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Figure 1. Classic Referring Expression Segmentation (RES) only supports expressions that indicate a single target object, e.g., (1).
Compared with classic RES, the proposed Generalized Referring Expression Segmentation (GRES) supports expressions indicating
an arbitrary number of target objects, for example, multi-target expressions like (2)-(5), and no-target expressions like (6).

Abstract

Referring Expression Segmentation (RES) aims to gen-
erate a segmentation mask for the object described by a
given language expression. Existing classic RES datasets
and methods commonly support single-target expressions
only, i.e., one expression refers to one target object. Multi-
target and no-target expressions are not considered. This
limits the usage of RES in practice. In this paper, we
introduce a new benchmark called Generalized Referring
Expression Segmentation (GRES), which extends the classic
RES to allow expressions to refer to an arbitrary number of
target objects. Towards this, we construct the first large-
scale GRES dataset called gRefCOCO that contains multi-
target, no-target, and single-target expressions. GRES and
gRefCOCO are designed to be well-compatible with RES,
facilitating extensive experiments to study the performance
gap of the existing RES methods on the GRES task. In the
experimental study, we find that one of the big challenges
of GRES is complex relationship modeling. Based on
this, we propose a region-based GRES baseline ReLA
that adaptively divides the image into regions with sub-
instance clues, and explicitly models the region-region and
region-language dependencies. The proposed approach
ReLA achieves new state-of-the-art performance on the
both newly proposed GRES and classic RES tasks. The
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proposed gRefCOCO dataset and method are available at
https://henghuiding.github.io/GRES.

1. Introduction

Referring Expression segmentation (RES) is one of the
most important tasks of multi-modal information process-
ing. Given an image and a natural language expression that
describes an object in the image, RES aims to find this target
object and generate a segmentation mask for it. It has great
potential in many applications, such as video production,
human-machine interaction, and robotics. Currently, most
of the existing methods follow the RES rules defined in the
popular datasets ReferIt [20] and RefCOCO [34, 47] and
have achieved great progress in recent years.

Limitations of classic RES. However, most classic
RES methods have some strong pre-defined constraints to
the task. First, the classic RES does not consider no-
target expressions that do not match any object in the
image. This means that the behavior of the existing RES
methods is undefined if the target does not exist in the input
image. When it comes to practical applications under such
constraint, the input expression has to match an object in
the image, otherwise problems inevitably occur. Second,
most existing datasets, e.g., the most popular RefCOCO
[34, 47], do not contain multi-target expressions that point
to multiple instances. This means that multiple inputs are
needed to search objects one by one. E.g., in Fig. 1,
four distinct expressions with four times of model calls are
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Table 1. Comparison among different referring expression data-
sets, including ReferIt [20], RefCOCO(g) [34, 47], PhraseCut
[40], and our proposed gRefCOCO. Multi-target: expression that
specifies multiple objects in the image. No-target: expression that
does not touch on any object in the image.

ReferIt RefCOCO(g) PhraseCut gRefCOCO
Image Source CLEF [8] COCO [25] VG [22] COCO [25]
Multi-target ✗ ✗ (fallback) ✓

No-target ✗ ✗ ✗ ✓

Expression type free free templated free

required to segment “All people”. Our experiments show
that classic RES methods trained on existing datasets cannot
be well-generalized to these scenarios.

New benchmark and dataset. In this paper, we propose
a new benchmark, called Generalized Referring Expression
Segmentation (GRES), which allows expressions indicating
any number of target objects. GRES takes an image and
a referring expression as input, the same as classic RES.
Different from classic RES, as shown in Fig. 1, GRES
further supports multi-target expression that specifies mul-
tiple target objects in a single expression, e.g., “Everyone
except the kid in white”, and no-target expression that
does not touch on any object in the image, e.g., “the kid
in blue”. This provides much more flexibility for input
expression, making referring expression segmentation more
useful and robust in practice. However, existing referring
expression datasets [20, 34, 47] do not contain multi-target
expression nor no-target samples, but only have single-
target expression samples, as shown in Tab. 1. To facilitate
research efforts on realistic referring segmentation, we build
a new dataset for GRES, called gRefCOCO. It complements
RefCOCO with two kinds of samples: multi-target samples,
in which the expression points to two or more target
instances in the image, and no-target samples, in which the
expression does not match any object in the image.

