

• We propose pyramid deformation module to implement
diversity measurement, in which the deformation infor-
mation is explicitly separated from compact class pro-
totypes and the resulting diversity measure is positively
correlated to abnormality.

• Our approach outperforms previous works on video
anomaly detection and industrial defect detection, and
works well in front of contaminated data and anomaly-
like normals, demonstrating its broad suitability and ro-
bustness.

2. Related Work

Anomaly detection. Reconstruction-based methods
model the distribution of normal data and assign anoma-
lies with high reconstruction error, because models trained
with only normal data cannot reconstruct anomalies. Some
works use autoencoder to detect anomalies, such as con-
volutional autoencoder [9] and the variants [24, 40]. Other
approaches introduce additional constraints or memory to
make the model more discriminative. For example, sparse
coding [25, 39] reduces representation redundancy with
regularization; memory-augmented autoencoder (MemAE)
[8] memorizes the normal patterns appearing in training
dataset with external memory bank; variational autoencoder
[10, 35] assumes a prior distribution of normal data to con-
strain the nonlinear representation capacity; HF2VAD [20]
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uses CVAE [33] to capture the correlation among motions.
Frame prediction [19] assumes that abnormal samples in
videos cannot be represented by past frames that do not
contain unseen information and forces the model to en-
code changes among different frames. In addition, autoen-
coders can also be combined with external object detec-
tors [7, 14, 20] to capture background-invariant appearance.

Although these methods generally work well, they of-
ten have difficulty in discriminating abnormal samples from
anomaly-like normals due to the tradeoff between recon-
struction and discrimination. In our framework, pyramid
deformation module and information compression module
are leveraged to address the trade-off problem, significantly
improving the performance in anomaly detection.

Memory network. Generative models map continu-
ously in feature space and they may assign higher prob-
abilities to anomalies than normal ones [28]. Recent re-
search [8,11,20,29] has explored the application of discrete
external memory to generate seen normal patterns even if
the input is abnormal. MemAE [8] proposes a memory-
augmented autoencoder, which uses information from en-
coder as a query and obtains a normal pattern retrieved from
memory module. MNAD [29] introduces skip-connection
to alleviate the problem that diverse normal patterns may
yield high reconstruction errors. HF2VAD [20] extends the
memory module to multi-level memory, and uses additional
estimators [3, 13] to explicitly model the motion informa-
tion and filter the noise from background. DAAD [11] uses
block-wise memory to increase the specificity of memory.

In most existing works, the memory module outputs a
linear combination of memory items which may lead to un-
desired reconstruction of normal-like anomalies. And they
do not explicitly consider that instances corresponding to
the same memory grid may be located at different positions
of the receptive field. In our approach, we alleviate these
problems via compressing embedding into a single memory
item to ensure that the output is absolutely normal.

Transformation modeling. The transformation be-
tween video frames is a key clue for anomaly detection.
Some methods [7, 14, 19, 20] use external object detectors
or optical-flow estimators to model the motion information
implicitly or explicitly. Among the transformation estima-
tors, optical-flow estimation [13] is widely studied, which
aims to estimate the pixel-wise motions between consecu-
tive frames. In addition, correspondence modeling between
pair-wise images is also applied to 2D geometric match-
ing [30] and 3D image registration [36] to obtain image de-
formation fields. STN [15] learns to transform the original
images themselves to benefit identification algorithm. Re-
gAD [12] uses feature-level affine registration to relocate
features without changing the embeddings.

However, pairwise transformation modeling only focus
on pattern changes thus cannot detect static anomalies. And

Figure 3. Three conditions for DMAD framework. The col-
ors of lines represent the measurements of diversity (severity of
anomaly); The gray area represents uncertainty in the measure;
Double dashed arrows indicate possible ranges of the boundary.
The last two lines denote DMAD and traditional reconstruction-
based method respectively.

pretrained transformation estimators introduce generaliza-
tion error in different scenarios. In contrast, we address
these problems by separating and measuring the transfor-
mation from prototypical memory in end-to-end training.

3. Diversity-Measurable Anomaly Detection
In this section, we first analyze the objective of

reconstruction-based anomaly detection and propose a
diversity-measurable framework to address the tradeoff
problem in existing works. Then, we introduce informa-
tion compression module and pyramid deformation module
(PDM) as an implementation of the framework. Finally, we
explain the training and inference process and how to apply
the framework to defect detection with a variant of PDM.

