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Abstract
Vision transformers have shown great success due to

their high model capabilities. However, their remarkable
performance is accompanied by heavy computation costs,
which makes them unsuitable for real-time applications. In
this paper, we propose a family of high-speed vision trans-
formers named EfficientViT. We find that the speed of ex-
isting transformer models is commonly bounded by mem-
ory inefficient operations, especially the tensor reshaping
and element-wise functions in MHSA. Therefore, we design
a new building block with a sandwich layout, i.e., using a
single memory-bound MHSA between efficient FFN layers,
which improves memory efficiency while enhancing channel
communication. Moreover, we discover that the attention
maps share high similarities across heads, leading to com-
putational redundancy. To address this, we present a cas-
caded group attention module feeding attention heads with
different splits of the full feature, which not only saves com-
putation cost but also improves attention diversity. Compre-
hensive experiments demonstrate EfficientViT outperforms
existing efficient models, striking a good trade-off between
speed and accuracy. For instance, our EfficientViT-M5 sur-
passes MobileNetV3-Large by 1.9% in accuracy, while get-
ting 40.4% and 45.2% higher throughput on Nvidia V100
GPU and Intel Xeon CPU, respectively. Compared to
the recent efficient model MobileViT-XXS, EfficientViT-M2
achieves 1.8% superior accuracy, while running 5.8×/3.7×
faster on the GPU/CPU, and 7.4× faster when converted to
ONNX format. Code and models are available at here.

1. Introduction
Vision Transformers (ViTs) have taken computer vision

domain by storm due to their high model capabilities and
superior performance [18, 44, 69]. However, the constantly
improved accuracy comes at the cost of increasing model
sizes and computation overhead. For example, SwinV2 [43]
uses 3.0B parameters, while V-MoE [62] taking 14.7B pa-
rameters, to achieve state-of-the-art performance on Ima-
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Figure 1. Speed and accuracy comparisons between EfficientViT
(Ours) and other efficient CNN and ViT models tested on an
Nvidia V100 GPU with ImageNet-1K dataset [17].

geNet [17]. Such large model sizes and the accompanying
heavy computational costs make these models unsuitable
for applications with real-time requirements [40, 78, 86].

There are several recent works designing light and effi-
cient vision transformer models [9,19,29,49,50,56,79,81].
Unfortunately, most of these methods aim to reduce model
parameters or Flops, which are indirect metrics for speed
and do not reflect the actual inference throughput of models.
For example, MobileViT-XS [50] using 700M Flops runs
much slower than DeiT-T [69] with 1,220M Flops on an
Nvidia V100 GPU. Although these methods have achieved
good performance with fewer Flops or parameters, many
of them do not show significant wall-clock speedup against
standard isomorphic or hierarchical transformers, e.g., DeiT
[69] and Swin [44], and have not gained wide adoption.

To address this issue, in this paper, we explore how to
go faster with vision transformers, seeking to find princi-
ples for designing efficient transformer architectures. Based
on the prevailing vision transformers DeiT [69] and Swin
[44], we systematically analyze three main factors that af-
fect model inference speed, including memory access, com-
putation redundancy, and parameter usage. In particular,
we find that the speed of transformer models is commonly
memory-bound. In other words, memory accessing de-
lay prohibits the full utilization of the computing power
in GPU/CPUs [21, 32, 72], leading to a critically negative
impact on the runtime speed of transformers [15, 31]. The
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most memory-inefficient operations are the frequent tensor
reshaping and element-wise functions in multi-head self-
attention (MHSA). We observe that through an appropri-
ate adjustment of the ratio between MHSA and FFN (feed-
forward network) layers, the memory access time can be re-
duced significantly without compromising the performance.
Moreover, we find that some attention heads tend to learn
similar linear projections, resulting in redundancy in atten-
tion maps. The analysis shows that explicitly decomposing
the computation of each head by feeding them with diverse
features can mitigate this issue while improving computa-
tion efficiency. In addition, the parameter allocation in dif-
ferent modules is often overlooked by existing lightweight
models, as they mainly follow the configurations in stan-
dard transformer models [44,69]. To improve parameter ef-
ficiency, we use structured pruning [45] to identify the most
important network components, and summarize empirical
guidance of parameter reallocation for model acceleration.

Based upon the analysis and findings, we propose a new
family of memory efficient transformer models named Effi-
cientViT. Specifically, we design a new block with a sand-
wich layout to build up the model. The sandwich layout
block applies a single memory-bound MHSA layer between
FFN layers. It reduces the time cost caused by memory-
bound operations in MHSA, and applies more FFN layers
to allow communication between different channels, which
is more memory efficient. Then, we propose a new cascaded
group attention (CGA) module to improve computation ef-
ficiency. The core idea is to enhance the diversity of the fea-
tures fed into the attention heads. In contrast to prior self-
attention using the same feature for all heads, CGA feeds
each head with different input splits and cascades the out-
put features across heads. This module not only reduces the
computation redundancy in multi-head attention, but also
elevates model capacity by increasing network depth. Last
but not least, we redistribute parameters through expanding
the channel width of critical network components such as
value projections, while shrinking the ones with lower im-
portance like hidden dimensions in FFNs. This reallocation
finally promotes model parameter efficiency.

