
DualVector: Unsupervised Vector Font Synthesis with Dual-Part Representation

Ying-Tian Liu1 Zhifei Zhang2 Yuan-Chen Guo1 Matthew Fisher2

Zhaowen Wang2 Song-Hai Zhang1∗

1 BNRist, Department of Computer Science and Technology, Tsinghua University 2 Adobe Research
{liuyingt20@mails., guoyc19@mails., shz@}tsinghua.edu.cn

{zzhang, matfishe, zhawang}@adobe.com

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.	

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

The five boxing wizards jump quickly.

The five boxing wizards jump quickly.

The five boxing wizards jump quickly.
The five boxing wizards jump quickly.

The five boxing wizards jump quickly.

Figure 1. High-quality vector fonts (copyable on electronic devices) synthesized by DualVector (left), with smoothly-interpolated styles
(right). Both sentences are pangrams. Please zoom in for details.

Abstract

Automatic generation of fonts can be an important aid to
typeface design. Many current approaches regard glyphs as
pixelated images, which present artifacts when scaling and
inevitable quality losses after vectorization. On the other
hand, existing vector font synthesis methods either fail to
represent the shape concisely or require vector supervision
during training. To push the quality of vector font synthesis
to the next level, we propose a novel dual-part representa-
tion for vector glyphs, where each glyph is modeled as a
collection of closed “positive” and “negative” path pairs.
The glyph contour is then obtained by boolean operations
on these paths. We first learn such a representation only
from glyph images and devise a subsequent contour refine-
ment step to align the contour with an image representation
to further enhance details. Our method, named DualVector,
outperforms state-of-the-art methods in vector font synthe-
sis both quantitatively and qualitatively. Our synthesized
vector fonts can be easily converted to common digital font
formats like TrueType Font for practical use. The code is
released at https://github.com/thuliu-yt16/dualvector.

1. Introduction

Fonts with various styles play an important role in con-
tent display and distribution. Excellent font design is time-
consuming and labor-intensive. Recent machine learning

∗Corresponding author

innovations have made font generation possible, but how
to automatically generate high-quality vector fonts remains
a task of practical importance in the artistic and computer
graphics and vision communities.

Benefiting from the development of image generation
techniques, mainstream font synthesis methods [2, 12, 24,
41, 42] could generate pixelated glyph images. Despite the
promising quality, images of glyphs incur aliasing artifacts
on edges when discretely sampled, and thus are not compe-
tent for high-quality rendering or printing at arbitrary res-
olutions. To alleviate this problem, some methods [7, 34]
adopt coordinate-based neural networks to model a glyph as
a contiguous neural field, which have also shown great po-
tential in modeling 3D geometry and scenes [7, 30, 32]. Al-
though glyphs represented by the implicit field can be ren-
dered at arbitrary resolutions, it is hard to preserve details
in high-frequency regions such as edges and corners, not to
mention the high computational costs as the network needs
to be evaluated for every pixel. Researchers have made
much effort to directly synthesize vector fonts [4,27,33,39]
in recent years, with the main difficulty lying in finding a
representation of vector graphics that can be encoded or de-
coded effectively in a deep learning framework. One typical
approach represents a vector shape as a sequence of drawing
commands and adopts sequence modeling techniques such
as recurrent networks and transformers. The drawbacks are
twofold: (1) Modeling command sequences can be much
harder than images. There are infinitely many command se-
quences that correspond to the same-looking shape, which
brings ambiguities in learning and makes it hard to construct

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14193

an effective manifold for valid glyph shapes. (2) Ground-
truth drawing commands are often required to provide suf-
ficient supervision for high-quality modeling and synthesis.

To overcome these challenges, we first propose a dual-
part vector font representation, where each glyph shape is
the union of a fixed number of dual parts. Each dual part
is formed by the subtraction of a “positive” and a “nega-
tive” geometric primitive. While there are many choices for
the geometric primitives [6, 8, 25], we adopt closed Bézier
paths for their great representational ability. They are also
widely supported in digital font formats which makes it easy
to convert our representation to these formats for practi-
cal use. We reduce the problem of predicting complicated
drawing command sequences to predicting multiple basic
primitives. From this perspective, both manifold learning
and latent space interpolation become more feasible.

Based on the dual-part representation, we introduce Du-
alVector, a method to learn such a representation for high-
quality font modeling and synthesis from only glyph images
without any vector supervision. A straightforward way to
achieve this is to directly optimize the parameters of the
Bézier curves with differentiable rendering techniques for
vector graphics [22]. However, this approach easily gets
stuck in the local minima as valuable gradients are only de-
fined at shape intersections. Taking inspiration from im-
plicit field training for 2D and 3D shapes [6, 25, 32], we
supervise the occupancy value derived from the analytical
expression of the Bézier curves and adopt an initialization
strategy based on unsigned distance field (UDF) to provide
dense gradients across the entire pixel space. For local de-
tail fidelity, we also train a glyph image generation model
and devise a subsequent contour refinement step to align
the contour of the vector shape with that of the image by
differentiable rendering [22]. We compare our approach
with state-of-the-art methods in font modeling and genera-
tion and demonstrate the superior quality of our vector font
outputs. Our main contributions are:

• A new dual-part font representation based on boolean
operations of Bézier paths, which enables efficient
shape modeling and unsupervised manifold learning.

