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Abstract

We consider the generic problem of detecting low-level
structures in images, which includes segmenting the ma-
nipulated parts, identifying out-of-focus pixels, separating
shadow regions, and detecting concealed objects. Whereas
each such topic has been typically addressed with a domain-
specific solution, we show that a unified approach performs
well across all of them. We take inspiration from the widely-
used pre-training and then prompt tuning protocols in NLP
and propose a new visual prompting model, named Explicit
Visual Prompting (EVP). Different from the previous visual
prompting which is typically a dataset-level implicit embed-
ding, our key insight is to enforce the tunable parameters
focusing on the explicit visual content from each individ-
ual image, i.e., the features from frozen patch embeddings
and the input’s high-frequency components. The proposed
EVP significantly outperforms other parameter-efficient tun-
ing protocols under the same amount of tunable parame-
ters (5.7% extra trainable parameters of each task). EVP
also achieves state-of-the-art performances on diverse low-
level structure segmentation tasks compared to task-specific
solutions. Our code is available at: https://github.
com/NiFangBaAGe/Explicit-Visual-Prompt.

1. Introduction

Advances in image editing and manipulation algorithms
have made it easy to create photo-realistic but fake pic-
tures [31, 39, 63]. Detecting such manipulated regions be-
comes an important problem due to its potential negative
impact related to surveillance and crime [31]. Low-level
structures are known to be beneficial to tampered region de-
tection, i.e., resizing and copy-pasting will destroy the JPEG
compression levels between the temper region and the host
image [28, 50, 62], the noise level of the tempered region
and the background is also different [76, 87]. Interesting, to
segment the blurred pixels [67], shadowed regions [59], and
concealed objects [15], low-level clues also play important
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Figure 1. We propose a unified method for four low-level structure
segmentation tasks: camouflaged object, forgery, shadow and defo-
cus blur detection (Top). Our approach relies on a pre-trained frozen
transformer backbone that leverages explicit extracted features, e.g.,
the frozen embedded features and high-frequency components, to
prompt knowledge.

roles. These detection tasks are shown to be beneficial to
numerous computer vision tasks, including auto-refocus [1],
image retargeting [37], object tracking [55], etc.

Although all these tasks belong to low-level structure
segmentation, they are typically addressed by domain-
specific solutions with carefully designed network archi-
tectures [8,87,90]. Moreover, the lack of large-scale datasets
is often considered a major factor, which limits the perfor-
mances [31].

In this work, we propose a solution to address the four
tasks in a unified fashion. We take inspiration from recent
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advances of prompting [2, 4, 33], which is a concept that ini-
tially emerged in natural language processing (NLP) [3]. The
basic idea is to efficiently adapt a frozen large foundation
model to many downstream tasks with the minimum extra
trainable parameters. As the foundation model has already
been trained on a large-scale dataset, prompting often leads
to better model generalization on the downstream tasks [3],
especially in the case of the limited annotated data. Prompt-
ing also significantly saves the storage of models since it
only needs to save a shared basic model and task-aware
promptings.

Our main insight is to tune the task-specific knowledge
only from the features of each individual image itself be-
cause the pre-trained base model contains sufficient knowl-
edge for semantic understanding. This is also inspired by
the effectiveness of hand-crafted image features, such as
SIFT [29], JPEG noise [50], resampling artifacts [62] in
these tasks [28, 29, 46, 50, 62, 87].

Based on this observation, we propose explicit visual
prompting (EVP), where the tuning performance can be
hugely improved via the re-modulation of image features.
Specifically, we consider two kinds of features for our task.
The first is the features from the frozen patch embedding,
which is critical since we need to shift the distribution of the
original model. Another is high-frequency components of the
input image since the pre-trained visual recognition model
is learned to be invariant to these features via data augmen-
tation. As shown in Figure 1, we take a model pre-trained
on a large-scale dataset and freeze its parameters. Then, to
adapt to each task, we tune the embedded features and learn
an extra embedding for high-frequency components of each
individual image.

In terms of experiments, we validate our approach on
nine datasets of four tasks: forgery detection, shadow detec-
tion, defocus blur detection as well as camouflaged object
detection. Our simple and unified network achieves very
competitive performance with the whole model fine-tuning
and outperforms task-specific solutions without modifica-
tion.

In summary, our main contributions are as follows:

• We design a unified approach that produces state-of-
the-art performances for a number of tasks, including
forgery detection, defocus blur detection, shadow de-
tection, and camouflaged object detection.

• We propose explicit visual prompting (EVP), which
takes the features from the frozen patch embedding and
the input’s high-frequency components as prompting. It
is demonstrated to be effective across different tasks and
outperforms other parameter-efficient tuning methods.

• Our method greatly simplifies the low-level structure
segmentation models as well as achieves comparable
performance with well-designed SOTA methods.

2. Related Work

Visual Prompting Tuning. Prompting is initially proposed
in NLP [3, 45]. [3] demonstrates strong generalization to
downstream transfer learning tasks even in the few-shot or
zero-shot settings with manually chosen prompts in GPT-
3. Recently, prompting [33, 65] has been adapted to vision
tasks. [65] proposes memory tokens which is a set of learn-
able embedding vectors for each transformer layer. VPT [33]
proposes similar ideas and investigates the generality and
feasibility of visual prompting via extensive experiments
spanning multiple kinds of recognition tasks across multiple
domains and backbone architectures. Unlike VPT, whose
main focus is on recognition tasks, our work aims at explor-
ing optimal visual content for low-level structure segmenta-
tion.

