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Abstract

The non-line-of-sight imaging technique aims to recon-
struct targets from multiply reflected light. For most exist-
ing methods, dense points on the relay surface are raster
scanned to obtain high-quality reconstructions, which re-
quires a long acquisition time. In this work, we propose a
signal-surface collaborative regularization (SSCR) frame-
work that provides noise-robust reconstructions with a min-
imal number of measurements. Using Bayesian inference,
we design joint regularizations of the estimated signal, the
3D voxel-based representation of the objects, and the 2D
surface-based description of the targets. To our best knowl-
edge, this is the first work that combines regularizations in
mixed dimensions for hidden targets. Experiments on syn-
thetic and experimental datasets illustrated the efficiency of
the proposed method under both confocal and non-confocal
settings. We report the reconstruction of the hidden targets
with complex geometric structures with only 5× 5 confocal
measurements from public datasets, indicating an acceler-
ation of the conventional measurement process by a factor
of 10,000. Besides, the proposed method enjoys low time
and memory complexity with sparse measurements. Our
approach has great potential in real-time non-line-of-sight
imaging applications such as rescue operations and au-
tonomous driving.

1. Introduction

The non-line-of-sight (NLOS) imaging technique en-
ables reconstructions of targets out of the direct line of
sight, which is attractive in various applications such as au-
tonomous driving, remote sensing, rescue operations and
medical imaging [1,5,6,10,15,16,19,21,26,33–35,38–40].
A typical scenario of NLOS imaging is shown in Figure 1.
Several points on the visible surface are illuminated by a
laser and the back-scattered light from the target is de-
tected to reconstruct the target. The NLOS detection sys-
tem is confocal if each illumination point is the same with

Figure 1. A typical non-line-of-sight imaging scenario. a) The
time resolved signals are measured at only 3 × 3 focal points. b)
The three views of the reconstructed target obtained with the pro-
posed SSCR method.

the detection point, and non-confocal otherwise. The time-
correlated single-photon counting (TCSPC) technique is ap-
plied in the detection process due to the extremely low pho-
ton intensity after multiple diffuse reflections. In practice, a
single-photon avalanche diode (SPAD) in the Geiger-mode
can be used to record the photon events with time-of-flight
(TOF) information [3]. The first experimental demonstra-
tion of NLOS imaging dates back to 2012, where the targets
are reconstructed with the back-projection (BP) method
[37]. Extensions of this approach include its fast implemen-
tation [2], the filtering technique for reconstruction quality
enhancement [17], and weighting factors for noise reduc-
tion [11].

A number of efficient methods have been designed
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for fast reconstructions. The light cone transform (LCT)
method [30] formulates the physical model as a convolu-
tion operator, so that the reconstructions can be obtained us-
ing the Wiener deconvolution method with the fast Fourier
transform. The directional light cone transform (D-LCT)
[42] generalizes the LCT and reconstructs the albedo and
surface normal simultaneously. The method of frequency
wavenumber migration (F-K) [20] formulates the propaga-
tion of light using the wave equation, and also provides a
fast inversion algorithm with the frequency-domain interpo-
lation technique. Whereas the LCT, D-LCT and F-K meth-
ods only work directly in confocal measurement scenarios,
the phasor field (PF) method [23,24,32] converts the NLOS
imaging scenarios to LOS cases and works for the gen-
eral non-confocal setting with low computation complex-
ity. For high-quality and noise-robust reconstructions, the
signal-object collaborative regularization (SOCR) method
can be applied, but brings additional computational cost. In
recent years, deep learning-based methods are also intro-
duced to the field of NLOS imaging [7, 8, 27, 43]. Besides,
advances in hardware enhance the distance of NLOS detec-
tion to kilometers [39], or make it possible to reconstruct
targets on the scale of millimeters [38].