• A method named DualVector that models both the
dual-part and pixelated representation, and introduces
a contour refinement step to obtain vector fonts with
richer details as well as a UDF initialization strategy
for better convergence.

• DualVector achieves state-of-the-art quality in font
modeling and generation, with outputs that can be eas-
ily converted to common digital font formats.

2. Related Work
2.1. Glyph Image Generation

Benefiting from the development of image generation
[10, 14, 16], either black-white [12, 15, 37, 40] or artistic
glyph image generation [2,23,41,42] is well explored in the
past decade. MC-GAN [2] synthesized ornamented glyphs
for capital letters in an end-to-end manner from a small sub-
set of the same style. Attr2Font [38] generated visually
pleasing results according to style attributes and content ref-
erences. Most of these methods follow the disentanglement
of style and content codes, and so does the image generation
branch in DualVector. But these glyph image generation
efforts do not step outside the 2D pixelated representation
which sets an upper bound for rendering quality, efficiency,
and practicality.

2.2. Image Rasterization and Vectorization

Rasterization and vectorization are dual problems in
image processing. Previous efforts on rasterization have
typically focused on anti-aliasing [9, 11, 31] and high-
performance rendering on modern graphics hardware [3,
17,21,26]. Traditional image vectorization approaches rely
on region segmentation, line extraction, and contour trac-
ing for gray-scale images [35], pixel arts [18], animations
[44] and general images [1, 5, 19, 36, 45, 46]. Recently,
researchers have turned to bridging the raster and vector
domains [22, 29], enabling existing well-established algo-
rithms for raster images to be also applied to vector repre-
sentations. DiffVG [22] is a differentiable rendering tech-
nique for vector graphics enabling the optimization of vec-
tor primitive parameters based on raster criteria. In our
work, it is employed to align the vector and pixel repre-
sentation in the contour refinement step.

2.3. Vector Font Generation

SVG-VAE [27] was the first attempt to build a sequential
generative model on SVG fonts. DeepSVG [4] developed
a hierarchical transformer-based generative model for com-
plex SVG icons generation and interpolation.Exploiting im-
plicit neural representation, multi-implicits [34] modeled
fonts with a permutation-invariant set of learned implicit
functions which can preserve font features, such as smooth
edges and sharp corners, and generate good interpolation re-
sults. Liu et al. [25] proposed a primitive-based representa-
tion, which views glyph shapes as the combination of prim-
itives enclosed by implicit curves. Implicit representation-
based methods can convert the zero-level set of their out-
put fields to contour representation with the 2D marching
cube [28] algorithm, although it produces multiple seg-
mented lines and lacks accuracy and efficiency in render-
ing and editing. Im2Vec [33] can synthesize complex vec-
tor graphics with varying topologies without vector super-

14194

(，)
…

(，)

…

as
z

DP

DI

Reconstructed Image I

LI

LP

Initialization ∂O Vector Output

Dual Parts {(Pi, Qi)}Ni=1 {Pi −Qi}Ni=1 O/Ô

Lrefine

(a) Vector Branch

(c) Contour Refinement(b) Image Branch

Subtract Union

P1 Q1

P2 Q2

Figure 2. DualVector contains the following components: (a) a vector branch that maps the latent code z to several closed Bézier paths
which are further gathered to form a global shape of the glyph; (b) an image branch that generates pixelated images with faithful details;
(c) a contour refinement step that obtains the contour via boolean operations on dual-parts and optimizes it with the image guidance at
inference time. Both the vector and the image branch are trained using the glyph images. Dual parts are distinguished by their colors.

vision. It rendered layered Bézier paths predicted from im-
age features using DiffVG [22] and trains the system in an
auto-encoding manner. DeepVecFont [39] adopted a dual-
modality learning framework that utilizes both sequence
and image features for high-quality vector font synthesis.
But the results it produces may have the wrong topology,
including self-intersection or invalid paths. In contrast to
these methods, our approach does not require vector super-
vision and is very efficient in vector representation, with
high quality glyph generation.

3. DualVector
In this section, we first illustrate the proposed dual-part

representation for fonts (Sec. 3.1) and then introduce the
components of DualVector for training this representation
from glyph images (Secs. 3.2 to 3.4) and how the model can
be used for font reconstruction and generation (Sec. 3.5). In
DualVector, we adopt a joint representation of vector and
image for fonts, as shown in Fig. 2. The latent space is
shared by both modalities, and we associate each glyph with
a latent code z ∈ Rd produced by the task-specific encod-
ing process. The latent code z is fed into the two decoding
branches to obtain a dual-part representation and an image
representation respectively. The output of the vector branch
is further processed by a contour refinement step to generate
the final contour representation under the image guidance.