Forgery Detection. The goal of forgery detection is
to detect pixels that are manually manipulated, such as
pixels that are removed, replaced, or edited. Early ap-
proaches [7, 20, 52, 53] detect region splicing through incon-
sistencies in local noise levels, based on the fact that images
of different origins might contain different noise character-
istics introduced by the sensors or post-processing steps.
Other clues are found to be helpful, such as SIFT [29], JPEG
compression artifacts [50] and re-sampling artifacts [16, 62].
Recently, approaches have moved towards end-to-end deep
learning methods for solving specific forensics tasks using
labeled training data [26, 32, 64, 75, 86]. Salloum et al. [64]
learn to detect splicing by training a fully convolutional net-
work on labeled training data. [26, 47, 75, 76, 86] propose
improved architectures. Islam et al. [32] incorporate Genera-
tive Adversarial Network (GAN) to detect copy-move forg-
eries. Huh et al. [31] propose to take photographic metadata
as a free and plentiful supervisory signal for learning self-
consistency and apply the trained model to detect splices.
Recently, TransForensic [22] leverages vision transform-
ers [13] to tackle the problem. High-frequency components
still served as useful prior in this field. RGB-N [87] de-
signs an additional noise stream. ObjectFormer [74] extracts
high-frequency features as complementary signals to visual
content. But unlike ObjectFormer, our main focus is to lever-
age high-frequency components as a prompting design to
efficiently and effectively adapt to different low-level seg-
mentation tasks.

Defocus Blur Detection. Given an image, defocus blur
detection aims at separating in-focus and out-of-focus re-
gions, which could be potentially useful for auto-refocus [1],
salient object detection [34] and image retargeting [37]. Tra-
ditional approaches mainly focus on designing hand-crafted
features based on gradient [21, 67, 78] or edge [38, 68].
In the deep era, most methods delve into CNN architec-
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tures [60, 70, 82, 83]. [60] proposes the first CNN-based
method using both hand-crafted and deep features. BTB-
Net [82] develops a fully convolutional network to integrate
low-level clues and high-level semantic information. DeFu-
sionNet [70] recurrently fuses and refines multi-scale deep
features for defocus blur detection. CENet [83] learns mul-
tiple smaller defocus blur detectors and ensembles them to
enhance diversity. [8] further employs the depth information
as additional supervision and proposes a joint learning frame-
work inspired by knowledge distillation. [79] explores deep
ensemble networks for defocus blur detection. [80] proposes
to learn generator to generate mask in an adversarial manner.

Shadow Detection. Shadows occur frequently in natural
scenes, and have hints for scene geometry [58], light con-
ditions [58] and camera location [36] and lead to challeng-
ing cases in many vision tasks including image segmenta-
tion [14] and object tracking [6, 56]. Early attempts explore
illumination [18, 19] and hand-crafted features [30, 41, 88].
In the deep era, some methods mainly focus on the de-
sign of CNN architectures [9, 89] or involving the attention
modules (e.g., the direction-aware attention [27], distraction-
aware module [84]). Recent works [42,90] utilize the lighting
as additional prior, for example, ADNet [42] generates the
adversarial training samples for better detection and FDR-
Net [90] arguments the training samples by additionally
adjusted brightness. MTMT [5] leverages the mean teacher
model to explore unlabeled data for semi-supervised shadow
detection.

Camouflaged Object Detection. Detecting camouflaged
objects is a challenging task as foreground objects are often
with visual similar patterns to the background. Early works
distinguish the foreground and background through low-level
clues such as texture [17,66], brightness [61], and color [25].
Recently, deep learning-based methods [15, 35, 44, 51, 54]
show their strong ability in detecting complex camouflage
objects. Le et al. [43] propose the first end-to-end network
for camouflaged object detection, which is composed of
a classification branch and a segmentation branch. Fan et
al. [15] develops a search-identification network and the
largest camouflaged object detection dataset. PFNet [54] is
a bio-inspired framework that mimics the process of posi-
tioning and identification in predation. FBNet [35] suggests
disentangling frequency modeling and enhancing the impor-
tant frequency component.

3. Method
In this section, we propose Explicit Visual Prompt-

ing (EVP) for adapting recent Vision Transformers (Seg-
Former [77] as the example) pre-trained on ImageNet [10] to
low-level structure segmentations. EVP keeps the backbone

Set 0 to low freq. center
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Figure 2. The procedure to generate high-frequency components.

frozen and only contains a small number of tunable param-
eters to learn task-specific knowledge from the features of
frozen image embeddings and high-frequency components.
Below, we first present SegFormer [77] and the extraction of
high-frequency components in Section 3.1, then the architec-
ture design in Section 3.2.

3.1. Preliminaries

SegFormer [77]. SegFormer is a hierarchical transformer-
based structure with a much simpler decoder for semantic
segmentation. Similar to traditional CNN backbone [23],
SegFormer captures multi-stale features via several stages.
Differently, each stage is built via the feature embedding
layers1 and vision transformer blocks [13, 71]. As for the
decoder, it leverages the multi-scale features from the en-
coder and MLP layers for decoding to the specific classes.
Notice that, the proposed prompt strategy is not limited to
SegFormer and can be easily adapted to other network struc-
tures, e.g., ViT [13] and Swin [49].

High-frequency Components (HFC). As shown in Fig-
ure 2, for an image I of dimension H ×W , we can decom-
pose it into low-frequency components Il (LFC) and high-
frequency components Ih (HFC), i.e. I = {Il, Ih}. Denoting
fft and ifft as the Fast Fourier Transform and its inverse
respectively, we use z to represent the frequency component
of I . Therefore we have z = fft(I) and I = ifft(z). We
shift low frequency coefficients to the center (H2 ,

W
2 ). To

obtain HFC, a binary mask Mh ∈ {0, 1}H×W is generated
and applied on z depending on a mask ratio τ :

Mi,j
h (τ) =

{
0,

4|(i−H
2 )(j−W

2 )|
HW ≤ τ

1, otherwise
(1)

τ indicates the surface ratio of the masked regions. HFC
can be computed:

Ihfc = ifft(zMh(τ)) (2)

1SegFormer has a different definition of patch embedding in ViT [13].
It uses the overlapped patch embedding to extract the denser features and
will merge the embedding to a smaller spatial size at the beginning of each
stage.
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Figure 3. The architecture of the proposed explicit visual prompting.
We use the Embedding Tune and the HFC Tune to tune the extracted
features. The Adaptor is designed to merge these features.