Despite these breakthroughs, the trade off between the
acquisition time and the imaging quality is inevitable. In
the raster scanning mode, the acquisition time is propor-
tional to the number of measurement points with fixed scan-
ning speed. Due to the intrinsic ill-posedness of the NLOS
reconstruction problem [22] and heavy measurement noise
[11], dense measurements are necessary for high quality re-
constructions [20, 23, 30]. The measurement process may
take from seconds to hours, which poses a great challenge
for applications such as autonomous driving, where real-
time reconstruction of the video stream is needed. The ac-
quisition process can be accelerated by reducing the number
of pulses used for each illumination point. In the work [18],
the pulse number that record the first returning photon is
used to reconstruct the target. Another way to reduce the ac-
quisition time is to design array detectors for non-confocal
measurements. For example, the implementation of the
phasor field method with SPAD arrays realizes low-latency
real-time video imaging of the hidden scenes [28]. A third
way to accelerate the NLOS detection process is to reduce
the number of measurement points. It is shown that 16×16
confocal measurements are enough to reconstruct the hid-
den target by incorporating the compressed sensing tech-
nique [41].

In this paper, we study the randomness in the photon de-
tection process of NLOS scenarios and propose an imag-
ing method that deals with a very limited number of spatial
measurements, which we term the few-shot NLOS detec-
tion scenarios. We design joint regularizations of the esti-
mated signal, the 3D voxel-based representation of the ob-

Figure 2. The least-squares solution of the statue with 3 × 3 con-
focal measurements [20]. The target cannot be identified even
though its simulated signal matches the measurements well (see
Fig. 3). Strong regularizations are needed to reconstruct the target.
See also Fig. 6 for a comparison.

Figure 3. Comparisons of the measured data and the simulated
data of the least-squares solution for the instance of the statue [20].
The measured signals are shown in black. The simulated data of
the least-squares solution are shown in red. The shapes of the
signals are very close to each other.

jects, and the 2D surface-based description of the targets,
which leads to faithful reconstruction results. The main
contributions of this work are as follows.

• We propose a signal-surface collaborative regulariza-
tion (SSCR) framework for few-shot non-line-of-sight
reconstructions, which works under both confocal and
non-confocal settings.

• We report the reconstruction of the hidden targets with
complex geometric structures with only 5 × 5 confo-
cal measurements from public datasets, indicating an
acceleration of the conventional measurement process
by a factor of 10,000.
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2. Related work

From a mathematical point of view, the non-line-of-sight
imaging task belongs to the category of inverse problem.
The goal is to reconstruct the surface of the hidden tar-
get with the measured signal. The NLOS inverse prob-
lem is ill-posed due to the intrinsic structure of the physi-
cal model [22] and heavy measurement noise [11]. When
the number of measurement points is small, the lack of data
leads to rank-deficiency of the measurement matrix, making
the reconstruction task even harder [41]. As an example,
Fig. 2 shows the reconstruction results of the instance of
statue with 3× 3 confocal measurements from the Stanford
dataset [20] using the traditional least-squares method. The
target cannot be identified in the reconstruction. The mea-
sured signal and the simulated signal of the least-squares so-
lution are illustrated in Fig. 3, which shows that the shapes
of these two signals are very similar. The experimental
setup and more quantitative details are provided in the sup-
plement. In such few-shot NLOS detection scenarios, regu-
larization becomes a vital tool for high-quality reconstruc-
tions. Here, we briefly review the signal-object collabora-
tive regularization method [25]. The proposed method is
closely related to this method.

The signal-object collaborative regularization (SOCR)
method [25] represents the hidden target with voxels and
considers prior terms for both the reconstructed target and
the signal. The joint regularization term concerns sparse-
ness of the reconstruction, non-local self-similarity of the
target and the smoothness of the signal. The method em-
ploysL1 regularization, orthogonal optimization and empir-
ical Wiener filter to provide noiseless reconstructions with
sharp boundaries, but at the expense of additional com-
putational cost. The SOCR method provides high-quality
reconstructions with dense measurements, but may fail in
few-show NLOS detection scenarios. In such cases, the ill-
posedness of the NLOS inverse problem is so strong that the
method may result in biased estimations of the targets and
artifacts in the background.