3.1. Dual-Part Representation

In our dual-part representation, we consider the closed
parametric Bézier paths as our basic primitives for several

reasons: (1) Bézier paths are powerful enough to approxi-
mate various shapes; (2) The contour of a closed shape pro-
duced by boolean operations on Bézier paths is still a set
of Bézier paths, i.e., the closure property; (3) Bézier paths
are widely used in modern font design, making the learned
representation highly applicable. For convenience, we use
a triplet of control points (a, b, c) to denote a quadratic
Bézier curve B(·;a, b, c) determined by the control points:
B(t;a, b, c) = (1− t)2a+ (1− t)tb+ t2ct ∈ [0, 1] (1)

Since a glyph often consists of a number of strokes with
similar appearances, we propose to represent each glyph g
with N closed Bézier paths {Pi}Ni=1. Each path Pi is de-
fined by M end-to-end connected quadratic Bézier curves
{Bi,j(xi,2j−1,xi,2j ,xi,2j+1)}Mj=1 (xi,2M+1 = xi,1). We
introduce the occupancy field of a closed path Pi as

OPi
(x) =

{
1, x ∈ Pi

0, x /∈ Pi
(2)

The entire glyph shape g could simply be denoted as the
union of all the paths ∪iPi. We normalize the coordinate
range of the glyph to [−1, 1]2. Thus given any point x on
the canvas [−1, 1]2, we can determine whether it is inside
the represented glyph shape by a maximum operation, lead-
ing to the occupancy field of g:

O(x) = max
i

OPi
(x) =

{
1, x ∈ ∪iPi

0, x /∈ ∪iPi
(3)

However, we find that the above representation can
model fonts with convex curves on the contour but struggles
to reconstruct shapes with holes. Therefore, in practice, we
pair each path Pi with a negative path Qi, and term this pair
(Pi, Qi) as a “dual part”. In this way, g is represented as

14195

∪i(Pi −Qi). The occupancy field O is then derived as:

O(x) = max
i

[min(OPi(x), 1−OQi(x))] =

{
1, x ∈ g
0, x /∈ g

(4)
Even though O is the analytical occupancy field of g,

it is not differentiable w.r.t. the parameters of the paths.
Therefore, in order to apply gradient descent to learn such
a representation, we calculate the approximate occupancy
field Ô from the signed distance field (SDF) of g. Since the
distance d(p;B) from any point p to a Bézier curve B can
be derived analytically, the SDF of a path can be calculated
differentiably w.r.t. its control points as follows:

sPi
(x) = [2OPi

(x)− 1]min
j

d(x;Bi,j) (5)

Following previous vector graphics rasterization techniques
[22, 31, 34], we approximate O by analytical pixel pre-
filtering with a parabolic kernel α:

ÔPi(x) = α(sPi(x))

Ô = max
i

[min(ÔPi
, 1− ÔQi

)]
(6)

3.2. Vector Branch

The vector branch takes a latent code z and outputs a set
of dual-parts that represent a vector glyph. The path decoder
DP directly predicts the control points of the positive paths
{Pi}Ni=1 and the negative ones {Qi}Ni=1 from z:

{xi,j} = DP (z), 1 ≤ i ≤ 2N, 1 ≤ j ≤ 2M (7)
where {xi,j}Ni=1 are control points for {Pi}Ni=1 and
{xi,j}2Ni=N+1 are control points for {Qi}Ni=1.

3.3. Image Branch

To combine with the advantages of image generation ap-
proaches, we train an auxiliary image branch that maps z
to a pixelated image I of the glyph it represents. Here we
adopt a CNN-based decoder DI :

I = DI(z) (8)
where I is a gray-scale image in shape H ×W . It provides
detailed shape guidance to refine the vector shape contour.

3.4. Contour Refinement

Although the dual-part representation produced by the
vector branch can already be rendered, there still exists
a gap between it and modern contour representations for
fonts. Therefore, we first convert it to the contour of the
glyph ∂O with an off-the-shelf tool Paper.js [20] which can
perform arbitrary boolean operations on SVG paths. Here
the contour ∂O is a set of K closed Bézier paths.

∂O = {C1, C2, ..., CK} (9)
where K denotes the number of independent paths. Each
individual part or hole increases K by 1. Ci is a closed
Bézier path composed of li quadratic Bézier segments
{B̂i,j(x̂i,2j−1, x̂i,2j , x̂i,2j+1)}lij=1.

After this conversion, we exploit the image generation
results to further refine ∂O with differentiable rendering
techniques [22]. I could naturally serve as a pixelated ver-
sion of the occupancy field O. During the refinement, we
devise several strategies to improve the quality and effi-
ciency of our representation:

Subdivision To improve the representational ability, we
split long Bézier curves (with a length greater than 10% of
the canvas width) at their midpoints.

Simplification To improve the efficiency of the contour
representation, we replace the Bézier curves with a line seg-
ment connecting its two endpoints if they are close enough.
For a Bézier curve (a, b, c), we simply define how faith-
fully the segment ac could represent the curve by the an-
gle between b⃗a and b⃗c. Also, we examine if there exist
two adjacent Bézier segments that could be combined as a
single one. Since all quadratic Bézier curves are parts of a
parabola curve, we derive the parameters of the correspond-
ing parabola curves from the control points and combine the
two curves if their parameters are close enough. We also ag-
gregate the endpoints of lines and curves that are too short.