3.1. The framework

Given input x, autoencoder-based methods aim to model
normal data distribution by minimizing the following recon-
struction loss (∥ · ∥2 is just one type of reconstruction loss):

L = ∥x− g(ϕ(f(x), z))∥2 + γ1R1(ϕ), (1)

with respect to encoder f(·), decoder g(·), latent variable
z (referring to discrete memory items in these cases) and
a constrained feature mapping function ϕ(·) corresponding
to its constraint R1(ϕ). Skip-connection and concatenation
[·, ·] are introduced to generate diverse normal patterns [29]:

L = ∥x− g([ϕ(f(x), z), f(x)])∥2 + γ1R1(ϕ). (2)

However, due to diverse data distribution, previous methods
have to face the conflict between representing diverse nor-
mals and detecting anomalies. The intrinsic reason lies in
that the encoding of diversity [·, f(x)] contains redundant
information that cannot be measured accurately.

In this work, we propose a principled framework,
Diversity-Measurable Anomaly Detection (DMAD), to al-
leviate the conflict. The basic idea is to restrict the anomaly
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Figure 4. Two versions of diversity-measurable anomaly detection framework. Multi-scale pyramid deformation fields are estimated as
O and the reverse processes are OT . a) PDM version computes forward deformation O after reconstruction. b) PPDM version employs
cycle-consistent forward-backward deformations and the forward deformation is applied on the input.

information transmitted to g(·) while measuring and mod-
eling the diversity of the remaining part. To this end, we
design information compression module ϕ(·) and diversity-
aware module ψ(·) under DMAD framework:

L = ∥x− g(ϕ(f(x), z)) ◦ ψ(x)∥2 + γ1R1(ϕ) + γ2R2(ψ),
(3)

where ◦ refers to aggregation operator. With appropriate
design of ϕ(·), ψ(·) and the constraints, optimization of the
reconstruction loss can improve the compactness of feature
embedding. So that diverse representations are mapped via
ϕ(·) to compact prototypes in the memory. The diversity of
input x relative to its reconstruction is represented by ψ(·).
The under-estimated reconstruction error can be compen-
sated by the diversity measured in ψ(·), a key factor con-
tributing to accurate anomaly scores.

This framework can achieve our target on the premise
that the following conditions (Fig. 3) are met: 1. ψ(·) can
learn all diverse information from prototypical patterns to
any normal inputs to ensure normal samples do not yield
high anomaly score; 2. Deformation generated by ψ(·) is
positively correlated to diversity measure; 3. Prototypical
information about x represented by ψ(·) needs to be min-
imized. In the following subsections, we explain how to
design modules to fulfill these conditions.

3.2. Information compression module

According to [35], we adapt VQ-Layer as an informa-
tion compression module to learn ϕ(·) given embedding
f(x) ∈ RD×H′×W ′

as a query ze = f(x) and memory
z ∈ RD×N . Then, we quantize ze into a single-memory
feature cube zq ∈ RD×H′×W ′

by seeking for memory item
with minimum L2 distance (“Search” in Fig. 4):

zqh,w = argminzn∥z
e
h,w − zn∥2, (4)

where zn is the nth memory item, h ∈ {1, · · · , H ′} , w ∈
{1, · · · ,W ′} indicates the same location in both zq and
ze. The compression loss Lcom with stop-gradient operator
SG(·) that updates its parameters separately [35] is com-
bined by a hyperparameter β:

Lcom = ∥SG(ze)− zq∥2 + β∥ze − SG(zq)∥2. (5)

Skip-connection with low information capacity (Fig. 4
“Comp.”) is also allowed to further improve the recon-
struction quality without bringing excessive generalization
(i.e. Conv-Layer with stop-gradient operator for intermedi-
ate features whose reduction factor is 16 or larger).

3.3. Pyramid deformation module

We categorize the unknown anomalies into the follow-
ing three types: unseen class (e.g. novel objects), global
anomaly (e.g. unexpected movement) and local anomaly
(e.g. strange behavior and workpiece damage) of seen class.
The unseen class is easy to be detected based on reconstruc-
tion result, but the latter two types are usually confused with
diverse normals. To discriminate these anomalies from nor-
mal ones, we represent the diversity using measurable de-
formation between reconstructed reference and original in-
put, so that slight deformations occur in normals while dras-
tic deformations occur in anomalies.