In this paper, we propose a signal-surface collaborative
regularization method that provides faithful reconstructions
of the targets in few-shot NLOS detection scenarios. The
proposed approach differs from the SOCR method in two
aspects. Firstly, the SOCR method uses the quadratic data
misfit as the data fidelity term, which assumes noise of the
Gaussian type. In the proposed SSCR method, we study
the randomness of photon event stamping, and use logarith-
mic data fidelity terms derived from Bernoulli photon event
assumptions. Secondly, the SOCR method considers regu-
larizations for three-dimensional voxels, while the proposed
method introduces two-dimensional regularizations for the
surface of the hidden objects and incorporates priors in both
2D and 3D representations of the targets.

3. The physical model
In general, the reconstruction quality and the computa-

tion complexity of an NLOS imaging algorithm rely heav-
ily on the forward model that simulates the physical mea-
surement process. Fine physical models lead to reconstruc-
tions with clear geometric structures, but at the expense of
high computational cost [13, 36]. Instead of putting for-
ward a novel physical model, we aim at overcoming the
ill-posedness of the NLOS imaging task with an extremely
small number of measurements. We adopt a linear phys-
ical model which only considers the square fall-off of the
photon intensity. Let x′i and x′d be the illumination and de-
tection points on the visible surface, the photon intensity
detected at time t is modeled as

τ(x′i, x
′
d, t) =

∫
Ω

u(x)

‖x′i − x‖2‖x′d − x‖2
·

δ(‖x′i − x‖+ ‖x′d − x‖ − ct)dx,
(1)

in which c is the speed of light, x is a point in the three-
dimensional reconstruction domain Ω. The albedo value of
the point x is represented by u(x). The δ function describes
the intrinsic domain of integration as the set of points with
optical path length ct. When x′i 6= x′d, the domain of in-
tegration is a half ellipsoid with foci x′i and x′d. When
x′i = x′d = x′, the domain of integration is a half sphere
with center x′ and the model reduces to the one used in the
work [30], which writes

τ(x′, t) =

∫
Ω

u(x)

‖x′ − x‖4
· δ(2‖x′ − x‖ − ct)dx. (2)

4. The SSCR method
In this section, we study the randomness in the mea-

surement process and propose a signal-surface collabora-
tive regularization framework for few-shot NLOS imaging
scenarios.

Notation The L2 norm of a vector x is denoted by ‖x‖.
We use [N ] as an abbreviation of the set {1, 2, . . . , N}. We
use ⊗ to denote the Kronecker product of matrices. The
three-dimensional reconstruction domain Ω is discretized
with voxels V = {vijk = (xi, yj , zk)|i ∈ [I], j ∈ [J ], k ∈
[K]}, where xi, yj , and zk are the coordinates of the point
vijk in the horizontal, vertical and depth directions. Each
point in V represents a cubic voxel of the same size. The
grid function u is used to denote the discrete albedo val-
ues, with its components denoted by uijk = u(vijk). To
reconstruct the hidden targets, the signal is measured at P
pairs of points {(x′p, y′p)}Pp=1, in which x′p and y′p are the
coordinates of the pth illumination and detection points, re-
spectively. For each measurement pair (x′p, y

′
p), the time

resolved signal contains Q time bins. The length of each
time bin is a constant, usually at the scale of picoseconds in
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real applications. We denote by τp,q the photon intensity of
the pth measurement pair and the qth time bin. The set of
photon intensities is denoted by τ .

The reconstructed surface We use u ∈ RI×J×K to rep-
resent the albedo of the NLOS scene, which is a three-
diminsional tensor. However, it is only possible to recon-
struct the portion of the hidden surface where photons are
bounced back, which is a two dimenional geometric object.
With this observation, we define a subset G ( RI×J×K as
follows

G ={g = (gijk) ∈ RI×J×K | ∀(i, j) ∈ [I]× [J ],

∃ at most one k = kij ∈ [K], s.t. gi,j,kij 6= 0}.
(3)

Each element g ∈ G yields a trival two-dimensional param-
eterization. For each pixel (i, j) ∈ [I]× [J ], only one of the
following cases holds.