Experiments demonstrate that our models achieve clear
improvements over existing efficient CNN and ViT models
in terms of both speed and accuracy, as shown in Fig. 1.
For instance, our EfficientViT-M5 gets 77.1% top-1 accu-
racy on ImageNet with throughput of 10,621 images/s on an
Nvidia V100 GPU and 56.8 images/s on an Intel Xeon E5-
2690 v4 CPU @ 2.60GHz, outperforming MobileNetV3-
Large [26] by 1.9% in accuracy, 40.4% in GPU inference
speed, and 45.2% in CPU speed. Moreover, EfficientViT-
M2 gets 70.8% accuracy, surpassing MobileViT-XXS [50]
by 1.8%, while running 5.8×/3.7× faster on the GPU/CPU,
and 7.4× faster when converted to ONNX [3] format. When
deployed on the mobile chipset, i.e., Apple A13 Bionic chip

Figure 2. Runtime profiling on two standard vision transformers
Swin-T and DeiT-T. Red text denotes memory-bound operations,
i.e., the time taken by the operation is mainly determined by mem-
ory accesses, while time spent in computation is much smaller.

in iPhone 11, EfficientViT-M2 model runs 2.3× faster than
MobileViT-XXS [50] using the CoreML [1].

In summary, the contributions of this work are two-fold:
• We present a systematic analysis on the factors that

affect the inference speed of vision transformers, de-
riving a set of guidelines for efficient model design.

• We design a new family of vision transformer models,
which strike a good trade-off between efficiency and
accuracy. The models also demonstrate good transfer
ability on a variety of downstream tasks.

2. Going Faster with Vision Transformers
In this section, we explore how to improve the efficiency

of vision transformers from three perspectives: memory ac-
cess, computation redundancy, and parameter usage. We
seek to identify the underlying speed bottlenecks through
empirical studies, and summarize useful design guidelines.

2.1. Memory Efficiency
Memory access overhead is a critical factor affecting

model speed [15,28,31,65]. Many operators in transformer
[71], such as frequent reshaping, element-wise addition,
and normalization are memory inefficient, requiring time-
consuming access across different memory units, as shown
in Fig. 2. Although there are some methods proposed to ad-
dress this issue by simplifying the computation of standard
softmax self-attention, e.g., sparse attention [34, 57, 61, 75]
and low-rank approximation [11,51,74], they often come at
the cost of accuracy degradation and limited acceleration.

In this work, we turn to save memory access cost by
reducing memory-inefficient layers. Recent studies reveal
that memory-inefficient operations are mainly located in
MHSA rather than FFN layers [31, 33]. However, most ex-
isting ViTs [18, 44, 69] use an equivalent number of these
two layers, which may not achieve the optimal efficiency.
We thereby explore the optimal allocation of MHSA and
FFN layers in small models with fast inference. Specifi-
cally, we scale down Swin-T [44] and DeiT-T [69] to several
small subnetworks with 1.25× and 1.5× higher inference
throughput, and compare the performance of subnetworks
with different proportions of MHSA layers. As shown in
Fig. 3, subnetworks with 20%-40% MHSA layers tend to
get better accuracy. Such ratios are much smaller than the
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Figure 3. The accuracy of downscaled baseline models with dif-
ferent MHSA layer proportions, where the dots on each line rep-
resent subnetworks with similar throughput. Left: Swin-T as the
baseline. Right: DeiT-T as the baseline. The 1.25×/1.5× denote
accelerating the baseline models by 1.25/1.5 times, respectively.

typical ViTs that adopt 50% MHSA layers. Furthermore,
we measure the time consumption on memory-bound op-
erations to compare memory access efficiency, including
reshaping, element-wise addition, copying, and normaliza-
tion. Memory-bound operations is reduced to 44.26% of
the total runtime in Swin-T-1.25× that has 20% MHSA lay-
ers. The observation also generalizes to DeiT and smaller
models with 1.5× speed-up. It is demonstrated that reduc-
ing MHSA layer utilization ratio appropriately can enhance
memory efficiency while improving model performance.

2.2. Computation Efficiency
MHSA embeds the input sequence into multiple sub-

spaces (heads) and computes attention maps separately,
which has been proven effective in improving performance
[18, 69, 71]. However, attention maps are computationally
expensive, and studies have shown that a number of them
are not of vital importance [52, 73]. To save computation
cost, we explore how to reduce redundant attention in small
ViT models. We train width downscaled Swin-T [44] and
DeiT-T [69] models with 1.25× inference speed-up, and
measure the maximum cosine similarity of each head and
the remaining heads within each block. From Fig. 4, we ob-
serve there exists high similarities between attention heads,
especially in the last blocks. The phenomenon suggests that
many heads learn similar projections of the same full fea-
ture and incur computation redundancy. To explicitly en-
courage the heads to learn different patterns, we apply an
intuitive solution by feeding each head with only a split of
the full feature, which is similar to the idea of group con-
volution in [10, 87]. We train the variants of downscaled
models with the modified MHSA, and also compute the at-
tention similarities in Fig. 4. It is shown that using different
channel-wise splits of the feature in different heads, instead
of using the same full feature for all heads as MHSA, could
effectively mitigate attention computation redundancy.