Inspired by STN and DCN [4,15], we introduce Pyramid
Deformation Module (PDM) which explicitly learn defor-
mation fields with hierarchical scales to model the motion,
behavior and defect of different anomaly types, as shown
in Fig. 4a. Specifically, after feature extraction, ψ(·) uses
K-heads to compute offsets O = {O1, · · · , OK}, corre-
sponding to K coarse-to-fine deformations:

ψ(x) = Up(h(PE(x))) = O, (6)
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where PE(·) is positional embedding operator [18], h :
RC×H×W → R2×{H1×W1,··· ,HK×WK} is the deformation
estimator that generates offset vectors, Up(·) is upsampling
function that resizes the outputs of K-heads to the same
size with the original image. In our experiments, we set
K = 2, with O1 used to estimate coarse deformation (e.g.
corresponding to the position of pedestrians or the place-
ment of workpieces) and O2 used to estimate fine deforma-
tion (e.g. corresponding to pedestrian behaviors or work-
piece details).

Considering that quantized embedding without posi-
tional information may lead to inaccurate reconstruction,
we also introduce position embedding operator for the de-
coder g(·). We then aggregate O onto the reconstructed
reference g(PE(zq)), and obtain x̃k(k = 1, . . . ,K) which
is calibrated by the kth layer of deformation fields:

x̃k = g(PE(zq)) ◦O1 · · · ◦Ok, (7)

where ◦ is grid-sampling function with a reference coordi-
nate in this implementation (“Agg.” and “Coord.” in Fig. 4).
However, minimizing the unconstrained reconstruction loss
with respect to ψ(x) may cause degenerate solution of the
encoder f(·). To address this problem, we add constraint
using smoothness loss via gradient operation and strength
loss as:

Ldf =
∑
k

∥∇Ok∥1 + ∥Ok∥2. (8)

3.4. Foreground-background selection

Storing the background information in memory will
break the compactness of embedding and require plenty of
memory items. Besides, the deformation estimation should
not be applied to the background. Some approaches use ex-
ternal estimators to remove interference from background,
but the generalization in different scenarios cannot be guar-
anteed and extra noise will inevitably be introduced. Bene-
fiting from the strong prior of fixed-view videos, we model
the background with a learnable template xbg and generate
a binary mask to indicate whether a pixel belongs to fore-
ground or background with fm(·). The final reconstruction
x̂k of kth head is:

x̂k = fm(x)x̃k + (1− fm(x))xbg. (9)

3.5. Training and inference

Training phase. Once we obtain the reconstruction x̂k,
we can calculate reconstruction loss Lrec as:

Lrec =
∑
k

Dis(x, x̂k), (10)

where Dis(·) refers to a distance function in sample space.
Reminding of the optimization objective in Eq. 3, we imple-
ment the two constraints using Lcom and Ldf respectively.

Finally, training is performed by minimizing the overall
loss:

Lall = Lrec + γ1Lcom + γ2Ldf . (11)

Inference phase. In the inference phase, we use O and
the reconstruction loss to calculate the error maps of input
sample x:

Arec = Dis(x, x̂K), (12)

Adf =
∑
k

∥Ok∥2. (13)

Image-level anomaly score is computed based on local max-
ima:

ScoreI = max(Arec ⊗ k⋆) + αmax(Adf ⊗ k⋆). (14)

where ⊗ is convolution operator and k⋆ is convolution ker-
nel for anomaly maps. α is a tradeoff parameter. That is,
the reconstruction loss and deformation jointly determine
the anomaly score, which is much more effective than tradi-
tional reconstruction-based methods, as illustrated in Fig. 3.

3.6. Variant of PDM

Modified framework with Pre-PDM. The DMAD
framework together with ICM and PDM modules proposed
above are suitable in many anomaly detection scenarios in-
cluding video surveillance. However, for industrial defect
detection, texture reconstruction may be harmful (such as
spots on “Pill”), and we should reconstruct high-level se-
mantic features instead. Since PDM does not work in high-
dimensional feature space and interferes with the training
process, we propose variant of PDM, Pre-PDM (PPDM), as
a solution. PPDM works in sample space, and is applied to
the input sample rather than the reconstructed one. Eq. (3)
is modified naturally as follows:

L =∥x ◦ ψ′(x)− g(ϕ(f(x ◦ ψ′(x)), z))∥2
+ γ1R1(ϕ) + γ2R2(ψ

′).
(15)