• Case 1: gijk = 0 for all k ∈ [K]. In this case, the line
x = xi, y = yj does not intersect with the target and
we call (i, j) a background pixel.

• Case 2: There exists only one k = kij , such that
gi,j,kij 6= 0. In this case, we call (i, j) a foreground
pixel and the corresponding depth is zij .

To express elements of G with matrices, we show that there
is a bijection from the set G to the following set

G′ = {(e,d,α) | e = (eij)I×J , eij ∈ {0, 1},
d = (dij)I×J , dij ∈ [K] ∪ {NaN},
α = (αij)I×J , αij ∈ R ∪ {NaN},

∀(i, j), eij = 0 ⇐⇒ dij = NaN ⇐⇒ αij = NaN}.
(4)

In the definition of G′, the placeholder NaN represents a
background pixel and does not operate with real numbers.
To construct a bijection from G to G′, for each element
g ∈ G, let e be the indicator function of the set of fore-
ground pixels, d be the depths of the foreground pixels and
α be the corresponding albedo values. Then, fill the ma-
trices d and α with NaNs where necessary. It is easy to
check that this map: G → G′ is one to one and onto. We
call e, d and α the foreground indication matrix, the depth
matrix and the albedo matrix of g, respectively. We will de-
sign regularizations for elements of G, in which the matrix
representations bring remarkable convenience.

The data of photon event stamping In NLOS detections,
the intensity of the back scattered light is extremely weak
after multiple diffuse reflections. For each measurement
pair, a total of N laser pulses are emitted to the illumina-
tion point. We use the binary variable dp,q,n to denote the
recorded photon event

dp,q,n =

{
1, record a photon event
0, otherwise

, (5)

in which p ∈ [P ], q ∈ [Q], and n ∈ [N ] are indices of the
measurement pair, the time bin and the pulse number. For
each measurement pair, the detector can record at most one
photon event for each pulse, which means that

∑
q dp,q,n ≤

1. However, the case of recording more than one photon
event in a single pulse can be neglected [18]. The collection
of photon event stamping is denoted by d.

The Bayesian framework We propose a unified
Bayesian framework that reconstructs the hidden targets
with the measured data of photon event stamping. For
each measurement pair p, time bin q, and pulse number
n, it is assumed that the detection of a photon event
ep,q,n follows the Bernoulli distribution with probability
P {ep,q,n = 1} = 1 − e−ητp,q , in which η > 0 is the de-
tection efficiency [30]. The collection of random variables
ep,q,n is denoted by e. In NLOS detection scenarios, the
probability of detecting a photon event is extremely small.
The first order approximation of the exponent is adopted
and we assume

P {ep,q,n = 1} = ητp,q. (6)

In Eq. (1), the photon intensity is linear with respect to the
albedo, we choose η = 1 without loss of generality. We
also assume that the detection of different photon events
is independent. Let g ∈ G be the albedo of the hidden
surface. We view g and τ as random vectors and find
them simultaneously by maximizing the posterior probabil-
ity P(g, τ |e = d), where e is related with τ by Eq. (6).
Noting that the set G is not a convex subset of RI×J×K ,
the resulting optimization problem is non-convex and hard
to solve. To tackle this problem, we introduce the random
vector u ∈ RI×J×K as an approximation of the surface g
and maximize P(g,u, τ |e = d). Besides, we assume that
the conditional probability of e only depends on τ , which
means

P(e = d|g,u, τ ) = P(e = d|τ ). (7)

Using the Bayesian formula, we have

arg max
g,u,τ

P(g,u, τ |e = d)

= arg max
g,u,τ

P(e = d|g,u, τ )P(g,u, τ )

= arg max
g,u,τ

P(e = d|τ )P(g,u, τ )

= arg max
g,u,τ

∏
p,q,n

P(ep,q,n = dp,q,n|τp,q)P(g,u, τ )

= arg max
g,u,τ

∏
p,q

(τp,q)
dp,q (1− τp,q)N−dp,qP(g,u, τ )

= arg min
g,u,τ

∑
p,q

[(dp,q −N) ln(1− τp,q)

− dp,q ln(τp,q)] + Γ(g,u, τ ),

(8)
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where dp,q =
∑N
n=1 dp,q,n is the data of photon event his-

togram. Γ(g,u, τ ) is the joint regularization term of g, u
and τ .