Similarly, a binary mask Ml ∈ {0, 1}H×W can be prop-
erly defined to compute LFC:

Mi,j
l (τ) =

{
0,

HW−4|(i−H
2 )(j−W

2 )|
HW ≤ τ

1, otherwise
(3)

and LFC can be calculated as:

Ilfc = ifft(zMl(τ)) (4)

Note that for RGB images, we compute the above process
on every channel of pixels independently.

3.2. Explicit Visual Prompting

In this section, we present the proposed Explicit Visual
Prompting (EVP). Our key insight is to learn explicit prompts
from image embeddings and high-frequency components.
We learn the former to shift the distribution from the pre-
train dataset to the target dataset. And the main motivation to
learn the latter is that the pre-trained model is learned to be
invariant to these features through data augmentation. Note
that this is different from VPT [33], which learns implicit
prompts. Our approach is illustrated in Figure 3, which is
composed of three basic modules: patch embedding tune,
high-frequency components tune as well as Adaptor.

Patch embedding tune. This module aims at tuning pre-
trained patch embedding. In pre-trained SegFormer [77], a
patch Ip is projected to a Cseg-dimension feature. We freeze
this projection and add a tunable linear layer Lpe to project
the original embedding into a c-dimension feature Fpe ∈ Rc.

Fpe = Lpe(I
p), with c =

Cseg

r
(5)

where we introduce the scale factor r to control the tunable
parameters.

Task Dataset Name # Train # Test
Forgery

Detection
CAISA [12] 5,123 921
IMD20 [57] - 2,010

Shadow
Detection

ISTD [73] 1,330 540
SBU [72] 4,089 638

Defocus Blur
Detection

CUHK [67] 604 100
DUT [81] - 500

Camouflaged
Object Detection

COD10K [15] 3,040 2,026
CAMO [43] 1,000 250

CHAMELEON [69] - 76

Table 1. Summary of datasets considered in this work. We show the
number of images in training (# Train) and testing set (# Test) for
different datasets.

High-frequency components tune. For the high fre-
quency components Ihfc, we learn an overlapped patch
embedding similar to SegFormer [77]. Formally, Ihfc is
divided into small patches with the same patch size as Seg-
Former [77]. Denoting patch Iphfc ∈ RC and C = h×w×3,
we learn a linear layer Lhfc to project the patch into a c-
dimension feature Fhfc ∈ Rc.

Fhfc = Lhfc(I
p
hfc) (6)

Adaptor. The goal of Adaptor is to efficiently and effec-
tively perform adaptation in all the layers by considering
features from the image embeddings and high-frequency
components. For the i-th Adaptor, we take Fpe and Fhfc as
input and obtain the prompting P i:

P i = MLPup(GELU(MLP
i
tune(Fpe + Fhfc))) (7)

where GELU is GELU [24] activation. MLPitune is a linear layer
for producing different prompts in each Adaptor. MLPup is
an up-projection layer shared across all the Adaptors for
matching the dimension of transformer features. P i is the
output prompting that attaches to each transformer layer.

4. Experiment
4.1. Datasets

We evaluate our model on a variety of datasets for four
tasks: forgery detection, shadow detection, defocus blur de-
tection, and camouflaged object detection. A summary of the
basic information of these datasets is illustrated in Table 1.

Forgery Detection. CASIA [12] is a large dataset for
forgery detection, which is composed of 5,123 training and
921 testing spliced and copy-moved images. IMD20 [57]
is a real-life forgery image dataset that consists of 2, 010
samples for testing. We follow the protocol of previous
works [22, 48, 74] to conduct the training and evaluation
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Method
DUT [81] CUHK [67]

Fβ ↑ MAE↓ Fβ ↑ MAE↓
DeFusionNet [70] .823 .118 .818 .117
BTBNet [82] .827 .138 .889 .082
CENet [83] .817 .135 .906 .059
DAD [80] .794 .153 .884 .079
EFENet [79] .854 .094 .914 .053
Ours .890 .068 .928 .045

Table 2. Comparison with state-of-the-art
approaches on defocus blur detection.

Method
ISTD [73] SBU [72]

BER↓ BER↓
BDRAR [89] 2.69 3.89
DSC [27] 3.42 5.59
DSD [84] 2.17 3.45
MTMT [5] 1.72 3.15
FDRNet [90] 1.55 3.04
Ours 1.35 4.31

Table 3. Comparison with state-of-the-art
approaches on shadow detection.

Method
IMD20 [57] CAISA [12]
F1↑ AUC↑ F1↑ AUC↑

ManTra [76] - .748 - .817
SPAN [26] - .750 .382 .838
PSCCNet [48] - .806 .554 .875
TransForensics [22] - .848 .627 .837
ObjectFormer [74] - .821 .579 .882
Ours .443 .807 .636 .862

Table 4. Comparison with state-of-the-art
approaches on forgery detection.