2.3. Parameter Efficiency
Typical ViTs mainly inherit the design strategies from

NLP transformer [71], e.g., using an equivalent width for
Q,K,V projections, increasing heads over stages, and set-
ting the expansion ratio to 4 in FFN. For lightweight mod-

Figure 4. The average maximum cosine similarity of each head in
different blocks. Left: downscaled Swin-T models. Right: down-
scaled DeiT-T models. Blue lines denote Swin-T-1.25×/DeiT-T-
1.25× model, while darkblue lines denote the variants that feed
each head with only a split of the full feature.

Figure 5. The ratio of the channels to the input embeddings before
and after pruning Swin-T. Baseline accuracy: 79.1%; pruned ac-
curacy: 76.5%. Results for DeiT-T are given in the supplementary.

els, the configurations of these components need to be care-
fully re-designed [7, 8, 39]. Inspired by [45, 82], we adopt
Taylor structured pruning [53] to automatically find the im-
portant components in Swin-T and DeiT-T, and explore the
underlying principles of parameter allocation. The pruning
method removes unimportant channels under a certain re-
source constraint and keeps the most critical ones to best
preserve the accuracy. It uses the multiplication of gradient
and weight as channel importance, which approximates the
loss fluctuation when removing channels [38].

The ratio between the remaining output channels to the
input channels is plotted in Fig. 5, and the original ratios
in the unpruned model are also given for reference. It is
observed that: 1) The first two stages preserve more dimen-
sions, while the last stage keeps much less; 2) The Q,K and
FFN dimensions are largely trimmed, whereas the dimen-
sion of V is almost preserved and diminishes only at the
last few blocks. These phenomena show that 1) the typical
channel configuration, that doubles the channel after each
stage [44] or use equivalent channels for all blocks [69],
may produce substantial redundancy in last few blocks; 2)
The redundancy in Q,K is much larger than V when they
have the same dimensions. V prefers a relative large chan-
nels, being close to the input embedding dimension.

3. Efficient Vision Transformer

Based upon the above analysis, in this section, we pro-
pose a new hierarchical model with fast inference named
EfficientViT. The architecture overview is shown in Fig. 6.
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Figure 6. Overview of EfficientViT. (a) Architecture of EfficientViT; (b) Sandwich Layout block; (c) Cascaded Group Attention.

3.1. EfficientViT Building Blocks

We propose a new efficient building block for vision
transformer, as shown in Fig. 6 (b). It is composed of a
memory-efficient sandwich layout, a cascaded group atten-
tion module, and a parameter reallocation strategy, which
focus on improving model efficiency in terms of memory,
computation, and parameter, respectively.

Sandwich Layout. To build up a memory-efficient block,
we propose a sandwich layout that employs less memory-
bound self-attention layers and more memory-efficient FFN
layers for channel communication. Specifically, it applies a
single self-attention layer ΦA

i for spatial mixing, which is
sandwiched between FFN layers ΦF

i . The computation can
be formulated as:

Xi+1 =

N∏
ΦF

i (Φ
A
i (

N∏
ΦF

i (Xi))),
(1)

where Xi is the full input feature for the i-th block. The
block transforms Xi into Xi+1 with N FFNs before and af-
ter the single self-attention layer. This design reduces the
memory time consumption caused by self-attention layers
in the model, and applies more FFN layers to allow com-
munication between different feature channels efficiently.
We also apply an extra token interaction layer before each
FFN using a depthwise convolution (DWConv) [27]. It in-
troduces inductive bias of the local structural information to
enhance model capability [14].

Cascaded Group Attention. Attention head redundancy
is a severe issue in MHSA, which causes computation inef-
ficiency. Inspired by group convolutions in efficient CNNs

[10, 37, 64, 87], we propose a new attention module named
cascaded group attention (CGA) for vision transformers. It
feeds each head with different splits of the full features, thus
explicitly decomposing the attention computation across
heads. Formally, this attention can be formulated as:

X̃ij = Attn(XijW
Q
ij , XijW

K
ij , XijW

V
ij ),

X̃i+1 = Concat[X̃ij ]j=1:hW
P
i ,

(2)

where the j-th head computes the self-attention over Xij ,
which is the j-th split of the input feature Xi, i.e., Xi =
[Xi1, Xi2, . . . , Xih] and 1 ≤ j ≤ h. h is the total number
of heads, WQ

ij , WK
ij , and WV

ij are projection layers mapping
the input feature split into different subspaces, and WP

i is
a linear layer that projects the concatenated output features
back to the dimension consistent with the input.