Since we do not reconstruct the original samples, recon-
struction loss cannot constrain PPDM to maintain informa-
tion diversity. In order to prevent x ◦ ψ′(x) in Eq. (15)
from shortcut learning, we propose to add the inversion of
forward deformation, backward deformation OT , based on
cycle-consistency principle to maintain the diversity of ap-
pearance information:

ψ′(x) = Up(h′(PE(x))) =
{
O,OT

}
. (16)

Training phase. The cycle-consistency losses Lcyc and
constraint for forward-backward deformation L+

df are:

Lcyc = ∥x− x ◦O1 · · · ◦OK ◦OT
K · · · ◦OT

1 ∥2, (17)

L+
df =

∑
k

∥∇Ok∥1 + ∥∇OT
k ∥1 + ∥Ok∥2 + ∥OT

k ∥2. (18)
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Figure 5. The process of forward and backward deformation: a)
The pattern of original image. Red indicates high error regions
and black indicates low error regions; b) The normal pattern; c)
The coarse estimation O1 (dark blue) and OT

1 (light blue); d) The
fine estimation O2 (dark blue) and OT

2 (light blue); e) Using x̂ sim-
ply causes high anomaly score at the wrong location (solid cross).
Ground-truth is shown as hollow cross; f) x̂ ◦OT

2 ◦OT
1 adjusts the

high reconstruction error to original position.

So we train our anomaly detection model with PPDM by
minimizing the following loss:

L+
all = Lrec + γ1Lcom + γ2L

+
df + γ3Lcyc. (19)

The modified DMAD framework (i.e. with PPDM and Re-
verse Distribution [6]) is shown in in Fig. 4b.

Inference phase. The result of PPDM is not aligned
with the position of original input, which may reduce the
performance of anomaly localization. In order to obtain the
anomaly map of real location, we use backward deforma-
tion to perform inverse sampling (Fig. 5):

A+
rec = Dis(x, x̂K) ◦OT

K · · · ◦OT
1 , (20)

A+
df =

∑
k

∥Ok ◦Ok+1 · · · ◦OK∥2

+
∑
k

∥OT
k ◦OT

k−1 · · · ◦OT
1 ∥2.

(21)

The image-level anomaly score Score+I and pixel-level
anomaly score Score+P are calculated respectively as:

Score+I = max(A+
rec ⊗ k⋆) + αmax(A+

df ⊗ k⋆), (22)

Score+P = A+
rec + αA+

df . (23)

4. Experiments and Analysis
Firstly, we perform toy experiment on MNIST to illus-

trate our approach. Then the quantitative and qualitative re-
sults of two versions our DMAD framework are reported in
video anomaly detection and industrial surface defect detec-
tion respectively2. Finally, we conduct ablation experiments
and analyze the results.

2Our code will be available at https : / / github . com /
FlappyPeggy/DMAD .

Figure 6. Visualization of toy experiment. The last three rows
are: reference reconstructed from memory, reference after coarse
deformation, and final output after applying fine deformation.

4.1. Datasets

Surveillance Videos. Ped2 [27], Avenue [23] and
ShanghaiTech [25] are fixed-view videos. The anomalies
include driving, cycling, running, throwing stuff, etc. Mu-
tual occlusion, anomaly-like behavior, contaminated data
and different scenes occur frequently in these datasets.

Industrial Images. MVTec [2] contains 15 types of in-
dustrial images, which are divided into 5 types of textures
and 10 types of objects. The defects include crack, scratch,
etc. The normal workpiece has different positions, angles
and textures. It is used for detection and localization task.

4.2. Toy experiment

As shown in Fig. 6, we perform a toy experiment
on MNIST dataset [16] with setting analogous to out-of-
distribution (OOD) detection (i.e. training on “1, 3, 5, 7,
9” and test on all classes). Our model searches separate
memory items for each digital category to reconstruct it
into class-specific reference and uses the deformation fields
from PDM to adjust it hierarchically. When tested with seen
and unseen classes, the model adjusts reconstructed refer-
ences to normal inputs, but fails on the abnormal ones.

In contrast, memory network without diversity-aware
module cannot guarantee the intra-class compactness and
the reconstruction diversity, which misdirects the model
to obtains dataset-optimal “average memory”, leading to
fuzzy reconstruction and lower discrimination ability. The
model with full-channel skip-connection suffers from short-
cut learning and reconstruct anomalies successfully which
weakens the ability to identify anomalies.

