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Abstract

Out-of-distribution (OOD) detection has been exten-
sively studied in order to successfully deploy neural net-
works, in particular, for safety-critical applications. More-
over, performing OOD detection on large-scale datasets
is closer to reality, but is also more challenging. Sev-
eral approaches need to either access the training data
for score design or expose models to outliers during train-
ing. Some post-hoc methods are able to avoid the afore-
mentioned constraints, but are less competitive. In this
work, we propose Generalized ENtropy score (GEN), a
simple but effective entropy-based score function, which
can be applied to any pre-trained softmax-based classi-
fier. Its performance is demonstrated on the large-scale
ImageNet-1k OOD detection benchmark. It consistently
improves the average AUROC across six commonly-used
CNN-based and visual transformer classifiers over a num-
ber of state-of-the-art post-hoc methods. The average AU-
ROC improvement is at least 3.5%. Furthermore, we used
GEN on top of feature-based enhancing methods as well
as methods using training statistics to further improve the
OOD detection performance. The code is available at:
https://github.com/XixiLiu95/GEN.

1. Introduction

In order to make the usage of deep learning methods
in real-word applications safer, it is crucial to distinguish
whether an input at test time is a valid in-distribution (ID)
sample or a previously unseen out-of-distribution (OOD)
sample. Thus, a trained deep neural network (DNN) should
ideally know what it does not know [30]. This ability
is particularly important for high-stake applications in au-
tonomous driving [8] and medical image analysis [35].
However, it is common for neural networks to make over-
confident predictions even for OOD samples. A recent sur-
vey on OOD detection [45] identifies several scenarios re-
quiring the detection of OOD samples, with covariate shift
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Figure 1. Performance of Post-hoc OOD Detection Methods Ap-
plied to 6 Classifiers Trained on ImageNet-1K. Reported are AU-
ROC values (%) averaged over the models. Methods marked with
light squares use information from logits / probabilities. Meth-
ods marked with dark crosses also use information from features.
ReAct∗ corresponds to performing extra feature clipping before
computing the score.

(change in the input distribution) and semantic shift (change
in the label distribution) being two important settings.

In this work, we focus on the semantic shift scenario,
meaning that we aim to detect inputs with semantic labels
not present in the training set. When solving the OOD de-
tection problem, the idea is to design a scalar score function
of a data sample as an argument that assigns higher values
to true ID samples. The semantic shift scenario also allows
us to mainly focus on the predictive distribution as provided
by a DNN classifier to design such score function.

A number of existing works for OOD detection rely on
the predictive distribution [14, 28], but often a better OOD
detection performance can be achieved when also incor-
porating feature statistics for ID data [13, 24, 37, 38, 43].
These high-performing methods have practical constraints
that can be challenging to eliminate: some methods require
access to at least a portion of training data [13, 24, 37, 43]
while others need access to internal feature activations [38].
However, commercially deployed DNNs are often black-
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Figure 2. Score Distributions. The top row is GEN, and the bottom one is Energy [28]. The distributions are shown for the ID ImageNet-1K
dataset (dark blue) and four OOD datasets (light blue). The classification model used here is Swin [29].

box classifiers, and the training data is likely to be confiden-
tial. Hence, the goal of this work is to explore and push the
limits of OOD detection when the output of a softmax layer
is the only available source of information. Our method
therefore falls under the post-hoc category of OOD detec-
tion frameworks, where only a trained DNN is used without
the need for training data. Fig. 1 highlights its performance
compared to other methods in this category.

Contribution We propose GEN, a simple but effective
entropy-based method for OOD detection. (i) GEN uses
predictive distribution only. It does not require re-training
and/or outlier exposure, it does not use any training data
statistics. (ii) Yet it performs very well (see Figs. 1 and 2),
meaning that it can potentially be used in more constrained
model deployment scenarios. Compared to other post-hoc
methods, score distributions produced by GEN lead to a bet-
ter ID/OOD separation. We show that our method consis-
tently achieves better results in terms of AUROC (and usu-
ally in terms of FPR95) compared to other post-hoc meth-
ods. In particular, GEN on average outperforms other post-
hoc methods on the largest and carefully constructed OOD
dataset OpenImage-O as well as on the very challenging
ImageNet-O dataset based on natural adversarial examples.