The joint regularization term Γ(g,u, τ ) plays a crucial
role in the process of reconstruction. An ingenious design
of this term not only results in faithful reconstructions, but
also admits low-cost algorithms to solve the optimization
problem (8). In this paper, we assume

Γ(g,u, τ ) = λ‖τ −Au‖2

+J1(u) + J2(u, τ ) + J3(u,g),
(9)

in which A is the forward operator defined by Eq. (1). J1

describes the prior distribution of u, J2 is the joint prior
of u and τ , J3 is the joint prior of u and g. λ is a fixed
parameter.

The prior J1(u) The priors of the voxel based represen-
tation of the targets have been widely used in existing works
[14,20,30]. Two efficient priors are the sparseness and non-
local self-similarity of the objects. In the work [25], these
two priors are considered for the 4D tensor of the directional
albedo. Here, we simplify the approach and directly use L1

norm of the albedo to impose the sparseness of the target.
For the non-local self-similarity prior, we directly follow
the block-matching and sparse representation method in the
work [25], and set

J1(u) = su‖u‖1
+λu

∑
i

[
‖Bui −DsCiD

T
n ‖2 + λpu|Ci|0

]
, (10)

in which su, λu, and λpu are fixed parameters. | · |0 de-
notes the number of nonzero elements. The summation is
made over all possible local 3D albedo blocks. The matrix
Bui is constructed by putting the vectorizations of the ith

local block ui and its neighbors column by column. The
orthogonal matrices Ds and Dn capture the local structure
and non-local self-similarity of the albedo u. Ci contains
the transform-domain coefficients of the ith block, whose
sparseness is imposed by the term |Ci|0. For more details,
we refer the readers to [4, 9, 25].

The prior J2(u, τ ) We seek for a joint local sparse rep-
resentation scheme for the estimated signal τ and the simu-
lated signal Au. It is assumed that τ is a three dimensional
tensor of size Nx × Ny × Q, in which Nx and Ny are the
number of measurement points in the horizontal and vertical
directions. Q is the number of time bins. We call a three-
dimensional sub-tensor of τ a local patch. Consider the set
of all possible patches of size rx × ry × rq . We obtain the
patch dataset P(τ ) by generating the vectorization of each
patch and put them together column by column. We use the
orthogonal dictionary D = Dq⊗Dy⊗Dx as the transform
basis, where Dq , Dy and Dx are matrices of the discrete

consine transform of orders q, y and x, respectively. The
joint prior of u and τ is given by

J2(u, τ ) = λt‖P(τ )−DS‖2

+λut‖P(Au)−DS‖2 + λpt|S|0,
(11)

in which λt, λut and λpt are fixed parameters. P(Au) rep-
resents the patch dataset generated by the simulated signal
of u. S contains the public transform domain coefficients
of P(τ ) and P(Au), whose sparseness is imposed by the
L0 term.

The prior J3(u,g) We express the joint regularization of
u and g as

J3(u,g) = λg
[
‖u− g‖2 + Υ(g)

]
, (12)

in which Υ(g) describes the prior distribution of g ∈ G.
The set G is not convex, making it difficult to design Υ(g)
explicitly. In fact, it suffcies to update g with fixed u and
vise vera in the final optimization problem. With fixed g, u
can be easily updated with the term ‖u− g‖2. To update g
with any fixed u ∈ RI×J×K , we choose an element from
the set G which not only lies in the neighborhood of u in the
L2 sense, but also acts like the surface of some real-world
object. With this motivation in mind, we construct a map
S : RI×J×K → G and view S(u) as the solution to the
following optimization problem.