4.3. Implementation details

The input images are resized into 256 × 256 and nor-
malized to the value in range of [−1, 1]. According to
frame-pred strategy [19], the history length is set to 4 in
video anomaly detection and 0 for images. After feature
extraction with a backbone, PDM and PPDM obtain dif-
ferent heads by stacking stride-2 convolution layers. Then
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we use Tanh as the activation function of output layer and
clipping function to ensure the value of deformation is be-
tween [−1, 1]. Unless otherwise noted, the architecture of
autoencoder complies with the settings of MNAD [29] and
RD [6] for PDM and PPDM respectively. The function
Dis(·) in Eq. (10) is a combination ofMSE loss andGrad
loss for reconstruction in sample space, and COS loss for
deep features. We set (γ1, γ2) = (1, 0.25) for PDM, (1, 1)
for PPDM (γ3 is discussed in Sec. 4.5), and β = 0.25 as
in [35]. During post-processing, we use average kernel for
surveillance videos and Gaussian kernel with σ = 4 for
industrial images as in [6]. Frame-difference method is ap-
plied to remove static anomalies for Avenue, because our
method detect all anomalies which may be labeled as nor-
mal ones in [23]. And we use the mask calculated in Eq. (9)
to normalize anomaly map in [25] due to the scale changes.
Besides, we set α = 0.2 for three video tasks and an ad-
ditional option α = 0.05 for defect detection, depending
on whether the defect includes geometrical changes. The
model is optimized by AdamW [21] and the learning rate
is 2e-4 and 5e-3 as in [6, 29] respectively, being decayed
by CosineAnnealingLR [22] strategy. We adopt 60, 60, 60,
10, 400 epochs for MNIST, Ped2, Avenue, Shanghai and
MVTec respectively with batch size of 8.

4.4. Main results

Surveillance Videos. We compare our method with
SOTA works on video anomaly detection in Tab. 1. Our
method outperforms comparative approaches even though
we neither use external estimators nor remove abnormal
frames in training data. In additional, if we detect global
offset for camera jitter in [23], there will be extra 0.1% gain.

The qualitative results are shown in Fig. 7. We find that:
anomalies are over-reconstructed in (b); normals are not re-
constructed well in (c); (d) greatly improves normal recon-
struction with slightly less inhibition ability for anomalies.

Industrial Images. Anomaly detection results on
MVTec are shown in Tab. 2 and localization results are
shown in Tab. 3. With the deformation from PPDM, tex-
ture anomalies are detected with high performance and our
method outperforms SOTA methods in both detection and
localization tasks without memorizing an enormous num-
ber of embedding from training data.

4.5. Ablation study

As shown in Tab. 4, single-output memory module with-
out PDM suppresses diverse normal patterns seriously,
while separate PDM without memory provides compara-
ble performance gains as the previous SOTA works because
the module “Comp.” serves as an information compression
module instead. The number of multi-scale deformation
fields also have a modest effect on performance. We sug-
gest that “K” should at least make the scale of control grid

Table 1. Video anomaly detection results on Ped2 [27], Avenue
[23] and Shanghai [25]. We calculate AUC(%) with all frames
together. Numbers in bold indicate the best performance and the
underlined ones are the second best. + indicates that we reproduce
the result due to higher performance or absence of implementation.

Methods Ped2 [27] Avenue [23] Shanghai [25]
Conv2D [9] 90.0 70.2 -

Conv3D [40] 91.2 77.1 -
ConvLSTM [24] 88.1 77.0 -
FramePred [19] 95.4 84.9 72.8

ConvVQ+ 90.2 84.3 -
MemAE [8] 94.1 83.3 71.2
MPN [26] 96.9 89.5 73.8

MNAD+ [29] 97.8 88.5 70.5
HF2VAD [20] 99.3 91.1 76.2

Ours 99.7 92.8 78.8

Figure 7. Qualitative results on Ped2. a) Original image; b)
Memory network with skip-connection [29]; c) PDM with VQ-
Layer [35]; d) PDM with ICM. Green box indicates negative, red
box indicates positive, and yellow box indicates weak positive.

cover the size of base elements (e.g. pedestrian limbs). Be-
sides, the foreground-background selection module further
improves the compactness of memory embedding. More-
over, if any constraint for PDM is missing, the abnormal
information will be transmitted and cause shortcut learn-
ing. Especially, the cycle-consistency constraint Lcyc is
also a necessary part for PPDM to avoid degenerated solu-
tion (−1.7%), because the feature reconstruction error can
be minimized by eliminating all necessary information.