2. Related Work

Score design Given a pre-trained softmax neural classi-
fier, designing a proper score function that aims to sepa-
rate ID from OOD data is essential to successfully perform
OOD detection. [14] proposes the maximum predicted soft-
max probability (MSP) and thereby establishes an initial
baseline for such scores. Subsequently, [24] defines the
score as the minimum Mahalanobis distance between fea-
tures and the empirical class-wise centroids, which are com-

puted from training samples. The energy score is suggested
in [28] and is computed via LogSumExp, which is the soft
maximum of the logits. This energy score can also be un-
derstood as the unnormalized log data density [10]. Un-
like [28], [13] proposes the (hard) maximum of the logits
as OOD score. [13] also gives a statistics-based alternative
called KL Matching, where the posterior distribution tem-
plate p̄k for each class k is computed from training data. At
test time, the KL divergence between the predictive distri-
bution and each posterior distribution template is calculated
for a given sample. The negative minimum KL divergence
is taken as the score.

Previous methods use information from one of the
spaces, feature, logit, or predictive distribution. Grad-
Norm [18] incorporates the information from both feature
and predictive distribution. Specifically, this score is a prod-
uct of the feature norm and the distance from the predictive
to the uniform distribution. Predictive Normalized Maxi-
mum Likelihood (pNML) [1] derives a score function based
on the generalization error (the regret), which needs to ac-
cess the empirical correlation matrix of training features and
the predictive distribution. ViM [43] uses information from
all spaces via introducing a virtual logit with corresponding
rescaling factor α. First, the residual of the feature z is cal-
culated as ∥zP⊥∥, where P is the so-called principal space
(i.e. the principal component of the features). A mixing co-
efficient α is computed in order to match the scale of the
virtual logits to the real maximum logits over the training
set. The final score is calculated as the softmax probability
of the virtual logit and can be also interpreted as a combi-
nation of the energy score LogSumExp f(z) and rescaled
residual −α∥zP⊥∥. Our GEN score can actually replace
the energy in this formulation to further improve the OOD
detection performance.

23947



Method Equation Free of Space
ID train data ID labels features logits probs

MSP [14] maxc pc ✓ ✓ ✓

MaxLogit [13] / Energy [28] maxc fc(z) / LogSumExp f(z) ✓ ✓ ✓

GradNorm [18] ∥p− 1/C∥1 · ∥z∥1 ✓ ✓ ✓ ✓

ODIN [25] x̃ = x+ εsign (∇x logmaxc pc(x)) ✓ ✓ ✓

ReAct [38] z̃ = min(z, b) ✗, b ✓ ✓

RankFeat [37] õ = o− s1u1v
⊤
1 ✓ ✓ ✓

Mahalanobis [24] maxc −(z− µ̂c)
⊤Σ̂−1(z− µ̂c) ✗, Σ̂, µ̂c ✗ ✓

pNML [1] log
∑C

c=1
pc

pc+pκ
c (1−pc)

, κ = z⊤Σcorrz
1+z⊤Σcorrz

✗, Σcorr ✓

KL Matching [13] −minc DKL(p ∥ dc) ✗, dc ✗ ✓

Residual [43] −∥zP⊥∥2 ✗, P ✓ ✓

ViM [43] −α∥zP⊥∥2 + LogSumExp f(z) ✗, α, P ✓ ✓ ✓

Shannon Entropy −
∑M

m=1 pim log pim , pi1 ≥ · · · ≥ piC , γ ∈ (0, 1) ✓ ✓ ✓

GEN (Ours) Gγ(p) = −
∑M

m=1 p
γ
im
(1− pim)γ , pi1 ≥ · · · ≥ piC , γ ∈ (0, 1) ✓ ✓ ✓

GEN (Ours) + ReAct [38] Gγ (Softmax(f(z̃)), z̃ = min(z, b) ✗, b ✓ ✓ ✓

GEN (Ours) + Residual [43] Gγ(p) · ∥zP
⊥∥2 ✗, P ✓ ✓ ✓

Table 1. Technical Comparison of OOD Detection Methods. x is an input, z is an output of the penultimate layer (also called features),
f(z) denotes logits, p = Softmax(f(z)) is predictive distribution, and C is the number of classes. Enhancing methods work in the
input / feature space, i.e. they perturb original inputs x, features z, or intermediate convolutional features o (where the perturbed result
of e.g. x is x̃). Several methods require pre-computation of training data statistics. In particular, Mahalanobis [24] needs the empirical
per-class mean µ̂c and tied covariance Σ̂ of the training features. pNML [1] needs the empirical correlation matrix Σcorr. KL Matching [13]
requires the knowledge of per-class predictive distributions dc. Residual and ViM [43] require the principal space P of the training features.
Our method GEN uses information from the probability space only, does not perturb the inputs nor does it need ID data.