Pruning Prior to refinement, some Bézier paths on the
contour may enclose extremely small regions which will
confuse the refinement process and produce redundant
curves that eventually converge to a single point. We trim
those closed paths Ci with areas under a certain threshold.

More implementation details of these strategies can be
found in the supplemental material.

3.5. Implementation and Training

In this subsection, we will dive into how we utilize the
proposed representation in both the font reconstruction and
generation tasks.

3.5.1 Optimization Objectives

Optimization objectives can be divided into those at training
time and those at inference time. The training-time objec-
tives are task-related.

Font reconstruction. For the font reconstruction task, the
input to our system is a gray-scale image of a glyph and
the output is the corresponding vector representation. The
pixelated image Ig of the glyph g is first passed through an
image encoder E to obtain the latent code z:

z = E(Ig) (10)
The latent code is then decoded by our vector branch and

image branch into dual-parts {(Pi, Qi)}Ni=1 and a pixelated

14196

output I. We optimize the trainable modules E , DI and DP

simultaneously with the following loss functions:
L = λPLP + λILI (11)

where we adopt an extra perceptual loss [43]:
LP = Ex∼[−1,1]2 [||Ô(x)− Ig(x)||1]
LI = ||I − Ig||2 + LPIPS(I, Ig)

(12)

Font generation. The input to the font generation task is
multiple style reference images {Ri}NR

i=1 along with the cor-
responding character label T . The number of references NR

may vary during training to allow the model to accept a vari-
able number of references during inference. The style refer-
ences are first mapped to their features {fi}NR

i=1 with an im-
age encoder Ef . We then apply stacked self-attention layers
(SA) to aggregate these features to a style latent code zstyle
with a variational loss to enable font sampling. Character
labels are mapped to vector representations by a learnable
label embedding layer and then fused with zstyle to yield
the latent code zT of the target glyph. Then zT is fed to the
decoders to generate the glyph, the same as the reconstruc-
tion task. The whole process can be described as follows:

fi = Ef (Ri)

µ, σ = SA(f1, f2, ..., fNR
)

zstyle = µ+ ϵσ, ϵ ∼ N (0, 1)

zT = FFN([zstyle, T])

(13)

To ease training, we use the pre-trained E from the recon-
struction task to encode ground truth output gT and train the
encoder with the following guidance:

Llatent = ||zT − E(gT)||2 (14)
To enable font sampling, we adopt a Kullback-Leibler di-
vergence loss [16]:

Lkl = KL(N (µ, σ2)||N (0, 1)) (15)
Next, the encoder is fine-tuned along with the pre-trained
DI and DP from the reconstruction task using the loss in
11 with Lkl.
Refinement Both the reconstruction and generation tasks
share the same contour refinement process. Given ∂O and
I, the refinement process produces the optimized glyph
contour in SVG format by inference-time optimization. In
the optimization, we utilize DiffVG [22], denoted as DR,
to render the contour in a differentiable manner. The con-
trol points of O are refined to minimize the following loss
function:

Lrefine = Lras + λregLreg (16)

where Lrender is the photometric loss between the raster-
ized image and the image branch output.

Lras = ||DR(∂O)− I||1 (17)
The regularization term limits the overall length of O.

Lreg =

K∑
i=1

len(Ci) (18)

3.5.2 Unsigned Distance Field Warm-up

Although the vector branch is end-to-end trainable, the gra-
dients only appear near the boundaries. Therefore, to over-
come the vanishing gradient problem, we add an extra loss
based on the unsigned distance field (UDF) of the vector
parts to warm up the system training.

In general, for two closed curves c1, c2, we cannot obtain
the exact SDF of the shape after arbitrary boolean opera-
tions on the curves by point-wise operations on their respec-
tive SDFs. For the union of two SDFs, as an approximation,
we have

sc1∪c2(x)

{
= min(sc1(x), sc2(x)), x /∈ c1 ∪ c2
≤ min(sc1(x), sc2(x)), x ∈ c1 ∪ c2

(19)
The min(·) operation gives a correct SDF outside the shape
but an inaccurate SDF inside the shape. Similarly, the
max(·) gives a correct SDF inside and an inaccurate SDF
outside for the intersection of two SDFs. Therefore, it is
hard to calculate the accurate SDF sO for the glyph. Fortu-
nately, we only aim to provide a coarse initialization for the
dual parts, preventing the optimization process from falling
into local minima early in the training. We find that using an
approximate unsigned distance field works well to achieve
this goal. Here we define the UDF u as

u(x) = max(0, s(x)) (20)
where min(·) gives a correct global UDF for unions of
shapes. The approximate UDF ûg is computed as

ûg = min
i
[max(uPi

, uQi
)] (21)

where
uPi

(x) = max(sPi
(x), 0)

uQi
(x) = max(−sQi

(x), 0)
(22)

We apply the following losses to warm up the training pro-
cess for the font reconstruction task:

L = λPLP + λILI + λuLu

Lu = Ex∼[−1,1]2 [||ûg(x)− ug(x)||1]
(23)

where the ground truth UDF ug is derived from the pixel
image g.