A baseline method. Moreover, we design a baseline
method based on the objectives of the GRES task. It
is known that modeling relationships, e.g., region-region
interactions, plays a crucial role in RES [46]. However,
classic RES methods only have one target to detect so
that many methods can achieve good performance without
explicit region-region interaction modeling. But in GRES,
as multi-target expressions involve multiple objects in one
expression, it is more challenging and essential to model
the long-range region-region dependencies. From this
point, we propose a region-based method for GRES that
explicitly model the interaction among regions with sub-
instance clues. We design a network that splits the image
into regions and makes them explicitly interact with each
other. Moreover, unlike previous works where regions
come from a simple hard-split of the input image, our
network soft-collates features for each region, achieving
more flexibility. We do extensive experiments on our

proposed methods against other RES methods, showing
that the explicit modeling of interaction and flexible region
features greatly contributes to the performance of GRES.

In summary, our contributions are listed as follows:

1. We propose a benchmark of Generalized Referring
Expression Segmentation (GRES), making RES more
flexible and practical in real-world scenarios.

2. We propose a large-scale GRES dataset gRefCOCO.
To the best of our knowledge, this is the first referring
expression dataset that supports expressions indicating
an arbitrary number of target objects.

3. We propose a solid baseline method ReLA for GRES
to model complex ReLAtionships among objects,
which achieves the new state-of-the-art performance
on both classic RES and newly proposed GRES tasks.

4. We do extensive experiments and comparisons of the
proposed baseline method and other existing RES
methods on the GRES, and analyze the possible causes
of the performance gap and new challenges in GRES.

2. Related Works

Related referring tasks and datasets. Being defined by
Hu et al. [13], Referring Expression Segmentation (RES)
comes from a similar task, Referring Expression Compre-
hension (REC) [14, 24, 27, 38, 42, 43, 52] that outputs a
bounding box for the target. The earliest dataset for RES
and REC is ReferIt [20] , in which one expression only
refers to one instance. Later, Yu et al. propose RefCOCO
[47] for RES and REC. However, like ReferIt, it only
contains single-target expressions. Another popular dataset
RefCOCOg [34] also inherits this. Although the original
definition of RES [13] does not limit the number of target
instances, “one expression, one instance” has become a
“de-facto” rule for RES task.

Recently, some new datasets are proposed, but most of
them are neither focused on nor suitable for GRES. E.g., al-
though PhraseCut [40] has multi-target expressions, it only
considers them as “fallback”, i.e., multi-target expressions
are only used when an object cannot be uniquely referred
to. In contrast, our expression intentionally finds multiple
targets. Besides, expressions in PhraseCut are written using
templates rather than free natural language expressions,
limiting the diversity of language usage. Image caption
datasets [22, 36] are close to RES, but they cannot ensure
unambiguity of expression→object(s). Thus, they are not
suitable for referring-related tasks. There are some referring
datasets using other data modalities or learning schemes,
e.g., Scanrefer [2] focuses on 3D objects and Clevrtex [19]
focuses on unsupervised learning. Moreover, none of the
above datasets has no-target expression.
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Figure 2. More applications of GRES brought by supporting multi-target and no-target expressions compared to classic RES.

Referring segmentation methods. Referring segmen-
tation methods can be roughly divided into two categories:
one-stage (or top-down) methods [1, 4, 15–17, 23, 31, 35,
45, 51] and two-stage (or bottom-up) methods [26, 46].
One-stage methods usually have an FCN-like [30] end-to-
end network, and the prediction is achieved by per-pixel
classification on fused multi-modal feature. Two-stage
methods first find a set of instance proposals using an out-
of-box instance segmentation network and then select the
target instance from them. The majority of RES methods
are one-stage, while two-stage methods are more prevalent
in REC [12, 14, 28, 33, 48, 50]. Most recently, some
transformer-based methods [5, 6, 39, 44] are proposed and
bring large performance gain compared to the CNN-based
network. Zero-shot segmentation methods [9, 10, 49] use
class names as textual information and focus on identifying
novel categories, in contrast to RES that employs natural
expressions to identify the user’s intended target.

3. Task Setting and Dataset

3.1. GRES Settings

Revisit of RES. Classic Referring Expression Segmen-
tation (RES) takes an image and an expression as inputs.
The desired output is a segmentation mask of the target
region that is referred by the input expression. As discussed
in Sec. 2, the current RES does not consider no-target
expressions, and all samples in current datasets only have
single-target expressions. Thus, existing models are likely
to output an instance incorrectly if the input expression
refers to nothing or multiple targets in the input image.