Score enhancing methods There is also a line of research
that aims to enhance the OOD detection performance for
given score functions [17, 25, 37, 38]. ODIN [25] uses a
temperature scaling T for logits and adds perturbation to
the input sample to enhance the reliability of OOD detection
when MSP score is used. Specifically, each logit is divided
by a temperature T , and the perturbed input can be calcu-
lated as x̃ = x + εsign(∇x logSŷ(x;T )), where Sŷ(x;T )
is the maximum softmax probability. However, T needs to
be tuned with OOD samples. Generalized ODIN [17] aims
to free ODIN [25] from the need of OOD samples without
decreasing the OOD performance. ReAct [38] applies fea-
ture clipping on the penultimate layer of neural networks.
Specifically, an operation min(f(z), c) is applied element-
wise to the feature vector f(z). This enhancing method
is compatible with MSP score [14] and energy score [28].
RankFeat [37] looked into the distribution of the singular
values for ID and OOD samples and found that OOD sam-
ples appear to have larger dominant singular values than ID
samples. Instead of using the largest singular value as the
score, they remove the rank-1 matrix s1u1v

⊤
1 composed of

the largest singular value s1 and the associated singular vec-
tors u1, v1 from the intermediate (flattened) feature maps o.
The modified features õ are processed by the remaining part
of the neural network, and the energy score is computed. A
summary of the aforementioned score design and enhancing
methods is given in Table 1.

Modifying the training loss An alternative to the OOD
detection score design for fixed networks is to incorporate
the OOD samples into the training procedure. Specifically,
adding a separate network head (and a suitable loss) for
confidence prediction [5], reinterpreting logits as joint log-
probabilities (over inputs and labels) and training using a
log-evidence term in addition to the standard cross-entropy
loss [10], or incorporating a subspace prior on features [47]
are approaches to obtain DNNs better suited for OOD de-
tection (besides solving a classification task). [19] addresses
the fine-grained classification setting in particular and lever-
ages semantic groups (and a dedicated out-of-group label),
which simplifies decision boundaries and therefore helps to
identify OOD samples. It is further possible to explicitly
include OOD data into the training phase of a DNN. Joint
minimization of a classification loss (over ID data) and a
regularization term favoring highly uncertain predictive dis-
tributions for OOD data is suggested in [15, 31].

Classifier calibration Supervised training usually leads
to uncalibrated classifiers, which tend to be either over-
confident (usually) or under-confident (rarely) in their pre-
diction confidence. In short, “a predicted probability (vec-
tor) should match empirical (observed) accuracy” [36]. The
calibration of a pre-trained classifier can be improved by
post-processing the logits [11, 33, 46] or by using classi-
fier ensembles [23]. Since a number of OOD detection ap-
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Figure 3. Generalized entropies: G1/2, G1/10 and the Shannon
entropy H(p) for a Bernoulli random variable (all scaled to the
same range).

proaches uses solely the logits or resulting predictive distri-
bution as input, the OOD detection performance may vary
between the trained vanilla and the calibrated classifiers. At
least for monotone transformations of logits [33,46] the per-
formance of MSP [14], MaxLogit [13], and Energy [28]
scores should be unaffected (in terms of AUROC). Other
OOD detection scores (e.g. GradNorm) will be affected.

Notation The penultimate layer output is denoted as z,
which is the feature vector occurring immediately before
the logit layer. The vector of logits is f(z) and is typically
computed via a linear layer, f(z) = Wz + b for a weight
matrix W and bias vector b. The output of a classifier
network is the predictive distribution p = Softmax(f(z)).
Categorical distributions over C classes are elements of the
C-dimensional unit simplex ∆C . Equality up to an irrele-
vant constant is denoted by .

=.

3. Generalized Entropy Score
Our aim is to rely solely on the logits and in particular on

the predictive distribution as much as possible for OOD de-
tection, because relatively simple scores using only this in-
formation are performing surprisingly well [13, 14, 18, 28].
Further, such an approach is agnostic to any information on
the classifier training, the training set, or explicit OOD sam-
ples. The backbone of a classifier can be even a black box
computation. Finally, the neural collapse hypothesis [32]
states that the features from the penultimate layer have very
limited additional information compared with the logits.