Although using feature splits instead of the full features
for each head is more efficient and saves computation over-
head, we continue to improve its capacity, by encouraging
the Q, K, V layers to learn projections on features with
richer information. We compute the attention map of each
head in a cascaded manner, as illustrated in Fig. 6 (c), which
adds the output of each head to the subsequent head to refine
the feature representations progressively:

X
′

ij = Xij + X̃i(j−1), 1 < j ≤ h, (3)

where X
′

ij is the addition of the j-th input split Xij and the
(j−1)-th head output X̃i(j−1) calculated by Eq. (2). It re-
places Xij to serve as the new input feature for the j-th head
when calculating the self-attention. Besides, another token
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Table 1. Architecture details of EfficientViT model variants.

Model {C1, C2, C3} {L1, L2, L3} {H1, H2, H3}
EfficientViT-M0 {64, 128, 192} {1, 2, 3} {4, 4, 4}
EfficientViT-M1 {128, 144, 192} {1, 2, 3} {2, 3, 3}
EfficientViT-M2 {128, 192, 224} {1, 2, 3} {4, 3, 2}
EfficientViT-M3 {128, 240, 320} {1, 2, 3} {4, 3, 4}
EfficientViT-M4 {128, 256, 384} {1, 2, 3} {4, 4, 4}
EfficientViT-M5 {192, 288, 384} {1, 3, 4} {3, 3, 4}

interaction layer is applied after the Q projection, which
enables the self-attention to jointly capture local and global
relations and further enhances the feature representation.

Such a cascaded design enjoys two advantages. First,
feeding each head with different feature splits could im-
prove the diversity of attention maps, as validated in Sec.
2.2. Similar to group convolutions [10, 87], the cascaded
group attention could save the Flops and parameters by h×,
since the input and output channels in the QKV layers are
reduced by h×. Second, cascading the attention heads al-
lows for an increase of network depth, thus further elevat-
ing the model capacity without introducing any extra pa-
rameters. It only incurs minor latency overhead since the
attention map computation in each head uses smaller QK
channel dimensions.

Parameter Reallocation. To improve parameter effi-
ciency, we reallocate the parameters in the network by ex-
panding the channel width of critical modules while shrink-
ing the unimportant ones. Specifically, based on the Tay-
lor importance analysis in Sec. 2.3, we set small channel
dimensions for Q and K projections in each head for all
stages. For the V projection, we allow it to have the same
dimension as the input embedding. The expansion ratio in
FFN is also reduced from 4 to 2 due to its parameter redun-
dancy. With the proposed reallocation strategy, the impor-
tant modules have larger number of channels to learn rep-
resentations in a high dimensional space, which prevent the
loss of feature information. Meanwhile, the redundant pa-
rameters in unimportant modules are removed to speed up
inference and enhance the model efficiency.

3.2. EfficientViT Network Architectures
The overall architecture of our EfficientViT is presented

in Fig. 6 (a). Concretely, we introduce overlapping patch
embedding [20, 80] to embed 16×16 patches into tokens
with C1 dimension, which enhances the model capacity in
low-level visual representation learning. The architecture
contains three stages. Each stage stacks the proposed Ef-
ficientViT building blocks and the number of tokens is re-
duced by 4× at each subsampling layer (2× subsampling
of the resolution). To achieve efficient subsampling, we
propose an EfficientViT subsample block which also has
the sandwich layout, except that the self-attention layer is
replaced by an inverted residual block to reduce the infor-
mation loss during subsampling [26, 63]. It is worth not-
ing that we adopt BatchNorm (BN) [30] instead of Layer-

Norm (LN) [2] throughout the model, as BN can be folded
into the preceding convolution or linear layers, which is a
runtime advantage over LN. We also use ReLU [54] as the
activation function, as the commonly used GELU [25] or
HardSwish [26] are much slower, and sometimes not well-
supported by certain inference deployment platforms [1, 3].

We build our model family with six different width and
depth scales, and set different number of heads for each
stage. We use fewer blocks in early stages than late stages
similar to MobileNetV3 [26] and LeViT [20], since that the
processing on early stages with larger resolutions is more
time consuming. We increase the width over stages with a
small factor (≤ 2) to alleviate redundancy in later stages, as
analyzed in Sec. 2.3. The architecture details of our model
family are presented in Tab. 1. Ci, Li, and Hi refer to the
width, depth, and number of heads in the i-th stage.