4. Experiments

4.1. Dataset

We use the SVG-Fonts dataset from SVG-VAE [27] for
all the experiments. Following DeepVecFont [39], we sam-
ple a subset of the dataset with 8035 fonts for training and
1425 fonts for evaluation. The resolution of input glyph im-
ages is set to 128 × 128. Please refer to the supplementary
material for implementation details.

4.2. Font Reconstruction

In this experiment, we investigate how faithfully differ-
ent methods can reconstruct the input glyph images with

14197

O

I

Figure 3. Comparison of font reconstruction quality. We show the
input glyph image row by row, our reconstructed image I from
the image branch, dual-parts O from the vector branch, and our
final result after contour refinement, as well as vector outputs from
alternative methods.

vector outputs, which can also be regarded as font vec-
torization. Im2Vec [33] and our method directly produce
vector representations from glyph images, while for Multi-
Implicits [34], we adopt the 2D marching cube algorithm
and extract the contours. As can be seen from a qualita-
tive comparison in Fig. 3, our representation could faith-
fully reconstruct global shapes as well as local details from
the pixelated input. Im2Vec [33] could only preserve coarse
shapes and suffers from wrong topologies as shown in the
“A” example as it is easy to fall into local optimum without
the global gradient. Multi-Implicits [34] results in finer de-
tails than Im2Vec [33] but still exhibit unsmooth edges and
rounded corners. To quantitatively evaluate how accurate
the vector outputs are, we calculate three metrics, namely
SSIM, L1, and s-IoU, between the rendered images and
the ground truth images under different resolutions. Tab. 1
shows that our method surpasses the two alternatives by
a clear margin on all metrics. Using parametric curves as
primitives, our method, along with Im2Vec [33], maintains
a stable L1 error across all resolutions for the smooth edges,
while for Multi-Implicits [34] the L1 error gets larger as
the resolution increases, resulting from the high-frequency
noises at the extracted boundaries.

4.3. Font Generation

To evaluate the generation ability of our method, we
adopt the few-shot font generation setting, where a sub-
set of glyphs with the same style is given and models are
trained to produce a complete set of glyphs that are consis-
tent with the input glyphs in style. This task is also dubbed
“font complement” or “font style transfer” in other works.
We compare our method with several popular methods in
font generation: DeepVecFont [39], Multi-Implicits [34],

Table 1. Quantitative comparison with Im2Vec [33] and Multi-
Implicits [34] on three image-level metrics at different resolutions
for the font reconstruction task. The gray scale is normalized to
[0,1]. s-IoU, from [34], measures the overlap.

Method Resolution SSIM↑ L1↓ s-IoU↑

Ours
1282 0.9436 0.0137 0.8879
2562 0.9483 0.0136 0.9068
5122 0.9579 0.0136 0.9135

Multi-Implicits
1282 0.9231 0.0183 0.8709
2562 0.9262 0.0208 0.8721
5122 0.9419 0.0213 0.8739

Im2Vec
1282 0.7800 0.0504 0.6832
2562 0.8566 0.0504 0.6847
5122 0.8957 0.0504 0.6851

Im2Vec [33] and Attr2Font [38]. For a fair comparison, we
use the same four characters, ‘A’, ‘B’, ‘a’, and ‘b’ as style
references for each font and evaluate image-level metrics
on the generated characters. Since Im2Vec [33] is an image
vectorization method, we apply it to the images generated
by Attr2Font [38]. Multi-Implicits [34] follows an auto-
decoder architecture, so we freeze the decoder and find the
optimal latent vector for a font by minimizing the losses
between the given style references and the predicted ones
using gradient descent.

As illustrated in Fig. 4, DeepVecFont [39] may gener-
ate characters with wrong topologies due to the incorrect
initial contour prediction, such as ‘A’, ‘L’, and ‘Z’. The
fixed topology in the optimization process makes it diffi-
cult to produce the necessary details, which are particularly
symbolic in serif fonts. In addition, unconstrained contour
generation may also produce self-intersections, like the ‘g’
and ‘r’, which are not easy to fix in subsequent process-
ing. Im2Vec [33] tends to produce rounded corners and is
only able to produce the coarse style, lacking details. Multi-
Implicits [34] generates vector results from implicit signed
distance fields (SDF) through a 2D Marching cube algo-
rithm, leading to free-form contours. Therefore the edges
are not smooth enough and have unpleasing noises, such as
the ‘g’ and ‘x’ in the figure. Attr2Font [38] can generate
generally satisfactory font images, but it cannot maintain
high-quality rendering when scaling.