S(u) = arg min
g

‖u− g‖2 + Υ(g). (13)

We call S(u) a surfaciation of u. To construct the map S,
we assign for each u ∈ RI×J×K an indicator matrix e, a
depth matrix d and an albedo matrix α (recall the definition
of G′). Different methods that generate the surfaciation of
u lead to different surface regularizations. For clarity, we
state a basic method here and provide more technical tricks
in the supplement.

For each pixel (i, j) of u, let ui,j,k1ij , . . . , ui,j,knij
ij

be all
nij non-zero albedo values in the depth direction. Define

ẽij =

{
1, nij > 0
0, nij = 0

(14)

to be the indicator function of the set of foreground pixels.
There could be many mislabeled pixels due to heavy back-
ground noise in u. To provide a noise-robust estimation of
the indicator matrix e, we consider the correlations of all
pixels and solve

e∗ =(e∗ij)I×J

= arg min
{eij}

I∑
i=1

J∑
j=1

γij(eij − ẽij)2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

we
pq,rs(epq − ers)2,

(15)
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in which we
pq,rs describes the weight of the pixels (p, q) and

(r, s). The parameter γij describes the confidence of indi-
cation of the originial pixel ẽij . This least-squares problem
has a unique solution and can be solved using the standard
LSQR method. The foreground indication matrix e = (eij)
is determined by

eij =

{
1, e∗ij ≥ 0.5
0, e∗ij < 0.5

. (16)

To obtain the depth matrix d, we solve the following
least-squares problem

d∗ =(d∗ij)I×J

= arg min
{dij}

I∑
i=1

J∑
j=1

nij∑
n=1

λijn(dij − zknij )2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

wd
pq,rs(dpq − drs)2,

(17)

in which zknij is the depth of the voxel (i, j, knij). λijn and
wd
pq,rs are fixed parameters that control the weight of the

corresponding terms. The depth matrix d = (dij) is then
determined by

dij =

{
arg mink ‖zk − d∗ij‖, eij = 1
NaN, eij = 0

. (18)

If there are two different values of k that minimizes ‖zk −
d∗ij‖, the smaller one is used.

The albedo matrix α = (α∗ij) is obtained by solving the
following optimization problem

α =(α∗ij)I×J

= arg min
{αij}

I∑
i=1

J∑
j=1

nij∑
n=1

λijn(αij − uijknij )2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

wα
pq,rs(αpq − αrs)2,

(19)

in which λijn and wα
pq,rs are fixed parameters. Finally, the

element α∗ij is reset as NaN if eij = 0.
Finally we obtain the optimization problem of the pro-

posed signal-surface collaborative regularization (SSCR)
framework as follows

arg min
τ,u,g,

Ds,Dn,C,S

∑
p,q

[(dp,q −N) ln(1− τp,q)− dp,q ln(τp,q)]

+ λt‖P(τ )−DS‖2 + λut‖P(Au)−DS‖2 + λpt|S|0
+ λ‖τ −Au‖2 + su‖u‖1 + λg

[
‖u− g‖2 + Υ(g)

]
+ λu

∑
i

[
‖Bui −DsCiD

T
n ‖2 + λpu|Ci|0

]
s.t. g ∈ G, DsD

T
s = Ix, DnD

T
n = Iy.

(20)

Figure 4. Reconstruction results of the pyramid with confocal syn-
thetic signal. a) - f) The front view of the reconstructions obtained
with the LOG-BP, F-K, LCT, D-LCT, SOCR, and the proposed
SSCR methods.

in which x is the product of the block size in three direc-
tions, y is the number of neighbors for each block. This
optimization problem is solved using the alternating itera-
tion method, as summarized in Algorithm 1. In the sup-
plement, we provide a detailed discussion of the solution to
each sub-problem and the choices of parameters. The sur-
face and voxel representations of the target are given by u
and g, respectively.