Our main assumption is, that the training loss for a clas-
sifier is dominated by a term that is minimal for a “pure”
one-hot predictive distribution, which is a valid assumption
for a wide range of losses (such as cross-entropy, squared
Euclidean loss, label smoothing loss [39], focal loss [27]
and more). Hence, ID test samples close to the training data
are expected to result in a confident prediction. The pre-
diction confidence can be measured in a variety of ways,
and a statistical distance to either the uniform distribution
or to a one-hot distribution. Common statistical distances
are in the f -divergence family (e.g. [26]), Wasserstein met-

ric [20, 42] and the total variation distance.
Here we borrow the concept of generalized entropy from

the literature on proper scoring rules [4, 9]: a generalized
entropy G is a differentiable and concave function on the
space of categorical distributions ∆C . The Bregman diver-
gence DG(p∥q) between 2 elements p,q ∈ ∆C is the lin-
earization error

DG(p∥q) := G(q)−G(p) + (p− q)⊤∇G(q), (1)

which is non-negative for concave G. We assume that G
is invariant under permutations of the elements in p (all
class labels are treated equally). Now the Bregman diver-
gence between p and the uniform categorical distribution
u = 1/C reduces to the negated generalized entropy (up to
additive constants),

DG(p∥u) = G(u)−G(p) + (p− u)⊤∇G(u)
.
= −G(p) + (p− u)⊤∇G(u)︸ ︷︷ ︸

=0

. (2)

The last term vanishes since ∇G(u) = ∇G(1/C) = κ1
(for some κ ∈ R, using our assumption of permutation in-
variance for G) and therefore (p− u)⊤∇G(u) ∝ Ep [κ]−
Eu [κ] = 0. Overall, using a negated entropy as score can
be interpreted as a statistical distance between the predictive
distribution p and the uniform distribution u.

Our particular attention is on the following family of
generalized entropies,

Gγ(p) =
∑

j
pγj (1− pj)

γ (3)

qfor a γ ∈ (0, 1). It is straightforward to verify that the
mapping p 7→ pγ(1−p)γ is concave in the domain [0, 1] for
all γ ∈ [0, 1]. The choice γ = 1/2, i.e.

G1/2(p) =
∑

j

√
pj(1− pj), (4)

is connected to the (non-robust) exponential loss occurring
in the boosting method (as detailed in [2]), and therefore
considered to be more sensitive than e.g. the Shannon en-
tropy H(p) = −

∑
j pj log pj

1. Lower values of γ amplify
this behavior: Fig. 3 depicts the graphs of H , G1/2 and
G1/10 for a Bernoulli random variable with parameter p. In
particular the entropy G1/10 increases rapidly near p = 0
and p = 1. Hence, G1/10 can be seen as very sensitive
detector for uncertainties in the predictive distribution.

To sum up, the motivation behind GEN is simple and
straightforward. The aim of using a generalized entropy
is to amplify minor deviations of a predictive distribution
from the ideal one-hot encoding. In practice, this high sen-
sitivity turns out to require some degree of robustness (and

1The regular Shannon entropy in analogy leads to the soft-plus loss in
logistic regression.
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numerical stability) in the fine-grained classification setting,
which we achieve by “trimming” the predictive distribution
described next.

Truncation If we consider sorted predictive probabilities,
pj1 ≥ pj2 ≥ · · · ≥ piC , then the generalized entropy Gγ

as a sum over all classes can be dominated by the tail, i.e.
the large fraction of very small probabilities. Random but
small variations in those probabilities have a significant im-
pact on the score. With growing C, extremely small but
random tails can change the sort order of discrete proba-
bilities w.r.t. the generalized entropy. Hence, the ability of
generalized entropies to discriminate finely between prob-
ability vectors near the boundary (compared to the regular
Shannon entropy) comes at a cost in the many-class setting.
Using a truncated sum over the top-M classes made Gγ ro-
bust in synthetic setups. Overall, our score is designed to
capture small entropy variations in the top-M classes.

4. Experiments
OOD detection benchmarks have matured over the

years—there has been a transition from small scale datasets
such as CIFAR-10, CIFAR-100 to more realistic large-scale
dataset such as ImageNet-1K [34] and OpenImage-O [22],
and the evaluation metrics have converged to AUROC and
FPR95 values. We follow the recent development in eval-
uation strategy which we describe in Sec. 4. In our experi-
ments, we closely follow the large-scale evaluation protocol
conducted in ViM [43]. In particular, the choice of discrim-
inative models with officially released pre-trained weights
as well as the large-scale ID / OOD datasets. Note that all
the methods studied in this work are deterministic.