Compared with the above methods, our method is capa-
ble of not only grasping the overall style of the input ref-
erences but also generating new glyphs with clear bound-
aries and sharp edges, achieving optimal visual quality. The
efficient dual-part representation along with the differen-
tiable occupancy supervision establishes a link between pix-
elated images and vector graphics, allowing the unsuper-
vised synthesis of vector fonts with aligned shapes and cor-
rect topologies. The refinement step allows the composi-
tion of the contour to be freely changed and thus ensures

14198

Figure 4. Font generation results of Attr2Font, Im2Vec, Multi-Implicits, DeepVecFont, and DualVector. The input style references are
marked with red boxes. We trace the zero-level sets of SDFs in a piece-wise linear way to get SVGs from Multi-Implicits [34]. Typical
failure cases are marked in blue dashed boxes. Some details are zoomed-in in the leftmost column.

Table 2. Quantitative comparison of image-level metrics of
Attr2Font [38], Im2Vec [33], Multi-Implicits [34], DeepVecFont
[39] and DualVector in the font complement experiment.

Method Resolution SSIM↑ L1↓ s-IoU↑

Ours
1282 0.8288 0.0461 0.7395
2562 0.8727 0.0460 0.7453
5122 0.9075 0.0460 0.7469

DeepVecFont
1282 0.8165 0.0506 0.7125
2562 0.8640 0.0506 0.7171
5122 0.9011 0.0506 0.7182

Multi-Implicits
1282 0.8025 0.0578 0.6857
2562 0.8533 0.0603 0.6814
5122 0.8914 0.0608 0.6811

Im2Vec
1282 0.7576 0.0733 0.5731
2562 0.8270 0.0734 0.5751
5122 0.8739 0.0734 0.5756

Attr2Fonta 1282 0.7841 0.0512 0.6393

a [38] synthesizes pixelated images only.

that our synthesized glyphs have high-fidelity details under
the guidance of high-resolution glyph images. Quantitative
results on three image-level metrics at different resolutions
are shown in Tab. 2. For methods producing vector shapes,
we also count the average number of commands used for
each synthesized vector character, with smaller numbers in-
dicating more compact outputs. The results are shown in
Tab. 3. Multi-Implicits [34] uses a large number of short

Table 3. The average number of commands used per glyph for dif-
ferent methods in the font generation task. M, L, Q, and C denote
move, straight line, quadratic Bézier curve, and cubic Bézier curve
respectively.

Command M L Q C Total↓
Ours 1.42 8.21 11.06 0 20.69

DeepVecFont [39] 1.37 8.23 0 9.68 19.28
Multi-Implicits [34] 6.16 1446.53 0 0 1452.69

Im2Vec [33] 4 0 0 80 84

Human-Designed 1.38 9.17 0 8.51 19.06

line segments to represent the boundary due to the marching
cube algorithm. Im2Vec [33] represents a shape with 4 parts
each enclosed by 20 cubic Bézier curves, lacking flexibility
and details. Our method performs boolean operations on the
quadratic Bézier curves from dual parts, achieving compa-
rable compactness with human-designed fonts and outputs
from methods with vector supervision [39].

4.4. Ablation Studies

To demonstrate the effectiveness of several key design
choices in our method, we conduct ablation studies on the
font reconstruction task. We investigate the following de-
graded variants: (a) replace the union of dual parts with the
union of all the paths; (b) train without the UDF warm-up
process; and (c) remove the refining strategy during refine-
ment. We show the comparison results of a representative
case in Fig. 5. Without the dual-part representation, variant

14199

(a) (b) (c) Full Model

GT

Figure 5. The contours of an “M” reconstructed by our method,
compared with three degraded variants.

Table 4. Quantitative results of reconstruction accuracy for differ-
ent model variants in ablation studies. All the output vector glyphs
are rendered at 512× 512 to compute the L1 error.

L1↓ #Lines↓ # Curves↓
(a) w/o dual parts 0.0143 12.23 14.06
(b) w/o warm-up 0.0146 11.19 13.12
(c) w/o refining strategy 0.0148 - 22.07

Full Model 0.0136 8.97 11.81

(a) cannot reconstruct concave regions very well, as they
can be hard to represent by the union of simply closed paths.
Without UDF initialization, variant (b) produces contours
with useless curves that are hard to be eliminated during
optimization. Without the refining strategy, variant (c) may
generate inaccurate edges with zigzags. Quantitative results
in Tab. 4 also verify the quality improvements brought by
the three design choices.

We also experimentally investigate the effect of different
(N,M)s on the representation capacity. We choose sev-
eral settings of (N,M) and train only the vector branch (i.e.
no contour refinement) with the same number of epochs to
reconstruct the input. Tab. 5 shows that M = 4 is opti-
mal and the reconstruction accuracy of the vector branch
increases as N increases. The accuracy does not gain too
much changing N from 6 to 8. So considering the time cost
for training and inference, we select (N,M) = (6, 4) in the
above experiments.
Table 5. Different reconstruction settings and metrics. The image-
based metrics use a resolution of 512× 512.

N M SSIM↑ L1↓ s-IOU↑
2 4 0.9262 0.0282 0.8338
4 4 0.9292 0.0259 0.8464
6 4 0.9303 0.0250 0.8512
8 4 0.9306 0.0247 0.8525
6 3 0.9293 0.0256 0.8480
6 5 0.9300 0.0252 0.8498

4.5. Font Sampling and Interpolation

In the font generation task, the style latent code zstyle
is trained with a variational loss Lkl, enabling generating

fonts of new styles by sampling zstyle from N (0, 1). We
show in Fig. 1 (left) and Fig. 6 multiple styles of fonts sam-
pled. Please refer to our supplementary material for more
examples. Also, benefiting from our dual-part representa-
tion, we can perform smooth interpolation between arbi-
trary font styles as demonstrated in Fig. 1 (right).