5. Results
To validate the capability of the proposed method in re-

constructing the hidden targets with sparse measurements,
we compare our reconstruction results with the Laplacian
of Gaussian filtered back-projection (LOG-BP) [17] and
SOCR [25] methods. We also bring the F-K [20], LCT [30],
D-LCT [42] and the PF [23] methods into comparisons by
constructing dense measurements with the linear interpola-
tion technique. In the supplement, we provide a gallery of
reconstruction results of these methods with other signal in-
terpolation techniques, where similar reconstruction results
are shown.

Confocal experiments We use the synthetic signal of the
instance of the pyramid [25] to test the proposed method.
Only 3×3 of the original 64×64 synthetic signals are cho-
sen. The physical model used to generate the data considers
consine attenuation of the photon intensity, and is finer than
Eq. (2). The base length and height of the pyramid are 1
m and 0.2 m, respectively. The central axis of the regular
quadrangular pyramid is vertical to the planer relay surface.
The pyramid is 0.5 m away from the relay surface and the
time resolution is 32 ps. The experimental setup and the
three views of our reconstruction are shown in Fig. 1. The
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Algorithm 1 The SSCR algorithm

Require: d, N .
Ensure: u,g.
τ0
p,q = dp,q/N
u0 = arg minu λ‖τ 0 −Au‖2 + su‖u‖1
for k = 1 to K − 1 do
gk+1 = arg ming ‖uk − g‖2 + Υ(g)

(Dk+1
s ,Ck+1, Dk+1

n ) = arg minDs,C,Dn
‖Buki −DsCiD

T
n ‖2 + λpu|Ci|0

Sk+1 = arg minS λt‖P(τ
k
)−DS‖2 + λut‖P(Auk)−DS‖2 + λpt|S|0

τ k+1 = arg minτ

∑
p,q [(dp,q −N) ln(1− τp,q)− dp,q ln(τp,q)] + λt‖P(τ )−DSk+1‖2 + λ‖τ −Auk‖2

uk+1 = arg minu λ‖τ k+1 − Au‖2 + su‖u‖1 + λut‖P(Au)−DSk+1‖2 + λu
∑
i ‖Bui −Dk+1

s Ck+1
i (Dk+1

n )T ‖2 +
λg‖u− gk+1‖2

end for
u = uK

g = gK

Figure 5. Reconstruction results for the instances of the statue
and the dragon. The number of focal points and exposure time
are listed in the first column. The oracle is shown in the second
column. Reconstructions of the FK, LCT, SOCR and SSCR algo-
rithms are shown in the third to sixth columns.

coordinates of the focal points are provided in the supple-
mentary code. Figure 4 shows the front views of the recon-
struction results of different methods. The LOG-BP method
fails to locate the hidden object. The F-K, LCT, D-LCT
and SOCR reconstructions contain artifacts. The proposed
SSCR method provides a faithful estimation of the hidden
target. Supplementary Figure S4 shows the three views of
these results, revealing a significant depth error in the F-K
reconstruction.

We use the measured data of the instances of the statue
and the dragon in the Stanford dataset [20] to test the
proposed method in real-world applications. The original
dataset contains 512 × 512 confocal measurements over a
square region of 2 × 2 m2. For the instance of the statue,

the distance to the relay is 1 m and the exposure time of the
original 512 × 512 measurements are 60 min and 10 min,
respectively. We use 5 × 5 sub-sampled signals for the re-
construction, which would only take 0.34 s and 0.05 s to
measure the sub-sampled signals. For the instance of the
dragon, the distance is 1.3 m to the relay surface and the
total exposure time is 60 min. We use 10× 10 sub-sampled
signals for the reconstructions, which would only take 1.37
s. For both instances, the time resolution is 32 ps. The fo-
cal points are provided in the supplementary code. Recon-
struction results are compared in Fig. 5, where the oracle is
generated with the SOCR method using 64 × 64 measure-
ments. It is shown that the F-K and LCT reconstructions
are blurry. The D-LCT reconstructions are provided in the
supplement, and are similar to those obtained with the LCT
method. The SOCR reconstructions are discontinuous and
noisy. The SSCR reconstructions have the highest PSNR
values and does not contain background noise. For the in-
stance of the dragon, the specularity of the material leads
to a large bias of the physical model and the SSCR method
reconstructs a portion of the target.