Models We used several commonly-used convolutional
and transformer-based architectures for large-scale image
classification. These include Big Transfer [21], Vision
Transformer [7], RepVGG [6], ResNet-50-D [12], DeiT
[40], and Swin [29]. Big Transfer (BiT) [21] refers to the set
of large neural network architectures and techniques (such
as large batches, group normalization and weight standard-
ization) for an efficient transfer learning and improved gen-
eralization. We utilized a variant with ResNet-v2-101 (BiT-
S-R101x1 checkpoint). Vision Transformer (ViT) [7] is a
pure transformer-based model for image classification. Its
input image is cut into a sequence of patches with corre-
sponding position embeddings. We use ViT-B/16 version in
our experiments. RepVGG [6] model combines VGG and
ResNet architectures in a way that allows for structural re-
parameterizations. In particular, RepVGG is turned from a
multi-branch ResNet-like network topology (used for train-
ing) into a plain VGG-like architecture with only 3×3 con-
volutions (used for inference). ResNet-50-D is one of the

refined versions of ResNet architecture proposed by [12] to
improve its performance. Shifted WINdows (Swin) trans-
former [29] injects priors coming from vision, such as hi-
erarchy, locality and translational invariance, into a vision
transformer network. Data-efficient image Transformers
(DeiT) [40] is a token-based strategy for transformer dis-
tillation that enables efficient training and produces com-
petitive results on downstream tasks. Specifications of the
aforementioned architectures are summarized in Table 2.

Classifier Feat. Top-1 (%) Params

BiT-S-R101x1 [21] 2048 81.30 44.54M
BiT-S-R101x1 [21] (ckpt [18]) 2048 75.19 44.54M
ViT-B/16 [7] 768 85.43 86.86M
RepVGG-B3 [6] 2560 80.52 120.52M
ResNet-50-D [12] 2048 80.52 23.53M
DeiT-B/16 [40] 768 81.98 85.80M
SWIN-B/4 [29] 1024 85.27 86.74M

Table 2. Specifications of different architectures: dimensionality
of the feature (penultimate layer output) space, top-1 accuracy on
ImageNet-1K validation dataset, and the number of parameters.

Datasets We perform OOD detection on a large-scale
OOD detection benchmark with ImageNet-1K [34] as ID
dataset. We evaluate our methods using four commonly-
used OOD datasets, which include OpenImage-O [43], Tex-
ture [3], iNaturalist [41], and ImageNet-O [16]. These
datasets cover different domains including fine-grained im-
ages, scene images, textures images, etc. In particular,
ImageNet-O consists of natural adversarial examples that
are unforeseen classes in ImageNet-1K and cause model’s
performance to significantly degrade. OpenImage-O is
the largest OOD dataset for ImageNet-1K released by
ViM [43]. The authors discover that previous datasets like
SUN [44], Places [48], and Texture [3] have a subset of
images that is indistinguishable from ID data and thus man-
ually select images from OpenImage-v3 dataset [22] that
are OOD w.r.t. ImageNet-1K. Specifications of the used
datasets are summarized in the supplementary material.

Post-hoc methods First and foremost, we compare GEN
to the scores within the same family of post-hoc meth-
ods, i.e. not requiring prior access to the training dataset
with or without labels. The first group of methods includes
MSP [14], MaxLogit [13], Energy [28], and GradNorm [18]
that operate on the output space. In addition, the score
function that uses negative Shannon entropy is also consid-
ered. The second group comprises input / feature enhancing
methods like ODIN [25] and ReAct∗. ReAct∗ is a local ver-
sion of ReAct [38] that clips penultimate activations of the
current sample based on the values alone. We furthermore
combine GEN with ReAct∗ to achieve better performance.
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Classifier + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1

Po
st

-h
oc

MSP [14] 83.05 76.21 79.76 77.13 87.90 64.53 57.16 96.90 76.97 78.69
MaxLogit [13] 82.33 79.75 81.65 73.59 86.78 70.52 62.99 96.90 78.44 80.19
Energy [28] 80.59 82.00 81.10 73.91 84.52 74.93 63.56 96.35 77.44 81.80
GradNorm [18] 70.68 79.34 83.12 55.72 86.13 58.34 53.73 91.90 73.42 71.33
ODIN [25] 85.64 72.83 81.60 74.07 86.73 70.75 63.00 96.85 79.24 78.63
ReAct∗ 80.83 81.85 81.44 73.74 84.77 74.80 63.63 96.30 77.67 81.67
Shannon Entropy 83.98 80.48 81.30 76.32 88.73 69.66 60.42 97.30 78.61 80.94
GEN (Ours) 83.77 80.43 81.48 77.93 88.67 68.32 66.09 97.30 80.00 81.00
GEN (Ours) + ReAct∗ 83.99 80.35 81.80 77.87 88.90 68.03 66.18 97.25 80.22 80.88