Figure 6. New fonts with style codes sampled in N (0, 1).

5. Limitations
The contour refinement step requires gradient descent

during inference and therefore imposes a large time over-
head, similar to DeepVecFont [39]. The process could po-
tentially be accomplished by forwarding inferences of some
generation models, such as the diffusion models [13]. An-
other limitation is that DualVector only focuses on the syn-
thesis of glyphs on a fixed-size canvas, without consid-
ering the kerning between them, making the spacing be-
tween characters less natural. This may be solved by post-
processing the SVG with some automatic kerning methods
or by learning through a data-driven approach.

6. Conclusion
We present DualVector as a new representation and gen-

eration method for vector fonts. DualVector models a glyph
as dual parts and introduces a contour refinement step to
add pleasing details to the contours of the dual parts. Our
method is able to generate vector fonts without vector su-
pervision, which can be directly converted to common dig-
ital font formats for content presentation and distribution.
Comparisons with different methods of font reconstruction
and generation tasks demonstrate that our approach pro-
duces fonts with the best quality among all the alternatives.
In the future, more plausible initialization and supervision
could be exploited to generalize this representation to more
complex fonts (e.g. Chinese fonts). We hope this research
contributes to the typeface design industry and provide in-
spiration for broader works on the understanding and gen-
eration of 2D man-made content such as cartoon characters
and icons.
Acknowledgement This work was supported by the
Natural Science Foundation of China (Project Number
61832016), and Tsinghua-Tencent Joint Laboratory for In-
ternet Innovation Technology.

14200

References
[1] Adobe Inc. Adobe illustrator. 2
[2] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen

Wang, Eli Shechtman, and Trevor Darrell. Multi-content
gan for few-shot font style transfer. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, volume 11, page 13, 2018. 1, 2

[3] Vineet Batra, Mark J. Kilgard, Harish Kumar, and Tristan
Lorach. Accelerating vector graphics rendering using the
graphics hardware pipeline. ACM Trans. Graph., 34(4), jul
2015. 2

[4] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and
Radu Timofte. Deepsvg: A hierarchical generative net-
work for vector graphics animation. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. 1, 2

[5] Cedar Lake Ventures, Inc. Vector magic. 2
[6] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-

net: Generating compact meshes via binary space partition-
ing. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 42–51. IEEE, 2020. 2

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 5939–5948. Com-
puter Vision Foundation / IEEE, 2019. 1

[8] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey E. Hinton, and Andrea Tagliasacchi.
Cvxnet: Learnable convex decomposition. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 31–41. IEEE, 2020. 2

[9] A. E. Fabris and A. R. Forrest. Antialiasing of curves by
discrete pre-filtering. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’97, page 317–326, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. 2

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680, 2014. 2

[11] Chris Green. Improved alpha-tested magnification for vec-
tor textures and special effects. In ACM SIGGRAPH 2007
courses, pages 9–18. 2007. 2

[12] Hideaki Hayashi, Kohtaro Abe, and Seiichi Uchida. Glyph-
gan: Style-consistent font generation based on generative ad-
versarial networks. Knowl. Based Syst., 186, 2019. 1, 2

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 8

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, 2017. 2

[15] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao.
Dcfont: an end-to-end deep chinese font generation system.
In Diego Gutierrez and Hui Huang, editors, SIGGRAPH Asia
2017 Technical Briefs, Bangkok, Thailand, November 27 -
30, 2017, pages 22:1–22:4. ACM, 2017. 2

[16] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In Yoshua Bengio and Yann LeCun, editors,
2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings, pages 1–14, 2014. 2, 5

[17] Yoshiyuki Kokojima, Kaoru Sugita, Takahiro Saito, and
Takashi Takemoto. Resolution independent rendering of de-
formable vector objects using graphics hardware. In ACM
SIGGRAPH 2006 Sketches, SIGGRAPH ’06, page 118–es,
New York, NY, USA, 2006. Association for Computing Ma-
chinery. 2

[18] Johannes Kopf and Dani Lischinski. Depixelizing pixel art.
ACM Transactions on Graphics (Proceedings of SIGGRAPH
2011), 30(4):99:1 – 99:8, 2011. 2

[19] Gregory Lecot and Bruno Levy. Ardeco: Automatic region
detection and conversion. In Proceedings of the 17th Euro-
graphics Conference on Rendering Techniques, EGSR ’06,
page 349–360, Goslar, DEU, 2006. Eurographics Associa-
tion. 2

[20] Jürg Lehni and Jonathan Puckey. Paper.js: The swiss army
knife of vector graphics scripting. https://github.
com/paperjs/paper.js, 2021. 4