Generalized RES. To address these limitations in classic
RES, we propose a benchmark called Generalized Referring
Expression Segmentation (GRES) that allows expressions
indicating arbitrary number of target objects. A GRES
data sample contains four items: an image I , a language
expression T , a ground-truth segmentation mask MGT that
covers pixels of all targets referred by T , and a binary no-
target label EGT that indicates whether T is a no-target
expression. The number of instances in T is not limited.
GRES models take I and T as inputs and predict a mask
M . For no-target expressions, M should be all negative.

The applications of multi-target and no-target expres-

sions are not only finding multiple targets and rejecting in-
appropriate expressions matching nothing, but also bringing
referring segmentation into more realistic scenarios with
advanced usages. For example, with the support of multi-
target expressions, we can use expressions like “all people”
and “two players on left” as input to select multiple objects
in a single forward process (see Fig. 2a), or use expressions
like “foreground” and “kids” to achieve user-defined open
vocabulary segmentation. With the support of no-target
expressions, users can apply the same expression on a set
of images to identify which images contain the object(s)
in the language expression, as in Fig. 2b. This is useful
if users want to find and matte something in a group of
images, similar to image retrieval but more specific and
flexible. What’s more, allowing multi-target and no-target
expressions enhances the model’s reliability and robustness
to realistic scenarios where any type of expression can
occur unexpectedly, for example, users may accidentally or
intentionally mistype a sentence.

Evaluation. To encourage the diversity of GRES meth-
ods, we do not force GRES methods to differentiate dif-
ferent instances in the expression though our dataset gRe-
fCOCO provides, enabling popular one-stage methods to
participate in GRES. Besides the regular RES performance
metric cumulative IoU (cIoU) and Precision@X, we further
propose a new metric called generalized IoU (gIoU), which
extends the mean IoU to all samples including no-target
ones. Moreover, No-target performance is also separately
evaluated by computing No-target-accuracy (N-acc.) and
Target-accuracy (T-acc.). Details are given in Sec. 5.1.

3.2. gRefCOCO: A Large-scale GRES Dataset

To perform the GRES task, we construct the gRefCOCO
dataset. It contains 278,232 expressions, including 80,022
multi-target and 32,202 no-target expressions, referring to
60,287 distinct instances in 19,994 images. Masks and
bounding boxes for all target instances are given. Part of
single-target expressions are inherited from RefCOCO. We
developed an online annotation tool to find images, select
instances, write expressions, and verify the results.

The basic annotation procedure follows ReferIt [20] to
ensure the annotation quality. The data split is also kept the
same as the UNC partition of RefCOCO [47]. We compare
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Figure 3. Examples of the proposed gRefCOCO dataset.

the proposed gRefCOCO with RefCOCO and list some
unique and significant features of our dataset as follows.

Multi-target samples. In practice, users usually cluster
multiple targets of an image by describing their logical
relationships or similarities. From this point, we let annota-
tors select target instances rather than randomly assembling
them. Then annotators write an unambiguous referring
expression for the selected instances. There are four major
features and challenges brought by multi-target samples:

1) Usage of counting expressions, e.g., “The two people
on the far left” in Fig. 3(a). As the original RefCOCO
already has ordinal word numbers like “the second person
from left”, the model must be able to differentiate cardinal
numbers from ordinal numbers. Explicit or implicit object-
counting ability is desired to address such expressions.

2) Compound sentence structures without geometrical
relation, like compound sentences “A and B”, “A except
B”, and “A with B or C”, as shown in Fig. 3. This raises
higher requirements for models to understand the long-
range dependencies of both the image and the sentence.

3) Domain of attributes. When there are multiple targets
in an expression, different targets may share attributes
or have different attributes, e.g., “the right lady in blue
and kid in white”. Some attributes may be shared, e.g.,
“right”, and others may not, e.g., “blue” and “white”. This
requires the model to have a deeper understanding of all
the attributes and map the relationship of these attributes to
their corresponding objects.

4) More complex relationships. Since a multi-target
expression involves more than one target, relationship de-
scriptions appear more frequently and are more complicated
than in sing-target ones. Fig. 3(b) gives an example. Two
similar expressions are applied on the same image. Both
expressions have the conjunction word “and”, and “two
passengers” as an attribute to the target “bike”. But the two
expressions refer to two different sets of targets as shown in
Fig. 3(b). Thus in GRES, relationships are not only used to
describe the target but also indicate the number of targets.
This requires the model to have a deep understanding of all
instances and their interactions in the image and expression.