4. Experiments
4.1. Implementation Details

We conduct image classification experiments on
ImageNet-1K [17]. The models are built with PyTorch
1.11.0 [59] and Timm 0.5.4 [77], and trained from scratch
for 300 epochs on 8 Nvidia V100 GPUs using AdamW
[46] optimizer and cosine learning rate scheduler. We set
the total batchsize as 2,048. The input images are resized
and randomly cropped into 224×224. The initial learning
rate is 1×10−3 with weight decay of 2.5×10−2. We use
the same data augmentation as [69], including Mixup [85],
auto-augmentation [13], and random erasing [88]. In ad-
dition, we provide throughput evaluation on different hard-
ware. For GPU, we measure the throughput on an Nvidia
V100, with the maximum power-of-two batchsize that fits
in memory following [20, 69]. For CPU and ONNX, we
measure the runtime on an Intel Xeon E5-2690 v4 @ 2.60
GHz processor, with batchsize 16 and run the model in a
single thread following [20]. We also test the transferabil-
ity of EfficientViT on downstream tasks. For the experi-
ments on downstream image classification, we finetune the
models for 300 epochs following [86], using AdamW [46]
with batchsize 256, learning rate 1×10−3 and weight-decay
1×10−8. We use RetinaNet [41] for object detection on
COCO [42], and train the models for 12 epochs (1× sched-
ule) with the same settings as [44] on mmdetection [6]. For
instance segmentation, please refer to the supplementary.

4.2. Results on ImageNet
We compare EfficientViT with prevailing efficient CNN

and ViT models on ImageNet [17], and report the results in
Tab. 2 and Fig. 1. The results show that, in most cases, our
EfficientViT achieves the best accuracy and speed trade-off
across different evaluation settings.

Comparisons with efficient CNNs. We first compare Ef-
ficientViT with vanilla CNN models, such as MobileNets
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Table 2. EfficientViT image classification performance on ImageNet-1K [17] with comparisons to state-of-the-art efficient CNN and ViT
models trained without extra data. Throughput is tested on Nvidia V100 for GPU and Intel Xeon E5-2690 v4 @ 2.60 GHz processor for
CPU and ONNX, where larger throughput means faster inference speed. ↑: finetune with higher resolution.

Model
Top-1 Top-5 Throughput (images/s) Flops Params

Input Epochs
(%) (%) GPU CPU ONNX (M) (M)

EfficientViT-M0 63.2 85.4 27644 228.4 340.1 79 2.3 224 300

MobileNetV3-Small [26] 67.4 - 19738 156.5 231.7 57 2.5 224 600
EfficientViT-M1 68.4 88.7 20093 126.9 215.9 167 3.0 224 300
Mobile-Former-52M [9] 68.7 - 3141 32.8 21.5 52 3.5 224 450
MobileViT-XXS [50] 69.0 - 4456 29.4 41.7 410 1.3 256 300
ShuffleNetV2 1.0× [48] 69.4 88.9 13301 106.7 177.0 146 2.3 224 300
MobileViTV2-0.5 [51] 70.2 - 5142 34.4 44.9 466 1.4 256 300
EfficientViT-M2 70.8 90.2 18218 121.2 158.7 201 4.2 224 300

MobileOne-S0 [70] 71.4 - 11320 67.4 128.6 274 2.1 224 300
MobileNetV2 1.0× [63] 72.0 91.0 6534 32.5 80.4 300 3.4 224 300
EfficientViT-M3 73.4 91.4 16644 96.4 120.8 263 6.9 224 300
GhostNet 1.0× [23] 73.9 91.4 7382 57.3 77.0 141 5.2 224 300
NASNet-A-Mobile [89] 74.1 - 2623 19.8 25.5 564 5.3 224 300
EfficientViT-M4 74.3 91.8 15914 88.5 108.6 299 8.8 224 300

EdgeViT-XXS [56] 74.4 - 3638 28.2 29.6 556 4.1 224 300
MobileViT-XS [50] 74.7 - 3344 11.1 20.5 986 2.3 256 300
ShuffleNetV2 2.0× [48] 74.9 92.4 6962 37.9 52.3 591 7.4 224 300
MobileNetV3-Large [26] 75.2 - 7560 39.1 70.5 217 5.4 224 600
MobileViTV2-0.75 [51] 75.6 - 3350 16.0 22.7 1030 2.9 256 300
MobileOne-S1 [70] 75.9 - 6663 30.7 51.1 825 4.8 224 300
GLiT-Tiny [5] 76.4 - 3516 17.5 15.7 1333 7.3 224 300
EfficientNet-B0 [67] 77.1 93.3 4532 30.2 29.5 390 5.3 224 350
EfficientViT-M5 77.1 93.4 10621 56.8 62.5 522 12.4 224 300

EfficientViT-M4↑384 79.8 95.0 3986 15.8 22.6 1486 12.4 384 330
EfficientViT-M5↑512 80.8 95.5 2313 8.3 10.5 2670 12.4 512 360

[26, 63] and EfficientNet [67]. Specifically, compared to
MobileNetV2 1.0× [63], EfficientViT-M3 obtains 1.4%
better top-1 accuracy, while running at 2.5× and 3.0×
faster speed on V100 GPU and Intel CPU, respectively.
Compared to the state-of-the-art MobileNetV3-Large [26],
EfficientViT-M5 achieves 1.9% higher accuracy yet runs
much faster, e.g., 40.5% faster on the V100 GPU and 45.2%
faster on the Intel CPU but is 11.5% slower as ONNX mod-
els. This may because reshaping is slower in ONNX imple-
mentation, which is inevitable in computing self-attention.
Moreover, EfficientViT-M5 achieves comparable accuracy
with the searched model EfficientNet-B0 [67], while runs
2.3×/1.9× faster on the V100 GPU/Intel CPU, and 2.1×
faster as ONNX models. Although our model uses more pa-
rameters, it reduces memory-inefficient operations that af-
fect the inference speed and achieves higher throughput.