Method CHAMELEON [69] CAMO [43] COD10K [15]
Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fw
β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓
SINet [15] .869 .891 .740 .044 .751 .771 .606 .100 .771 .806 .551 .051
RankNet [51] .846 .913 .767 .045 .712 .791 .583 .104 .767 .861 .611 .045
JCOD [44] .870 .924 - .039 .792 .839 - .082 .800 .872 - .041
PFNet [54] .882 .942 .810 .033 .782 .852 .695 .085 .800 .868 .660 .040
FBNet [35] .888 .939 .828 .032 .783 .839 .702 .081 .809 .889 .684 .035
Ours .871 .917 .795 .036 .846 .895 .777 .059 .843 .907 .742 .029

Table 5. Comparison with state-of-the-art approaches on camouflaged object detection.

Method
Trainable Defocus Blur Shadow Forgery Camouflaged

Param. CUHK [67] ISTD [73] CASIA [12] CAMO [43]
(M) Fβ ↑ MAE ↓ BER ↓ F1 ↑ AUC ↑ Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓
Full-tuning 64.00 .935 .039 2.42 .465 .754 .837 .887 .778 .060
Only Decoder 3.15 .891 .080 4.36 .396 .722 .783 .827 .671 .088
VPT-Deep [33] 3.27 .913 .058 1.73 .588 .847 .833 .884 .751 .068
AdaptFormer [4] 3.21 .912 .057 1.85 .602 .855 .830 .877 .750 .068
Ours (r=16) 3.22 .924 .051 1.67 .602 .857 .838 .888 .761 .065
Ours (r=4) 3.70 .928 .045 1.35 .636 .862 .846 .895 .777 .059

Table 6. Comparison with state-of-the-art efficient tuning approaches. We conduct evaluations on four datasets for four different tasks. The
efficient tuning method which achieves better performance than full-tuning is marked as orange. The best performance among all methods is
shown as blod.

at the resolution of 256× 256. We use pixel-level Area Un-
der the Receiver Operating Characteristic Curve (AUC) and
F1 score to evaluate the performance.

Shadow Detection. SBU [72] is the largest annotated
shadow dataset which contains 4,089 training and 638 test-
ing samples, respectively. ISTD [73] contains triple samples
for shadow detection and removal, we only use the shad-
owed image and shadow mask to train our method. Follow-
ing [5, 89, 90], we train and test both datasets with the size
of 400× 400. As for the evaluation metrics, We report the
balance error rate (BER).

Defocus Blur Detection. Following previous work [8, 81],
we train the defocus blur detection model in the CUHK
dataset [67], which contains a total of 704 partial defocus

samples. We train the network on the 604 images split from
the CUHK dataset and test in DUT [81] and the rest of
the CUHK dataset. The images are resized into 320× 320,
following [8]. We report performances with commonly used
metrics: F-measure (Fβ) and mean absolute error (MAE).

Camouflaged Object Detection. COD10K [15] is the
largest dataset for camouflaged object detection, which
contains 3,040 training and 2,026 testing samples.
CHAMELEON [69] includes 76 images collected from the
Internet for testing. CAMO [43] provides diverse images
with naturally camouflaged objects and artificially camou-
flaged objects. Following [15, 54], we train on the com-
bined dataset and test on the three datasets. We employ com-
monly used metrics: S-measure (Sm), mean E-measure (Eϕ),
weighted F-measure (Fw

β ), and MAE for evaluation.
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Camouflaged Object Detection Forgery Detection

Shadow Detection Defocus Blur Detection

Input GT SINet PFNet Ours Input GT ManTra SPAN Ours

Input GT MTMT FDRNet Ours Input GT CENet EFENet Ours

Figure 4. Comparisons with other task-specific methods. We show the results of: SINet [15] and PFNet [54] on CAMO [43] dataset for
camouflaged object detection (Top-left), ManTra [76] and SPAN [26] on CAISA [12] dataset for forgery detection (Top-right), MTMT [5]
and FDRNet [90] on ISTD [73] dataset for shadow detection (Bottom-left), CENet [83] and EFENet [79] on CUHK [67] dataset for defocus
blur detection (Bottom-right).

Method
Trainable Defocus Blur Shadow Forgery Camouflaged

Param. CUHK [67] ISTD [73] CASIA [12] CAMO [43]
(M) Fβ ↑ MAE ↓ BER ↓ F1 ↑ AUC ↑ Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓
Decoder (No prompting) 3.15 .891 .080 4.36 .396 .722 .783 .827 .671 .088
Ours w/o Fpe 3.61 .924 .049 1.68 .540 .833 .840 .887 .759 .065
Ours w/o Fhfc 3.58 .926 .046 1.61 .619 .846 .844 .893 .773 .063
Ours w/ Shared MLPitune 3.49 .928 .048 1.77 .619 .860 .837 .889 .763 .064
Ours w/ Unshared MLPup 4.54 .927 .045 1.33 .647 .875 .844 .893 .774 .060
Ours 3.70 .928 .045 1.35 .636 .862 .846 .895 .777 .059

Table 7. Ablation on the architecture designs described in Figure 3. We conduct evaluations on four datasets for four different tasks. The
proposed prompting strategy (Decoder + Fhfc + Fpe + Adaptor) performs more effectively.

4.2. Implementation Details

All the experiments are performed on a single NVIDIA
Titan V GPU with 12G memory. AdamW [40] optimizer is
used for all the experiments. The initial learning rate is set
to 2e−4 for defocus blur detection and camouflaged object
detection, and 5e−4 for others. Cosine decay is applied to the
learning rate. The models are trained for 20 epochs for the
SBU [72] dataset and camouflaged combined dataset [15,69],
and 50 epochs for others. Random horizontal flipping is
applied during training for data augmentation. The mini-
batch is equal to 4. Binary cross-entropy (BCE) loss is used
for defocus blur detection and forgery detection, balanced
BCE loss is used for shadow detection, and BCE loss and
IOU loss are used for camouflaged object detection. All
the experiments are conducted with SegFormer-B4 [77] pre-

trained on the ImageNet-1k [11] dataset.