No-target samples. During the annotation, we found
that if we do not set any constraints for no-target ex-
pressions, annotators tend to write a lot of simple or

general expressions that are quite different from other
expressions with valid targets. E.g., annotators may write
duplicated “dog” for all images without dogs. To avoid
these undesirable and purposeless samples in the dataset,
we set two rules for no-target expressions:
1) The expression cannot be totally irrelevant to the
image. For example, given the image in Fig. 3(a), “The kid
in blue” is acceptable as there do exist kids in the image, but
none of them is in blue. But expressions like “dog”, “car”,
“river” etc. are unacceptable as they are totally irrelevant
to anything in this image.
2) The annotators could choose a deceptive expression
drawn from other images in RefCOCO’s same data split, if
an expression required by in 1) is hard to come up with.

These rules greatly improve the diversity of no-target
expressions and keep our dataset at a reasonable difficulty.
More examples are shown in the Supplementary Materials.

4. The Proposed Method for GRES

As discussed earlier, the relationship and attribute de-
scriptions are more complex in multi-target expressions.
Compared with classic RES, it is more challenging and im-
portant for GRES to model the complex interaction among
regions in the image, and capture fine-grained attributes for
all objects. We propose to explicitly interact different parts
of image and different words in expression to analyze their
dependencies.

4.1. Architecture Overview

The overview of our framework is shown in Fig. 4. The
input image is processed by a transformer encoder based
on Swin [29] to extract vision features Fi ∈ RH×W×C ,
in which H,W are the spatial size and C is the channel
dimensions. The input language expression is processed by
BERT [3], producing the language feature Ft ∈ RNt×C ,
where Nt is the number of words in the expression. Next,
Fi is sent to a pixel decoder to obtain the mask feature Fm

for mask prediction. Meantime, Fi and Ft are sent to our
proposed ReLAtionship modeling block (see Sec. 4.2 for
details), which divides the feature maps into P × P = P 2

regions, and models the interaction among them. These
“regions” correspond to the image’s P ×P patches like ViT
[7]. However, the shape and sizes of their spatial areas are
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Figure 4. Architecture overview of the GRES baseline model ReLA. Firstly, the given image and expression are encoded into vision feature
Fi and language feature Ft, respectively. Fi is fed into a pixel decoder to produce mask features Fm. ReLAtionship modeling block takes
both Fi and Ft as inputs and output 1) region filter Ff that produces region masks Mr , 2) region probability map xr , and 3) no-target
judgement score E. Output mask is obtained by weighted fusion of region masks Mr .

not predefined but found by ReLA dynamically, which is
different from previous works using hard-split [7,21,37,41].
ReLA generates two sets of features: region feature Fr =

{fn
r }P

2

n=1 and region filter Ff = {fn
f }P

2

n=1. For the n-th
region, its region feature fn

r is used to find a scalar xn
r

that indicates its probability of containing targets, and its
region filter fn

f is multiplied with the mask feature Fm,
generating its regional segmentation mask Mn

r ∈ RH×W

that indicates the area of this region. We get the predicted
mask by weighted aggregating these masks:

M =
∑
n

(xn
rM

n
r ). (1)

Outputs and Loss. The predicted mask M is supervised
by the ground-truth target mask MGT . The P × P proba-
bility map xr is supervised by a “minimap” downsampled
from MGT , so that we can link each region with its
corresponding patch in the image. Meantime, we take the
global average of all region features Fr to predict a no-target
label E. In inference, if E is predicted to be positive, the
output mask M will be set to empty. M , xr and E are
guided by the cross-entropy loss.

4.2. ReLAtionship Modeling

The proposed ReLAtionship modeling has two main
modules, Region-Image Cross Attention (RIA) and Region-
Language Cross Attention (RLA). The RIA flexibly collects
region image features. The RLA captures the region-region
and region-language dependency relationships.

Region-Image Cross Attention (RIA). RIA takes the
vision feature Fi and P 2 learnable Region-based Queries
Qr as input. Supervised by the minimap shown in Fig. 4,
each query corresponds to a spatial region in the image
and is responsible for feature decoding of the region. The
architecture is shown in Fig. 5a. First, the attention between
image feature Fi and P 2 query embeddings Qr ∈ RP 2×C

is performed to generate P 2 attention maps:
Ari = softmax(Qrσ(FiWik)

T ), (2)
where Wik is C × C learnable parameters and σ is
GeLU [11]. The resulting Ari ∈ RP 2×HW gives each
query a H×W attention map indicating its corresponding
spatial areas in the image. Next, we get the region features
from their corresponding areas using these attention maps:
F ′
r = Ariσ(FiWiv)

T , where Wiv is C × C learnable
parameters. In such a way, the feature of each region
is dynamically collected from their relevant positions.
Compared to hard-splitting the image into patches, this
method gives more flexibility. An instance may be
represented by multiple regions in the minimap (see Fig. 4),
making regions represent more fine-grained attributes at
the sub-instance level, e.g., the head and upper body of
a person. Such sub-instance representations are desired
for addressing the complex relationship and attribute
descriptions in GRES. A region filter Ff containing region
clues is obtained based on F ′

r for mask prediction. F ′
r is

further fed into RLA for region-region and region-word
interaction modeling.