R
eq

ui
re

ID

KL Matching [13] 87.94 54.92 86.91 50.89 92.95 33.19 65.76 86.80 83.39 56.45
Mahalanobis [24] 82.62 66.24 97.33 13.95 85.79 64.71 80.37 70.20 86.53 53.77
ReAct [38] 85.43 67.45 90.65 50.14 91.50 48.65 67.04 91.50 83.66 64.44
pNML [1] 88.62 55.27 93.59 22.25 93.12 38.21 67.27 86.35 85.65 50.52
Residual [43] 80.20 68.05 97.67 11.14 76.93 80.18 81.58 65.60 84.09 56.24
ViM [43] 89.96 49.01 98.92 4.63 89.38 55.09 83.85 61.25 90.53 42.50
GEN (Ours) + ReAct [38] 85.36 78.22 84.68 74.09 90.27 62.36 67.54 97.10 81.96 77.94
GEN (Ours) + Residual [43] 91.75 43.83 98.54 5.78 92.25 47.13 83.88 63.70 91.61 40.11

Swin

Po
st

-h
oc

MSP [14] 91.38 34.81 85.31 51.74 94.76 22.97 78.86 63.90 87.58 43.36
MaxLogit [13] 92.09 26.70 84.81 47.23 95.71 15.34 81.07 52.10 88.42 35.34
Energy [28] 91.24 26.92 82.80 51.57 95.19 15.49 82.00 45.85 87.81 34.96
GradNorm [18] 45.52 77.94 37.12 93.02 33.79 88.81 50.27 78.05 41.68 84.45
ODIN [25] 91.38 28.42 85.74 44.59 94.24 19.65 80.62 53.65 88.00 36.58
ReAct∗ 91.23 26.98 82.79 51.69 95.18 15.50 82.00 45.90 87.80 35.02
Shannon Entropy 93.16 25.61 87.15 43.84 95.95 16.21 82.13 51.95 89.60 34.40
GEN (Ours) 94.70 22.60 89.43 40.95 97.25 11.55 84.45 54.00 91.46 32.28
GEN (Ours) + ReAct∗ 94.69 22.62 89.42 41.01 97.25 11.56 84.44 54.00 91.45 32.30

R
eq

ui
re

ID

KL Matching [13] 91.86 39.93 86.82 53.24 94.75 27.76 81.78 67.30 88.80 47.06
Mahalanobis [24] 94.35 34.85 89.95 49.09 98.69 5.38 85.43 73.65 92.11 40.74
ReAct [38] 93.71 22.61 85.62 47.79 97.49 9.99 83.83 44.95 90.16 31.34
pNML [1] 95.53 19.29 91.55 33.29 97.84 8.98 87.22 45.05 93.03 26.65
Residual [43] 94.44 33.40 91.36 43.26 98.90 4.79 86.66 68.65 92.84 37.53
ViM [43] 95.93 24.43 92.40 37.98 99.29 2.62 88.74 59.00 94.09 31.01
GEN (Ours) + ReAct [38] 94.80 22.23 89.47 40.85 97.42 10.67 84.48 54.25 91.54 32.00
GEN (Ours) + Residual [43] 95.73 25.06 92.23 37.66 99.13 3.10 88.07 61.50 93.79 31.83

Table 3. Per-Dataset Performance of OOD Detection Methods. The classifiers are BiT [21] and Swin [29]. The ID dataset is ImageNet-1K,
the OOD datasets are OpenImage-O, Textures, iNaturalist and ImageNet-O. For GEN, the number of maximal logits is set to 10% and
γ = 0.1. Clipping quantile for ReAct∗ is set to 0.9995, and for ReAct [38] — to 0.999. The best performing method is in bold, the second
best is underlined.

Methods requiring ID train data One of the advantages
of GEN is that it does not require ID training dataset. Nev-
ertheless, when the training data is available, it is poten-
tially beneficial to combine this information with GEN (see
Table. 1). We compare it to existing methods that require
pre-computation of the training data statistics, such as KL
Matching [13], Mahalanobis [24], pNML [1], Residual, and
ViM [43].