Comparisons with efficient ViTs. We also compare our
models with recent efficient vision transformers [5, 9, 50,
51, 56] in Tab. 2. In particular, when getting similar per-
formance on ImageNet-1K [17], our EfficientViT-M4 runs
4.4× and 3.0× faster than the recent EdgeViT-XXS [56] on
the tested CPU and GPU devices. Even converted to ONNX

runtime format, our model still gets 3.7× higher speed.
Compared to the state-of-the-art MobileViTV2-0.5 [51],
our EfficientViT-M2 achieves slightly better performance
with higher throughput, e.g., 3.4× and 3.5× higher through-
put tested on the GPU and CPU devices, respectively. Fur-
thermore, we compare with tiny variants of state-of-the-art
large ViTs in Tab. 3. PoolFormer-12S [83] has comparable
accuracy with EfficientViT-M5 yet runs 3.0× slower on the
V100 GPU. Compared to Swin-T [44], EfficientViT-M5 is
4.1% inferior in accuracy yet is 12.3× faster on the Intel
CPU, demonstrating the efficiency of the proposed design.
In addition, we present the speed evaluation and comparison
on mobile chipsets in the supplementary material.

Finetune with higher resolutions. Recent works on ViTs
have demonstrated that finetuning with higher resolutions
can further improve the capacity of the models. We also
finetune our largest model EfficientViT-M5 to higher res-
olutions. EfficientViT-M5↑384 reaches 79.8% top-1 accu-
racy with throughput of 3,986 images/s on the V100 GPU,
and EfficientViT-M5↑512 further improves the top-1 accu-
racy to 80.8%, demonstrating the efficiency on processing
images with larger resolutions and the good model capacity.

14425



Table 3. Comparison with the tiny variants of state-of-the-art
large-scale ViTs on ImageNet-1K [17].

Model
Top-1 Throughput (imgs/s) Flops Params

(%) GPU CPU ONNX (G) (M)

PVTV2-B0 [76] 70.5 3507 12.7 18.5 0.6 1.4
T2T-ViT-7 [84] 71.7 1156 22.5 16.1 1.1 4.3
DeiT-T [69] 72.2 4631 26.0 25.1 1.3 5.9
PoolFormer-12S [83] 77.2 3534 10.4 14.6 1.9 12.0
EffFormer-L1 [40] 79.2 4465 12.9 21.2 1.3 12.3
Swin-T [44] 81.2 1393 4.6 6.4 4.5 29.0

EfficientViT-M5 77.1 10621 56.8 62.5 0.5 12.4

Table 4. Results of EfficientViT and other efficient models on
downstream image classification datasets.
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MobileNetV1 [27] 8543 70.6 96.1 82.3 91.4 96.7 89.9
MobileNetV2 [63] 6534 72.9 95.7 80.8 91.0 96.6 90.5
MobileNetV3 [26] 7560 75.2 97.6 85.5 91.2 97.0 90.1
NASNet-A-M [89] 2623 74.1 96.8 83.9 88.5 96.8 89.4
ViT-S/16 [18] 2135 81.4 97.6 85.7 - 86.4 90.4
EfficientViT-M5 10621 77.1 98.0 86.4 89.7 97.1 92.0

4.3. Transfer Learning Results
To further evaluate the transfer ability, we apply Effi-

cientViT on various downstream tasks.
Downstream Image Classification. We transfer Effi-

cientViT to downstream image classification datasets to
test its generalization ability: 1) CIFAR-10 and CIFAR-
100 [36]; 2) fine-grained classification: Flowers [55], Stan-
ford Cars [35], and Oxford-IIIT Pets [58]. We report the
results in Tab. 4. Compared to existing efficient mod-
els [18, 26, 27, 63, 89], our EfficientViT-M5 achieves com-
parable or slightly better accuracy across all datasets with
much higher throughput. An exception lies in Cars, where
our model is slightly inferior in accuracy. This may because
the subtle differences between classes lie more in local de-
tails thus is more feasible to be captured with convolution.

Object Detection. We compare EfficientViT-M4 with ef-
ficient models [12, 22, 26, 63, 66, 68] on the COCO [42] ob-
ject detection task, and present the results in Tab. 5. Specif-
ically, EfficientViT-M4 surpasses MobileNetV2 [63] by
4.4% AP with comparable Flops. Compared to the searched
method SPOS [22], our EfficientViT-M4 uses 18.1% fewer
Flops while achieving 2.0% higher AP, demonstrating its
capacity and generalization ability in different vision tasks.