Region-Language Cross Attention (RLA). Region im-
age features F ′

r come from collating image features that
do not contain relationship between regions and language
information. We propose RLA module to model the region-
region and region-language interactions. As in Fig. 5b,
RLA consists of a self-attention for region image features
F ′
r and a multi-modal cross attention. The self-attention

models the region-region dependency relationships. It
computes the attention matrix by interacting one region
feature with all other regions and outputs the relationship-
aware region feature Fr1. Meanwhile, the cross attention
takes language feature Ft as Value and Key input, and
region image feature F ′

r as Query input. This firstly models
the relationship between each word and each region:
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Al = softmax(σ(F ′
rWlq)σ(FtWlk)

T ), (3)

where Al ∈ RP 2×Nt . Then it forms the language-aware
region features using the derived word-region attention:
Fr2 = AlFt. Finally, the interaction-aware region feature
Fr1, language-aware region feature Fr2, and region image
features F ′

r are added together, and a MLP further fuses the
three sets of features: Fr = MLP(F ′

r + Fr1 + Fr2).

5. Experiments and Discussion
5.1. Evaluation Metrics

Besides the widely-used RES metrics cumulative IoU
(cIoU) and Precision@X (Pr@X), we further introduce
No-target accuracy (N-acc.), Target accuracy (T-acc.), and
generalized IoU (gIoU) for GRES.

cIoU and Pr@X. cIoU calculates the total intersection
pixels over total union pixels, and Pr@X counts the per-
centage of samples with IoU higher than the threshold X .
Notably, no-target samples are excluded in Pr@X. And as
multi-target samples have larger foreground areas, models
are easier to get higher cIoU scores. Thus, we raise the
starting threshold to 0.7 for Pr@X.

N-acc. and T-acc. evaluates the model’s performance
on no-target identification. For a no-target sample, predic-
tion without any foreground pixels is true positive (TP ),
otherwise false negative (FN ). Then, N-acc. measures the
model’s performance on identifying no-target samples: N-
acc. = TP

TP+FN . T-acc. reflects how much the generalization
on no-target affects the performance on target samples, i.e.
how many samples that have targets are misclassified as no-
target: T-acc. = TN

TN+FP .
gIoU. It is known that cIoU favors larger objects [40,44].

As multi-target samples have larger foreground areas in
GRES, we introduce generalized IoU (gIoU) that treats all
samples equally. Like mean IoU, gIoU calculates the mean
value of per-image IoU over all samples. For no-target
samples, the IoU values of true positive no-target samples
are regarded as 1, while IoU values of false negative
samples are treated as 0.

"two guys in black jacket"Image (a)

( No Target )

RefCOCO gRefCOCO

"the bed with red sheet"Image (b)

Image

Figure 6. Example predictions of the same model being trained on
RefCOCO vs. gRefCOCO.

Table 2. Ablation study of RIA design options.
# Methods P@0.7 P@0.8 P@0.9 cIoU gIoU

#1 Hard split, input 63.02 59.81 19.26 54.43 55.34
#2 Hard split, decoder 70.34 65.23 21.47 60.08 60.93
#3 w/o minimap 72.19 66.02 21.07 61.30 62.06
#4 ReLA (ours) 74.20 68.33 24.68 62.42 63.60

5.2. Ablation Study

Dataset necessity. To show the necessity and validity of
gRefCOCO on the task of GRES, we compare the results of
the same model trained on RefCOCO and gRefCOCO. As
shown in Fig. 6, image (a) is a multi-target sample using a
shared attribute (“in black jacket”) to find “two guys”. The
model trained on RefCOCO only finds one, even though
the expression explicitly points out that there are two target
objects. Image (b) gives a no-target expression, and the
RefCOCO-trained model outputs a meaningless mask. The
results demonstrate that models trained only on single-
target referring expression datasets, e.g., RefCOCO, cannot
be well generalized to GRES. In contrast, the newly built
gRefCOCO can effectively enable the model to handle
expressions indicating an arbitrary number of objects.