4.3. Main Results

Comparison with the task-specific methods. EVP per-
forms well when compared with task-specific methods. We
report the comparison of our methods and other task-specific
methods in Table 2, Table 3, Table 4, and Table 5. Thanks
to our stronger backbone and prompting strategy, EVP
achieves the best performance in 5 datasets across 4 dif-
ferent tasks. However, compared with other well-designed
domain-specific methods, EVP only introduces a small num-
ber of tunable parameters with the frozen backbone and
obtains non-trivial performance. We also show some visual
comparisons with other methods for each task individually
in Figure 4. We can see the proposed method predicts more
accurate masks compared to other approaches.

19439



Tuning Trainable Defocus Blur Shadow Forgery Camouflaged
Stage Param. CUHK [67] ISTD [73] CASIA [12] CAMO [43]

(M) Fβ ↑ MAE ↓ BER ↓ F1 ↑ AUC ↑ Sα ↑ Eϕ ↑ Fw
β ↑ MAE ↓

Stage1 3.16 .895 .072 3.64 .408 .725 .793 .834 .681 .088
Stage1,2 3.18 .917 .058 2.45 .457 .765 .806 .853 .706 .081
Stage1,2,3 3.43 .927 .047 1.46 .627 .858 .841 .888 .768 .062
Stage1,2,3,4 3.70 .928 .045 1.35 .636 .862 .846 .895 .777 .059

Table 8. Ablation on the tuning stages in SegFormer. We conduct evaluations on four datasets for four different tasks. The performance of
EVP becomes better as the tuning stages increase.

r
Trainable Defocus Blur Shadow Forgery Camouflaged

Param. CUHK [67] ISTD [73] CASIA [12] CAMO [43]
(M) Fβ ↑ MAE ↓ BER ↓ F1 ↑ AUC ↑ Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓
64 3.17 .910 .055 2.09 .547 .830 .829 .875 .743 .070
32 3.18 .919 .054 1.84 .574 .844 .832 .877 .749 .067
16 3.22 .924 .051 1.67 .602 .857 .838 .888 .761 .065
8 3.34 .923 .049 1.46 .619 .856 .841 .890 .767 .062
4 3.70 .928 .045 1.35 .636 .862 .846 .895 .777 .059
2 4.95 .929 .042 1.31 .642 .859 .842 .896 .776 .059
1 9.56 .931 .040 1.48 .621 .847 .843 .894 .778 .059

Table 9. Ablation on the parameter scale factor r. We conduct evaluations on four datasets for four different tasks. EVP gets the balance
between the number of tunable parameters and performances when r = 4.

Comparison with the efficient tuning methods. We eval-
uate our method with full finetuning and only tuning the
decoder, which are the widely-used strategies for down-
streaming task adaption. And similar methods from image
classification, i.e., VPT [33] and AdaptFormer [4]. The num-
ber of prompt tokens is set to 10 for VPT and the middle
dimension of AdaptMLP is set to 2 for a fair comparison
in terms of the tunable parameters. It can be seen from Ta-
ble 6 that when only tuning the decoder, the performance
drops largely. Compared with similar methods, introduc-
ing extra learnable tokens [33] or MLPs in Transformer
block [4] also benefits the performance. We introduce a
hyper-parameter (r) which is used to control the number
of parameters of the Adaptor as described in equation 5.
We first compare EVP (r=16) with similar parameters as
other methods. From the table, our method achieves much
better performance. We also report EVP (r=4), with more
parameters, the performance can be further improved and
outperforms full-tuning on 3 of 4 datasets.

4.4. Ablation Study

We conduct the ablation to show the effectiveness of each
component. The experiments are performed with the scaling
factor r = 4 except specified.

Architecture Design. To verify the effectiveness of the
proposed visual prompting architecture, we modify it into

different variants. As shown in Table 7 and Figure 5, sharing
MLPitune in different Adaptors only saves a small number of
parameters (0.55M v.s. 0.34M) but leads to a significant per-
formance drop. It cannot obtain consistent performance im-
provement when using different MLPup in different Adaptors,
moreover introducing a large number of parameters (0.55M
v.s. 1.39M). On the other hand, the performance will drop
when we remove Fpe or Fhfc, which means that they are
both effective visual prompts.

Tuning Stage. We try to answer the question: which stage
contributes mostly to prompting tuning? Thus, we show the
variants of our tuning method by changing the tunable stages
in the SegFormer backbone. SegFormer contains 4 stages for
multi-scale feature extraction. We mark the Stagex where the
tunable prompting is added in Stage x. Table 8 shows that
better performance can be obtained via the tunable stages
increasing. Besides, the maximum improvement occurs in
Stage1,2 to Stage1,2,3. Note that the number of transformer
blocks of each stage in SegFormer-B4 is 3, 8, 27, and 3,
respectively. Thus, the effect of EVP is positively correlated
to the number of the prompted transformer blocks.