[21] Rui Li, Qiming Hou, and Kun Zhou. Efficient gpu path
rendering using scanline rasterization. ACM Trans. Graph.,
35(6), nov 2016. 2

[22] Tzu-Mao Li, Michal Lukác, Michaël Gharbi, and Jonathan
Ragan-Kelley. Differentiable vector graphics rasterization
for editing and learning. ACM Trans. Graph., 39(6):193:1–
193:15, 2020. 2, 3, 4, 5

[23] Xiang Li, Lei Wu, Xu Chen, Lei Meng, and Xiangxu Meng.
Dse-net: Artistic font image synthesis via disentangled style
encoding. In ICME, pages 1–6. IEEE, 2022. 2

[24] Xianming Lin, Jie Li, Hualin Zeng, and Rongrong Ji. Font
generation based on least squares conditional generative ad-
versarial nets. Multim. Tools Appl., 78(1):783–797, 2019. 1

[25] Ying-Tian Liu, Yuan-Chen Guo, Yi-Xiao Li, Chen Wang,
and Song-Hai Zhang. Learning implicit glyph shape repre-
sentation. IEEE Transactions on Visualization and Computer
Graphics, pages 1–12, 2022. 2

[26] Charles Loop and Jim Blinn. Resolution independent curve
rendering using programmable graphics hardware. In ACM
SIGGRAPH 2005 Papers, pages 1000–1009. 2005. 2

[27] Raphael Gontijo Lopes, David Ha, Douglas Eck, and
Jonathon Shlens. A learned representation for scalable vec-
tor graphics. In 2019 IEEE/CVF International Conference

14201

on Computer Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pages 7929–7938. IEEE, 2019.
1, 2, 5

[28] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph., 21(4):163–169, aug 1987. 2

[29] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2022.
2

[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV (1), volume 12346 of Lecture Notes in Com-
puter Science, pages 405–421. Springer, 2020. 1

[31] Diego Nehab and Hugues Hoppe. Random-access rendering
of general vector graphics. ACM Trans. Graph., 27(5):135,
2008. 2, 4

[32] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In
CVPR, pages 165–174. Computer Vision Foundation / IEEE,
2019. 1, 2

[33] Pradyumna Reddy, Michaël Gharbi, Michal Lukác, and
Niloy J. Mitra. Im2vec: Synthesizing vector graphics with-
out vector supervision. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 7342–7351. Computer Vision Founda-
tion / IEEE, 2021. 1, 2, 6, 7

[34] Pradyumna Reddy, Zhifei Zhang, Zhaowen Wang, Matthew
Fisher, Hailin Jin, and Niloy J. Mitra. A multi-implicit
neural representation for fonts. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-
nifer Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 12637–12647, 2021.
1, 2, 4, 6, 7

[35] Peter Selinger. Potrace: a polygon-based tracing algorithm.
2003. 2

[36] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum.
Image vectorization using optimized gradient meshes. ACM
Trans. Graph., 26(3):11–es, jul 2007. 2

[37] Yuchen Tian. zi2zi: Master chinese calligraphy with con-
ditional adversarial networks. https://github.com/
kaonashi-tyc/zi2zi, 2017. 2

[38] Yizhi Wang, Yue Gao, and Zhouhui Lian. Attribute2font:
Creating fonts you want from attributes. ACM Trans. Graph.,
39(4), July 2020. 2, 6, 7

[39] Yizhi Wang and Zhouhui Lian. Deepvecfont: synthesizing
high-quality vector fonts via dual-modality learning. ACM
Trans. Graph., 40(6):265:1–265:15, 2021. 1, 3, 5, 6, 7, 8

[40] Yankun Xi, Guoli Yan, Jing Hua, and Zichun Zhong. Joint-
fontgan: Joint geometry-content GAN for font generation
via few-shot learning. In ACM Multimedia, pages 4309–
4317. ACM, 2020. 2

[41] Shuai Yang, Jiaying Liu, Wenjing Wang, and Zongming
Guo. Tet-gan: Text effects transfer via stylization and destyl-
ization. In AAAI Conference on Artificial Intelligence, 2019.
1, 2

[42] Gao Yue, Guo Yuan, Lian Zhouhui, Tang Yingmin, and Xiao
Jianguo. Artistic glyph image synthesis via one-stage few-
shot learning. ACM Trans. Graph., 38(6), 2019. 1, 2

[43] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 586–
595. Computer Vision Foundation / IEEE Computer Society,
2018. 5

[44] Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu,
and Ralph R. Martin. Vectorizing cartoon animations.
IEEE Transactions on Visualization and Computer Graph-
ics, 15(4):618–629, 2009. 2

[45] Shuang Zhao, Frédo Durand, and Changxi Zheng. Inverse
diffusion curves using shape optimization. IEEE Trans. Vis.
Comput. Graph., 24(7):2153–2166, 2018. 2

[46] Haikuan Zhu, Juan Cao, Yanyang Xiao, Zhonggui Chen,
Zichun Zhong, and Yongjie Jessica Zhang. Tcb-spline-based
image vectorization. ACM Trans. Graph., 41(3):34:1–34:17,
2022. 2

14202