4.4. Ablation Study

In this section, we ablate important design elements in
the proposed EfficientViT on ImageNet-1K [17]. All mod-
els are trained for 100 epochs to magnify the differences
and reduce training time [20]. Tab. 6 reports the results.

Impact of the sandwich layout block. We first present an
ablation study to verify the efficiency of the proposed sand-
wich layout design, by replacing the sandwich layout block
with the original Swin block [44]. The depth is adjusted to

Table 5. EfficientViT object detection performance on COCO
val2017 [42] with comparisons to other efficient models.

Model
RetinaNet 1× Flops Params

AP AP50 AP75 APs APm APl (M) (M)

MobileNetV2 [63] 28.3 46.7 29.3 14.8 30.7 38.1 300 3.4
MobileNetV3 [26] 29.9 49.3 30.8 14.9 33.3 41.1 217 5.4
SPOS [22] 30.7 49.8 32.2 15.4 33.9 41.6 365 4.3
MNASNet-A2 [66] 30.5 50.2 32.0 16.6 34.1 41.1 340 4.8
FairNAS-C [12] 31.2 50.8 32.7 16.3 34.4 42.3 325 5.6
MixNet-M [68] 31.3 51.7 32.4 17.0 35.0 41.9 360 5.0
EfficientViT-M4 32.7 52.2 34.1 17.6 35.3 46.0 299 8.8

Table 6. Ablation for EfficientViT-M4 on ImageNet-1K [17]
dataset. Top-1 accuracy, GPU and ONNX throughput are reported.

# Ablation Top-1 (%)
Throughput (imgs/s)

GPU ONNX

1 EfficientViT-M4 71.3 15914 108.6

2 Sandwich → Swin [44] 68.3 15804 114.5
3 N = 1 → 2 70.2 14977 112.3
4 N = 1 → 3 65.7 15856 139.7

5 CGA → MHSA [18] 70.2 16243 102.2
6 Cascade → None 69.8 16411 111.0

7 QKV allocation → None 69.9 15132 103.1
8 FFN ratio 2 → 4 69.8 15310 112.4

9 DWConv → None 69.9 16325 110.4
10 BN → LN [2] 70.4 15463 103.6
11 ReLU → HSwish [26] 72.2 15887 87.5

{2, 2, 3} to guarantee similar throughput with EfficientViT-
M4 for a fair comparison. The top-1 accuracy degrades
by 3.0% at a similar speed, verifying that applying more
FFNs instead of memory-bound MHSA is more effective
for small models. Furthermore, to analyze the impact of
the number of FFNs N before and after self-attention , we
change the number from 1 to 2 and 3. The number of blocks
is reduced accordingly to maintain similar throughput. As
presented in Tab. 6 (#3 and #4), further increasing the num-
ber of FFNs is not effective due to the lack of long-range
spatial relation and N=1 achieves the best efficiency.

Impact of the cascaded group attention. We have
proposed CGA to improve the computation efficiency of
MHSA. As shown in Tab. 6 (#5 and #6), replacing CGA
with MHSA decreases the accuracy by 1.1% and ONNX
speed by 5.9%, suggesting that addressing head redun-
dancy improves the model efficiency. For the model without
the cascade operation, its performance is comparable with
MHSA but worse than CGA, demonstrating the efficacy of
enhancing the feature representations of each head.

Impact of the parameter reallocation. Our EfficientViT-
M4 yields 1.4%/1.5% higher top-1 accuracy, 4.9%/3.8%
higher GPU throughput than the models without QKV
channel dimension reallocation or FFN ratio reduction, re-
spectively, indicating the effectiveness of parameter reallo-
cation (#1 vs. #7, #8). Moreover, we study the choices of
QK dimension in each head and the ratio of V dimension to
the input embedding in Fig. 7. It is shown that the perfor-
mance is improved gradually as QK dimension increases
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Table 7. Performance comparison on ImageNet-1K [17] and
ImageNet-ReaL [4]. Results with † are trained with 1,000 epochs
and knowledge distillation following LeViT [20].

Model
ImageNet (%) Throughput (imgs/s) Flops Params

Top-1 Top-1† ReaL† GPU CPU ONNX (M) (M)

LeViT-128S [20] 73.6 76.6 82.6 14457 82.3 80.9 305 7.8
EfficientViT-M4 74.3 77.1 83.6 15914 88.5 108.6 299 8.8

from 4 to 16, while further increasing it gives inferior per-
formance. Besides, the performance improves from 70.3%
to 71.3% when increasing the ratio between V dimension
and input embedding from 0.4 to 1.0. When further en-
larging the ratio to 1.2, it only gets 0.1% improvements.
Therefore, setting the channels of V close to the input em-
bedding achieves the best parameter efficiency, which meets
our analysis in Sec. 2.3 and design strategy.