Scale Factor r (equation 5). We introduce r in Sec 3.2 of
the main paper to control the number of learnable parameters.
A larger r will use fewer parameters for tuning. As shown in
Table 9, the performance improves on several tasks when r
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Method
Trainable Defocus Blur Shadow Forgery Camouflaged

Param. CUHK [67] ISTD [73] CASIA [12] CAMO [43]
(M) Fβ ↑ MAE ↓ BER ↓ F1 ↑ AUC ↑ Sα ↑ Eϕ ↑ Fw

β ↑ MAE ↓
Full-tuning 98.98 .862 .077 4.39 .290 .650 .593 .677 .382 .157
Only Decoder 13.00 .836 .097 4.77 .318 .662 .615 .659 .385 .162
VPT [33] 13.09 .843 .092 4.56 .315 .666 .615 .660 .387 .161
AdaptFormer [4] 13.08 .845 .092 4.60 .319 .662 .614 .662 .387 .161
EVP 13.06 .850 087 4.36 .324 .675 .622 .674 .402 .156

Table 10. Comparison with other tuning methods with SETR [85] on four different tasks. We conduct an evaluation on four datasets for four
different tasks. The best performance is shown as bold. The prompt-tuning method which achieves better performance than full-tuning is
marked as orange.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5. Quantitative comparison using full-tuning and different prompting designs on ISTD [73] dataset for shadow detection. From the
left to right is: (a) Input, (b) GT, (c) Full-tuning, (d) Decoder (No prompting), (e) Ours w/o Fpe, (f) Ours w/o Fhfc, (g) Ours w/ Shared
MLPitune, (h) Ours w/ Unshared MLPup, (i) Ours Full.

decreases from 64 to 4; when r continues to decrease to 2 or
1, it can not gain better performance consistently even if the
model becomes larger. It indicates that r = 4 is a reasonable
choice to make a trade-off between the performance and
model size.

EVP in Plain ViT. We experiment on SETR [85] to con-
firm the generalizability of EVP. SETR employs plain ViT
as the backbone and a progressive upsampling ConvNet as
the decoder, while SegFormer has a hierarchical backbone
with 4 stages. Therefore, the only distinction between the
experiments using SegFormer is that all modifications are
limited to the single stage in plain ViT. The experiments are
conducted with ViT-Base [13] pretrained on the ImageNet-
21k [11] dataset. The number of prompt tokens is set to 10
for VPT, the middle dimension of AdaptMLP is set to 4 for
AdaptFormer, and r is set to 32 for our EVP. As shown in
Table 10, EVP also outperforms other tuning methods when
using plain ViT as the backbone.

5. Conclusion

In this paper, we present explicit visual prompting to
unify the solutions of low-level structure segmentations. We
mainly focus on two kinds of features: the frozen features
from patch embedding and the high-frequency components
from the original image. Equipped with our method, we
find that a frozen vision transformer backbone from the
ImageNet with limited tunable parameters can achieve sim-
ilar performance as the full-tuned network structures, also
the state-of-the-art performance compared with the other
task-specific methods. For future works, we will extend our
approach to other related problems and hope it can promote
further exploration of visual prompting.
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[1] Soonmin Bae and Frédo Durand. Defocus magnification. In

Computer Graphics Forum, 2007. 1, 2
[2] Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Glober-

son, and Alexei A Efros. Visual prompting via image inpaint-
ing. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. 2

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 2

[4] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yib-
ing Song, Jue Wang, and Ping Luo. Adaptformer: Adapting
vision transformers for scalable visual recognition. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2022. 2, 5, 7, 8

[5] Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng,
and Pheng-Ann Heng. A multi-task mean teacher for semi-
supervised shadow detection. In Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 3, 5, 6

[6] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and An-
drea Prati. Detecting moving objects, ghosts, and shadows in
video streams. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2003. 3

[7] Xiaodong Cun and Chi-Man Pun. Image splicing localization
via semi-global network and fully connected conditional ran-
dom fields. In Proceedings of the European Conference on
Computer Vision Workshop (ECCVW), 2018. 2

[8] Xiaodong Cun and Chi-Man Pun. Defocus blur detection via
depth distillation. In Proceedings of the European Conference
on Computer Vision (ECCV), 2020. 1, 3, 5

[9] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards ghost-
free shadow removal via dual hierarchical aggregation net-
work and shadow matting gan. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2020. 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 3

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 6, 8

[12] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering
detection evaluation database. In China Summit and Inter-
national Conference on Signal and Information Processing,
2013. 4, 5, 6, 7, 8

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 2, 3,
8

[14] Aleksandrs Ecins, Cornelia Fermüller, and Yiannis Aloi-
monos. Shadow free segmentation in still images using local

density measure. In International Conference on Computa-
tional Photography (ICCP), 2014. 3

[15] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng,
Jianbing Shen, and Ling Shao. Camouflaged object detection.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2777–2787, 2020. 1, 3,
4, 5, 6

[16] Xiaoying Feng, Ingemar J Cox, and Gwenael Doerr. Nor-
malized energy density-based forensic detection of resampled
images. Transactions on Multimedia, 2012. 2

[17] Xue Feng, Cui Guoying, and Song Wei. Camouflage texture
evaluation using saliency map. In Proceedings of the Fifth
International Conference on Internet Multimedia Computing
and Service, pages 93–96, 2013. 3

[18] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy
minimization for shadow removal. 2009. 3

[19] Graham D Finlayson, Steven D Hordley, Cheng Lu, and
Mark S Drew. On the removal of shadows from images. IEEE
transactions on pattern analysis and machine intelligence,
28(1):59–68, 2005. 3

[20] Jessica Fridrich and Jan Kodovsky. Rich models for steganal-
ysis of digital images. Transactions on information Forensics
and Security, 2012. 2

[21] S Alireza Golestaneh and Lina J Karam. Spatially-varying
blur detection based on multiscale fused and sorted trans-
form coefficients of gradient magnitudes. In Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2

[22] Jing Hao, Zhixin Zhang, Shicai Yang, Di Xie, and Shiliang
Pu. Transforensics: image forgery localization with dense
self-attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15055–15064, 2021.
2, 4, 5

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
3

[24] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv, 2016. 4

[25] Jianqin Yin Yanbin Han Wendi Hou and Jinping Li. Detection
of the mobile object with camouflage color under dynamic
background based on optical flow. Procedia Engineering,
15:2201–2205, 2011. 3