Evaluation metrics We use two standard evaluation met-
rics for OOD detection. The first one is the area under the
receiver operating characteristic curve (AUROC), for which
higher values indicate better performance. The second one
is FPR95 — the false positive rate when the true positive
rate is 95%. Lower FPR95 values are better. The reported
units for both metrics in all tables are percentages.
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OOD Method RepVGG [6] ResNet-50-D [12] ViT [7] DeiT [40] Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Po
st

-h
oc

MSP [14] 78.02 70.83 77.99 68.10 89.33 41.89 79.44 66.22 81.19 61.76
MaxLogit [13] 77.47 73.55 75.47 69.28 94.56 24.34 76.77 64.37 81.07 57.89
Energy [28] 76.29 79.11 71.25 78.01 94.89 22.54 72.81 69.88 78.81 62.39
GradNorm [18] 52.98 94.98 44.04 96.08 90.32 28.66 32.05 97.47 54.85 79.30
ODIN [25] 77.72 72.68 75.27 68.56 94.57 24.25 77.13 63.92 81.17 57.35
ReAct∗ 77.60 78.57 71.55 77.70 94.89 22.83 72.82 69.87 79.21 62.24
Shannon Entropy 79.01 71.81 78.82 66.41 91.91 30.41 80.61 61.78 82.59 57.60
GEN (Ours) 81.33 66.00 82.75 62.08 94.31 26.14 84.61 59.68 85.75 53.47
GEN (Ours) + ReAct∗ 82.88 65.64 82.80 62.29 94.31 26.23 84.60 59.77 86.15 53.48

R
eq

ui
re

ID

KL Matching [13] 81.29 61.65 82.66 64.83 90.81 36.04 83.46 64.66 85.40 54.85
Mahalanobis [24] 85.91 59.80 88.11 56.38 95.96 19.68 85.08 72.75 89.43 49.87
ReAct [38] 65.42 96.29 77.68 66.45 95.13 21.93 73.95 68.39 78.04 63.27
pNML [1] 83.23 55.37 84.19 50.20 92.75 28.12 83.09 61.39 85.81 48.77
Residual [43] 83.96 59.44 86.72 59.44 92.71 31.50 84.18 73.97 88.08 52.37
ViM [43] 87.65 50.95 89.03 53.28 96.16 18.46 85.28 69.81 89.53 48.12
GEN (Ours) + ReAct [38] 86.32 56.08 84.58 59.08 94.44 25.80 84.65 60.06 87.50 50.26
GEN (Ours) + Residual [43] 87.49 51.67 89.07 53.44 95.73 20.69 85.59 67.51 89.47 48.33

Table 4. Average Performance of OOD Detection Methods. Results are shown for RepVGG [6], ResNet-50-D [12], ViT [7], and DeiT [40]
architectures with ImageNet-1K as ID data. The reported are averaged results over four OOD datasets: OpenImage-O, Textures, iNaturalist
and ImageNet-O. For GEN, the number of maximal logits is set to 10% and γ = 0.1. Clipping quantile for ReAct∗ is set to 0.9995, and
for ReAct [38] — to 0.999. The best performing method is in bold, the second best is underlined.

4.1. OOD Detection Performance Results

In this section, the results of the OOD detection bench-
mark are presented. We reproduce the results for all meth-
ods (except for ODIN [25]) and obtain slightly different re-
sults than reported in [43]. In our experiments, we used
NVIDIA GeForce RTX 3080, CUDA 11.5 + PyTorch 1.11.

Results on BiT and Swin We show detailed results on
BiT [21] and Swin [29] architectures, since BiT is com-
monly used for large-scale OOD detection [18, 19, 37, 43]
and Swin [29] is the recent transformer-based architecture.

The results of BiT [21] are presented in the top half of
Table 3. First, one can see from the “Post hoc” block that
our score achieves the highest average AUROC (across four
datasets) compared to other post-hoc methods. In partic-
ular, we obtain the highest AUROC on ImageNet-O and
iNaturalist. Furthermore, using feature clipping further im-
proves the performance in terms of AUROC and FPR95.
For this classifier, GradNorm [18] gives lower FPR95 val-
ues. We think this could be connected to the lower clas-
sification accuracy of the pre-trained models (see Tab. 2)
and/or model specifics because GradNorm performs signif-
icantly worse for other classifiers (see Tab. 4 and Tab. 2 in
Supplementary). Then we look into the methods using ID
data statistics. Our score is combined with ReAct [38] and
Residual [43] methods, which compute compressed infor-
mation of feature space from all training data. Results from
the “Require ID” block show that using information from

feature space could further improve our score. Specifically,
our method combined with Residual [43] achieves the state-
of-the-art results on in terms of the averaged AUROC and
FPR95 (over four datasets) when using BiT [21], in partic-
ular on the challenging OpenImage-O dataset.