For the instance of the statue with original exposure time
of 60 min of the 512 × 512 measurements, we show three
views of the SSCR reconstructions with different number
of illumination points in Fig. 6. The target can be clearly
reconstructed with 7 × 7 confocal measurements, which is
only 0.01% of the original dataset. With 4×4 illuminations,
the SSCR method still provides a reasonable estimation of
the hidden target, which demonstrates the robustness of the
proposed algorithm. More comparisons with existing meth-
ods are provided in the supplement.

Non-confocal experiments We use one simulated
dataset and one measured dataset to test the method for non-
confocal reconstructions. For the simulated experiment, we
use the signal of the instance of letter ‘K’ from the NLoS
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Figure 6. Reconstruction results of the statue with different illu-
mination settings. The illumination points are shown in yellow in
the first column. The front view, top view and side view of the
reconstructions are shown in the second, third and fourth columns.

Benchmark dataset [12]. The oracle is generated with the
SOCR method using measurements from 64 × 64 illumi-
nation points in a region of 0.512 × 0.512 m2. The detec-
tion point locates at the center of the illumination region.
The photon travel distance is 0.001 m per second. A sub-
sampled 6 × 6 signal is used for the reconstruction. For
the measured dataset, we use the data of the instance of the
figure ‘4’ provided by the work [23]. The original dataset
contains 130× 180 measurements in 390 min and we use a
6 × 6 sub-sampled dataset for the reconstruction. It would
take 36 s to measure the sub-sampled signal. The coordi-
nates of the illumination and detection points are provided
in the supplementary code. Comparisons of the results with
the LOG-BP [17], PF [23] and the SOCR methods [25] are
shown in Fig. 7. The SSCR method yields the highest PSNR
of the albedo values and does not contain background noise.

Figure 7. Reconstruction results of non-confocal experiments. The
SSCR method yields the highest PSNR values.

6. Discussion
When the reconstruction domain is discretized with L×

L × L voxels and the signal is detected at P measure-
ment pairs (P ≤ L2), the time and memory complexity of
the proposed SSCR method is O(PL3) and O(L3) respec-
tively. In the supplement, we provide a detailed analysis of
the complexity. Notebly, when P = O(1), the time com-
plexity of the method is O(L3). This is smaller than the
F-K, LCT, and D-LCT methods, which cost O(L3 logL).
In this case, the LOG-BP and SOCR methods also yield a
time complexity of O(L3), but may provide biased estima-
tions of the targets. This indicates the significance of the
proposed two-dimensional regularization of the hidden sur-
face. For the instance of the pyramid, the runtime of LOG-
BP, F-K, LCT, D-LCT, SOCR and the proposed method are
0.1 s, 1.7 s, 1.1 s, 5.6 s, 142.0 s and 15.9 s on a laptop. In
SOCR and SSCR methods, the sub-problems containing L1

regularization take 20 iterations.
We discuss two aspects that could help improve the pro-

posed method. In Eq. (6), we did not consider the dark
count of the detector and the background noise. Model-
ing the noise distribution within the Bayesian framework
would lead to better reconstruction results. Besides, for the
two-dimensional regularization of g, we simply use pixel
level similarity in the SSCR method. Incorporating other
regularizations [9, 29, 31] would lead to better estimations
of the hidden surface.

7. Conclusion
We conclude that the two-dimensional surface regular-

ization plays an important role in few-shot NLOS imaging
scenarios. The joint regularization of the estimated signal,
the voxel and surface representations of the target makes it
possible to reconstruct the hidden object with certain com-
plex geometric structures with only 5×5 confocal measure-
ments, even in cases with measurement noise.
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