[26] Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak Chaud-
huri, Zhenheng Yang, and Ram Nevatia. Span: Spatial pyra-
mid attention network for image manipulation localization. In
Proceedings of the European Conference on Computer Vision
(ECCV), 2020. 2, 5, 6

[27] Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and Pheng-Ann
Heng. Direction-aware spatial context features for shadow
detection. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 3, 5

[28] Fangjun Huang, Jiwu Huang, and Yun Qing Shi. Detecting
double jpeg compression with the same quantization matrix.
Transactions on Information Forensics and Security, 2010. 1,
2

[29] Hailing Huang, Weiqiang Guo, and Yu Zhang. Detection of
copy-move forgery in digital images using sift algorithm. In

19442



Pacific-Asia Workshop on Computational Intelligence and
Industrial Application, 2008. 2

[30] Xiang Huang, Gang Hua, Jack Tumblin, and Lance Williams.
What characterizes a shadow boundary under the sun and
sky? In 2011 international conference on computer vision,
pages 898–905. IEEE, 2011. 3

[31] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A
Efros. Fighting fake news: Image splice detection via learned
self-consistency. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018. 1, 2

[32] Ashraful Islam, Chengjiang Long, Arslan Basharat, and An-
thony Hoogs. Doa-gan: Dual-order attentive generative ad-
versarial network for image copy-move forgery detection and
localization. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 2

[33] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual
prompt tuning. arXiv preprint arXiv:2203.12119, 2022. 2, 4,
5, 7, 8

[34] Peng Jiang, Haibin Ling, Jingyi Yu, and Jingliang Peng.
Salient region detection by ufo: Uniqueness, focusness and
objectness. In Proceedings of the International Conference
on Computer Vision (ICCV), 2013. 2

[35] LIN Jiaying, TAN Xin, XU Ke, MA Lizhuang, and WH Ryn-
son. Frequency-aware camouflaged object detection. ACM
Transactions on Multimedia Computing, Communications
and Applications, 2022. 3, 5

[36] Imran N Junejo and Hassan Foroosh. Estimating geo-
temporal location of stationary cameras using shadow tra-
jectories. In Proceedings of the European Conference on
Computer Vision (ECCV), 2008. 3

[37] Ali Karaali and Claudio Rosito Jung. Image retargeting based
on spatially varying defocus blur map. In International Con-
ference on Image Processing (ICIP), 2016. 1, 2

[38] Ali Karaali and Claudio Rosito Jung. Edge-based defocus
blur estimation with adaptive scale selection. Transactions
on Image Processing (TIP), 2017. 2

[39] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. arXiv,
2022. 1

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[41] Jean-François Lalonde, Alexei A Efros, and Srinivasa G
Narasimhan. Detecting ground shadows in outdoor consumer
photographs. In European conference on computer vision,
pages 322–335. Springer, 2010. 3

[42] Hieu Le, Tomas F Yago Vicente, Vu Nguyen, Minh Hoai,
and Dimitris Samaras. A+ d net: Training a shadow detector
with adversarial shadow attenuation. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018. 3

[43] Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie, Minh-Triet
Tran, and Akihiro Sugimoto. Anabranch network for cam-
ouflaged object segmentation. Computer Vision and Image
Understanding, 184:45–56, 2019. 3, 4, 5, 6, 7, 8

[44] Aixuan Li, Jing Zhang, Yunqiu Lv, Bowen Liu, Tong Zhang,
and Yuchao Dai. Uncertainty-aware joint salient object
and camouflaged object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10071–10081, 2021. 3, 5

[45] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural
language processing. arXiv, 2021. 2

[46] Qingzhong Liu. Detection of misaligned cropping and re-
compression with the same quantization matrix and relevant
forgery. In ACM workshop on Multimedia in forensics and
intelligence, 2011. 2

[47] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. Pscc-
net: Progressive spatio-channel correlation network for im-
age manipulation detection and localization. arXiv preprint
arXiv:2103.10596, 2021. 2

[48] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. Pscc-
net: Progressive spatio-channel correlation network for image
manipulation detection and localization. IEEE Transactions
on Circuits and Systems for Video Technology, 2022. 4, 5

[49] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 3

[50] Weiqi Luo, Jiwu Huang, and Guoping Qiu. Jpeg error analysis
and its applications to digital image forensics. Transactions
on Information Forensics and Security, 2010. 1, 2

[51] Yunqiu Lv, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen Liu,
Nick Barnes, and Deng-Ping Fan. Simultaneously localize,
segment and rank the camouflaged objects. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11591–11601, 2021. 3, 5

[52] Siwei Lyu, Xunyu Pan, and Xing Zhang. Exposing region
splicing forgeries with blind local noise estimation. 2014. 2

[53] Babak Mahdian and Stanislav Saic. Using noise inconsisten-
cies for blind image forensics. Image and Vision Computing,
2009. 2

[54] Haiyang Mei, Ge-Peng Ji, Ziqi Wei, Xin Yang, Xiaopeng
Wei, and Deng-Ping Fan. Camouflaged object segmentation
with distraction mining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8772–8781, 2021. 3, 5, 6

[55] Ivana Mikic, Pamela C Cosman, Greg T Kogut, and Mohan M
Trivedi. Moving shadow and object detection in traffic scenes.
2000. 1

[56] Sohail Nadimi and Bir Bhanu. Physical models for moving
shadow and object detection in video. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2004. 3

[57] Adam Novozamsky, Babak Mahdian, and Stanislav Saic.
Imd2020: a large-scale annotated dataset tailored for detecting
manipulated images. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision Workshops,
pages 71–80, 2020. 4, 5