The results of Swin [29] are shown in the bottom half
of Table 3. Results from the “Post-hoc” block show that
our score is consistently better in terms of AUROC values
than all other post-hoc methods. Particularly, our method
outperforms MaxLogit [13] by 3% on average in terms of
AUROC. According to the “Require ID” block, our perfor-
mance is comparable to ViM [43].

To visualize OOD performance, we present the score dis-
tributions using our score and Energy [28] score in Figure 2
and it shows that our method makes ID/OOD separation
better. Interestingly, the score distribution drawn based on
our score function is smoother.

Averaged results for other architectures To further in-
vestigate the effectiveness and robustness of our score, we
perform OOD detection on four remaining architectures,
RepVGG [6], ResNet-50-D [12], ViT [7], and DeiT [40].
The averaged results over four datasets are shown in Ta-
ble 4. First, it is apparent that our score continually gains
the best AUROC on different architectures compared to
all post-hoc methods. Specifically, our method outper-
forms MSP [14] on average with a notable margin, al-
most 5%. Moreover, our score also obtains the lowest aver-
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Figure 4. Effective value of M and γ. GEN Performance for varying values of (top row) the number of largest probabilities referred as top
M classes, and (bottom row) the exponential scale γ of the entropy. The left two columns correspond to Swin [29] architecture, and the
right two columns correspond to BiT [21].

aged FPR95 over four datasets and four architectures. It is
significantly better than all other post-hoc methods in terms
of FPR95, with a nearly 4% margin. The results of combin-
ing our score with information from ID dataset can be found
in the bottom half of the Table 4. It shows that our method
achieves competitive results compared with ViM [43].

4.2. Choice of M and γ

We empirically show how the performance of our
method varies with different M and γ in terms of AUROC
and FPR95. First, we investigate the effective value of M
for C = 1000 semantic classes. The first row of Figure 4
shows the results (with γ = 0.1). The results of BiT [21]
are illustrated in the two rightmost columns (with AUROC
and FPR95, respectively) and the results of Swin [29] are
presented in the two leftmost columns (with AUROC and
FPR95, respectively). It shows that it is sufficient to use the
top M = 100 classes for the score.

We also look into the effectiveness of using different γ.
The second row of Figure 4 (with M = 100) shows that it is
adequate to obtain better OOD performance via setting γ =
0.1 for different OOD datasets. On average, AUROC and
FPR95 values are better when using lower γ. Setting γ =
0.1 also works well on other architectures. Results for the
remaining architectures and the dependence of (γ,M) on
the architecture (which led to our choice of (γ = 0.1,M =
100)) can be found in the supplementary material.

The current evaluation protocol for OOD detection is
performed on the test dataset directly, which is not suitable
for real applications. We therefore evaluate the methods
on completely unseen datasets, SUN [44] and Places [48]2.
GEN achieves the state-of-the-art performance with 1% and
3% margin in terms of both AUROC and FPR95 for post-

2We followed GradNorm [18] by taking the non-overlapping classes
w.r.t. ImageNet-1k

hoc and ID requiring methods, respectively. The detailed
results are in the supplementary material.

5. Discussion and Conclusions
In this work, we challenged ourselves to narrow the

gap between simple and fast post-hoc OOD detection
methods—those working on top of (nearly) black-box
classifiers—and the “white-box” methods—those benefit-
ing from extra information such as large and representative
ID dataset with or without corresponding labels. The pro-
posed entropy-based method GEN is as easy to implement
as previous methods, and the only requirement it has is that
the classifier admits class probabilities. Combining GEN
with more feature-based and enhancing methods is one of
the potential future directions for improvement.

We found that GEN performs best when using ≈ 10% of
the logits with the maximal response. Interestingly, a sim-
ilar observation also applies to some other post-hoc scores
(with different fractions of logits), i.e. that it might gener-
ally be a good idea to use only partial information coming
from the largest logits. The lowest logits seem to introduce
noise that might be particularly damaging for OOD detec-
tion in large-scale and fine-grained classification tasks with
thousands of semantic classes. More details on our experi-
ments can be found in the supplementary material.
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