As shown in Tab. 5, the proposed method is robust to hy-
perparameter γ3 in Eq. (19). On condition that degenerated
solution will not be formed, weakening the constraint makes
model restore images from reference with less detail more
easily and perceive the position of anomalies more accu-
rately by transforming anomalies to normal patterns which
benefits localization task. On the contrary, strengthening the
constraint alleviates shortcut learning and improves image-
level result by maintaining more abnormal details.
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Table 2. Image-level AUC(%) of anomaly detection on MVTec [2].

Class\Methods GN [1] PSVDD [37] DAAD [11] CutPaste [17] PaDiM [5]PatchCore [31]DRAEM [38] RD [6] Ours
AvgTextures 77.5 94.5 91.0 97.5 98.8 99.0 99.1 99.5 99.9
AvgObjects 75.5 90.8 88.8 95.5 93.8 99.2 97.4 98.0 99.3

AvgAll 76.2 92.1 89.5 96.1 95.5 99.1 98.0 98.5 99.5

Table 3. Pixel-level AUC(%) of anomaly localization on MVTec [2].

Class\Methods PSVDD [37] CutPaste [17] PaDiM [5] PatchCore [31] DRAEM [38] TMAE [34] RD [6] Ours
AvgTextures 93.7 96.3 96.9 97.6 97.9 93.8 97.7 97.8
AvgObjects 96.7 95.8 97.8 98.4 97.0 94.0 97.9 98.3

AvgAll 95.7 96.0 97.5 98.1 97.3 93.9 97.8 98.2

Table 4. Ablation study of proposed module and loss on Ped2 [27].
From left to right: without PDM; with only one head of PDM
(K=1); without memory module; without background template;
removing strength constraint; removing smoothness constraint.

w / o PDM K > 1 Mem xbg ∥O∥2 ∥∇O∥2
AUC% -9.4 -0.4 -1.8 -1.6 -1.4 -1.4

Table 5. Ablation study of deformation constraint on MVTec [2].

Task \ γ3 0 0.1 0.25 0.5 1 2
Det. 97.9 99.4 99.4 99.5 99.6 99.4
Loc. 96.6 98.0 98.2 98.0 97.7 97.6

4.6. Discussion

Contaminated data assumption. Assuming that train-
ing data only contains completely normal data is unrealis-
tic, because the workload of natural data cleansing is con-
siderable, even has same cost as data annotations. We mix
training data with abnormal events in Ped2 to simulate con-
taminated data and find performance drop of MNAD [29]
is −3.7% while ours is −1.8%. The reason why DMAD
is less affected may be that PDM can encode and transmit
residual abnormal representation of mixed anomalies and
anomaly-like normal samples, thus strictly maintaining rep-
resentation compactness of the main encoder and low gen-
eralization ability on abnormal samples.

Two DMAD implementations. As introduced earlier,
our DMAD framework is implemented by two versions us-
ing PDM and PPDM respectively, corresponding to differ-
ent detection targets. As shown in Fig. 8, PDM learns mea-
surable quantization error (caused by ICM) from memory
embedding to diverse patterns which enhances the potential
of ICM to keep intra-class compactness without generating
unmeasureable reconstruction loss. Unlike PDM, PPDM
is partially in charge of the information compression, i.e.
PPDM removes the diverse appearance by using the reverse
deformation process from inputs to reference.

Figure 8. Illustration of two DMAD implementations with PDM
and PPDM respectively.

5. Conclusion
In this paper, we present a reconstruction-based

diversity-measurable anomaly detection framework, which
simultaneously enhances anomaly discrimination and re-
construction diversity. Pyramid deformation module is pro-
posed to be used together with information compression
module for this purpose. PDM models multi-scale trans-
formation fields from reference to original input explicitly
without relying on external estimators. Therefore, diverse
normal patterns can be reconstructed and anomaly sever-
ity can be measured accurately. Empirical studies on both
videos and images benchmarks show the effectiveness and
applicability of our work. In future research, we will further
explore diversity-aware models for anomaly detection.

Limitations. Our method focuses on anomaly with mea-
surable geometrical diversity, the most common type in
anomaly detection. However, as for anomaly with other
kind of diversities, e.g. colors, the proposed diversity mea-
sure may not be positively correlated to anomaly severity.
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