[58] Takahiro Okabe, Imari Sato, and Yoichi Sato. Attached
shadow coding: Estimating surface normals from shadows

19443



under unknown reflectance and lighting conditions. In Pro-
ceedings of the International Conference on Computer Vision
(ICCV), 2009. 3

[59] Alexandros Panagopoulos, Chaohui Wang, Dimitris Samaras,
and Nikos Paragios. Illumination estimation and cast shadow
detection through a higher-order graphical model. In Pro-
ceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2011. 1

[60] Jinsun Park, Yu-Wing Tai, Donghyeon Cho, and In So Kweon.
A unified approach of multi-scale deep and hand-crafted fea-
tures for defocus estimation. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
3

[61] Thomas W Pike. Quantifying camouflage and conspicuous-
ness using visual salience. Methods in Ecology and Evolution,
9(8):1883–1895, 2018. 3

[62] Alin C Popescu and Hany Farid. Exposing digital forgeries
by detecting traces of resampling. Transactions on signal
processing, 2005. 1, 2

[63] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1

[64] Ronald Salloum, Yuzhuo Ren, and C-C Jay Kuo. Image
splicing localization using a multi-task fully convolutional
network (mfcn). Journal of Visual Communication and Image
Representation, 2018. 2

[65] Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, and
Andrew Jackson. Fine-tuning image transformers using learn-
able memory. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 2

[66] P Sengottuvelan, Amitabh Wahi, and A Shanmugam. Perfor-
mance of decamouflaging through exploratory image analysis.
In 2008 First International Conference on Emerging Trends
in Engineering and Technology, pages 6–10. IEEE, 2008. 3

[67] Jianping Shi, Li Xu, and Jiaya Jia. Discriminative blur detec-
tion features. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 1, 2, 4, 5, 6, 7,
8

[68] Jianping Shi, Li Xu, and Jiaya Jia. Just noticeable defocus blur
detection and estimation. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.
2

[69] Przemysław Skurowski, Hassan Abdulameer, J Błaszczyk,
Tomasz Depta, Adam Kornacki, and P Kozieł. Animal camou-
flage analysis: Chameleon database. Unpublished manuscript,
2(6):7, 2018. 4, 5, 6

[70] Chang Tang, Xinzhong Zhu, Xinwang Liu, Lizhe Wang, and
Albert Zomaya. Defusionnet: Defocus blur detection via re-
currently fusing and refining multi-scale deep features. In
Proceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 3, 5

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017. 3

[72] Tomás F Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai,
and Dimitris Samaras. Large-scale training of shadow detec-
tors with noisily-annotated shadow examples. In European
Conference on Computer Vision, pages 816–832. Springer,
2016. 4, 5, 6

[73] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional
generative adversarial networks for jointly learning shadow
detection and shadow removal. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1788–1797, 2018. 4, 5, 6, 7, 8

[74] Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Ab-
hinav Shrivastava, Ser-Nam Lim, and Yu-Gang Jiang. Ob-
jectformer for image manipulation detection and localization.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2364–2373, 2022. 2, 4,
5

[75] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Deep
matching and validation network: An end-to-end solution
to constrained image splicing localization and detection. In
ACM Multimedia (ACMMM), 2017. 2

[76] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan.
Mantra-net: Manipulation tracing network for detection and
localization of image forgeries with anomalous features. In
Proceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1, 2, 5, 6

[77] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. 3, 4, 6

[78] Xin Yi and Mark Eramian. Lbp-based segmentation of de-
focus blur. Transactions on Image Processing (TIP), 2016.
2

[79] Wenda Zhao, Xueqing Hou, You He, and Huchuan Lu. De-
focus blur detection via boosting diversity of deep ensemble
networks. Transactions on Image Processing (TIP), 2021. 3,
5, 6

[80] Wenda Zhao, Cai Shang, and Huchuan Lu. Self-generated
defocus blur detection via dual adversarial discriminators.
In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. 3, 5

[81] Wenda Zhao, Fan Zhao, Dong Wang, and Huchuan Lu. Defo-
cus blur detection via multi-stream bottom-top-bottom fully
convolutional network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3080–3088, 2018. 4, 5

[82] Wenda Zhao, Fan Zhao, Dong Wang, and Huchuan Lu. De-
focus blur detection via multi-stream bottom-top-bottom net-
work. Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2019. 3, 5

[83] Wenda Zhao, Bowen Zheng, Qiuhua Lin, and Huchuan Lu.
Enhancing diversity of defocus blur detectors via cross-
ensemble network. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 3,
5, 6

[84] Quanlong Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH
Lau. Distraction-aware shadow detection. In Proceedings of

19444



the Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 3, 5

[85] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xi-
ang, Philip HS Torr, et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6881–6890, 2021. 8

[86] Jun-Liu Zhong and Chi-Man Pun. An end-to-end dense-
inceptionnet for image copy-move forgery detection. Trans-
actions on Information Forensics and Security, 2019. 2

[87] Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S Davis.
Learning rich features for image manipulation detection. In
Proceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 1, 2

[88] Jiejie Zhu, Kegan GG Samuel, Syed Z Masood, and Mar-
shall F Tappen. Learning to recognize shadows in monochro-
matic natural images. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2010. 3

[89] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao
Xu, Jing Qin, and Pheng-Ann Heng. Bidirectional feature
pyramid network with recurrent attention residual modules for
shadow detection. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018. 3, 5

[90] Lei Zhu, Ke Xu, Zhanghan Ke, and Rynson WH Lau. Miti-
gating intensity bias in shadow detection via feature decom-
position and reweighting. In Proceedings of the International
Conference on Computer Vision (ICCV), 2021. 1, 3, 5, 6

19445