Impact of other components. We ablate the impact of us-
ing DWConv for token interaction, the normalization layer,
and the activation function, as presented in Tab. 6 (#9, #10,
and #11). With DWConv, the accuracy improves by 1.4%
with a minor latency overhead, demonstrating the effective-
ness of introducing local structural information. Replacing
BN with LN decreases accuracy by 0.9% and GPU speed
by 2.9%. Using HardSwish instead of ReLU improves ac-
curacy by 0.9% but leads to a large drop of 20.0% ONNX
speed. The activation functions are element-wise operations
that occupy a considerable amount of processing time on
GPU/CPU [15,48,72], thus utilizing ReLU instead of more
complicated activation functions is of better efficiency.

Results of 1,000 training epochs and distillation. Tab. 7
shows the results with 1,000 training epochs and knowledge
distillation using RegNetY-16GF [60] as the teacher model
following [20] on ImageNet-1K [17] and ImageNet-ReaL
[4]. Compared to LeViT-128S [20], EfficientViT-M4 sur-
passes it by 0.5% on ImageNet-1K and 1.0% on ImageNet-
ReaL, respectively. For the inference speed, our model has
34.2% higher throughput on ONNX and also shows supe-
riority on other settings. The results demonstrate that the
strong capability and generalization ability of EfficientViT
can be further explored with longer training schedules.

5. Related Work
Efficient CNNs. With the demand of deploying CNNs on

resource-constrained scenarios, efficient CNNs have been
intensively studied in literature [23, 24, 26, 48, 63, 67, 87].
Xception [10] proposes an architecture built with depth-
wise separable convolutions. MobileNetV2 [63] builds an
inverted residual structure which expands the input to a
higher dimension. MobileNetV3 [26] and EfficientNet [67]
resort to neural architecture search techniques to design
compact models. To boost the actual speed on hardware,
ShuffleNetV2 [48] introduces channel split and shuffle op-
erations to improve the information communication among
channel groups. However, the spatial locality of convolu-
tional kernels hampers CNN models from capturing long-

Figure 7. Ablation on the QK dimension of each head and the
ratio of V dimension to the input embedding.

range dependencies, thus limiting their model capacity.
Efficient ViTs. ViT and its variants [18, 44, 69, 76] have

achieved success on various vision tasks. Despite the supe-
rior performance, most of them are inferior to typical CNNs
in inference speed. Some efficient transformers have been
proposed recently and they fall into two camps: 1) efficient
self-attention; and 2) efficient architecture design. Efficient
self-attention methods reduce the cost of softmax attention
via sparse attention [34, 57, 61, 75] or low-rank approxima-
tion [11, 51, 74]. However, they suffer from performance
degradation with negligible or moderate inference accelera-
tion over softmax attention [71]. Another line of work com-
bines ViTs with lightweight CNNs to build efficient archi-
tectures [9, 47, 49, 50, 81]. LVT [81] proposes enhanced at-
tention mechanisms with dilated convolution to improve the
model performance and efficiency. Mobile-Former [9] de-
signs a parallel CNN-transformer block to encode both local
features and global interaction. However, most of them tar-
get at minimizing Flops and parameters [16], which could
have low correlations with actual inference latency [70] and
still inferior to efficient CNNs in speed. Different from
them, we explore models with fast inference by directly op-
timizing their throughput on different hardware and deploy-
ment settings, and design a family of hierarchical models
with a good trade-off between speed and accuracy.

6. Conclusion
In this paper, we have presented a systematic analysis on

the factors that affect the inference speed of vision trans-
formers, and proposed a new family of fast vision trans-
formers with memory-efficient operations and cascaded
group attention, named EfficientViT. Extensive experiments
have demonstrated the efficacy and high speed of Effi-
cientViT, and also show its superiority on various down-
stream benchmarks.

Limitations. One limitation of EfficientViT is that, de-
spite its high inference speed, the model size is slightly
larger compared to state-of-the-art efficient CNN [26] due
to the extra FFNs in the introduced sandwich layout. Be-
sides, our models are designed manually based on the de-
rived guidelines on building efficient vision transformers.
In future work, we are interested in reducing the model size
and incorporating automatic search techniques to further en-
hance the model capacity and efficiency.
Acknowledgement. Prof. Yuan was partially supported
by Hong Kong Research Grants Council (RGC) General
Research Fund 11211221, and Innovation and Technology
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and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. arXiv preprint
arXiv:2205.14135, 2022. 1, 2, 8

[16] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish
Vaswani, and Yi Tay. The efficiency misnomer. In ICLR,
2022. 8

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 5, 6, 7, 8

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. ICLR, 2021. 1, 2, 3,
7, 8

[19] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen,
Zhicheng Yan, Yuandong Tian, qiang liu, and Vikas Chan-
dra. NASVit: Neural architecture search for efficient vision
transformers with gradient conflict aware supernet training.
In ICLR, 2022. 1

[20] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
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