Design options of RIA. In Tab. 2, we investigate the
performance gain brought by RIA. In model #1, we follow
previous methods [7, 21] and rigidly split the image into
P × P patches before sending them into the encoder.
Tab. 2 shows that this method is not suitable for our ReLA
framework, because it makes the global image information
less pronounced due to compromised integrity. In model #2,
RIA is replaced by average pooling the image feature into
P×P . The gIoU gets a significant gain of 5.59% from model
#1, showing the importance of global context in visual fea-
ture encoding. Then, another 2.67% gIoU gain can be got
by adding our proposed dynamic region feature aggregation
for each query (Eq. (2)), showing the effectiveness of the
proposed adaptive region assigning. Moreover, we study the
importance of linking queries with actual image regions. In
model #3, we removed the minimap supervision so that the
region-based queries Qr become plain learnable queries,
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Table 3. Ablation study of RLA design options.
# Methods P@0.7 P@0.8 P@0.9 cIoU gIoU

#1 Baseline 69.94 61.10 19.38 57.24 58.53
#2 + language att. 72.03 65.42 21.04 59.86 60.53
#3 + region att. 73.52 67.01 23.43 61.00 62.38
#4 ReLA (ours) 74.20 68.33 24.68 62.42 63.60

Table 4. Ablation study of Number of Regions
# Regions P@0.7 P@0.8 P@0.9 cIoU gIoU
4× 4 68.48 60.25 20.33 56.57 57.01
8× 8 72.36 66.85 23.56 59.74 61.23

10× 10 74.20 68.33 24.68 62.42 63.60
12× 12 74.14 67.56 23.90 62.02 63.50

Predicted Minimap

#1 #2

#3

#4

"All three lunch boxes"

#1 #2

#3 #4

Figure 7. Visualization of the predicted minimap & region masks.

resulting in a 1.54% gIoU drop. This shows that explicit
correspondence between queries and spatial image regions
is beneficial to our network.

Design options of RLA. Tab. 3 shows the importance
of dependency modeling to GRES. In the baseline model,
RLA is replaced by point-wise multiplying region features
and globally averaged language features, to achieve a basic
feature fusion like previous works [5, 32]. In model #2, the
language cross attention is added onto the baseline model,
which brings a gIoU gain of 2%. This shows the validity
of region-word interaction modeling. Then we further add
the region self-attention to investigate the importance of
the region-region relationship. The region-region relation-
ship modeling brings a performance gain of 3.85% gIoU.
The region-region and region-word relationship modeling
together bring a significant improvement of 5.07% gIoU.

Number of regions P . Smaller P leads to coarser
regions, which is not good for capturing fine-grained at-
tributes, while larger P costs more resources and decreases
the area of each region, making relationship learning diffi-
cult. We do experiments on the selection of P in Tab. 4 to
find the optimized P . The model’s performance improves
as P increases until 10, which is selected as our setting. In
Fig. 7, we visualize the predicted minimap xr and region
maps Mr. xr displays a rough target probability of each
region, showing the effectiveness of minimap supervision.
We also see that the region masks capture the spatial
correlation of the corresponding regions. With flexible
region size and shape, each region mask contains not only
the instance of this region but also other instances with
strong relationships. For example, region #4 is located
inside the bottom lunch box, but as the input expression tells
that all three boxes are targets, the top two also cause some
responses in the output mask of region #4.

Table 5. Comparison on gRefCOCO dataset.

Methods
val testA testB

cIoU gIoU cIoU gIoU cIoU gIoU

MattNet [46] 47.51 48.24 58.66 59.30 45.33 46.14
LTS [18] 52.30 52.70 61.87 62.64 49.96 50.42
VLT [5] 52.51 52.00 62.19 63.20 50.52 50.88
CRIS [39] 55.34 56.27 63.82 63.42 51.04 51.79
LAVT [44] 57.64 58.40 65.32 65.90 55.04 55.83
VLT+ReLA 58.65 59.43 66.60 65.35 56.22 57.36
LAVT+ReLA 61.23 61.32 67.54 66.40 58.24 59.83
ReLA (ours) 62.42 63.60 69.26 70.03 59.88 61.02

Table 6. No-target results comparison on gRefCOCO dataset.

Methods
val testA testB

N-acc. T-acc. N-acc. T-acc. N-acc. T-acc.

MattNet [46] 41.15 96.13 44.04 97.56 41.32 95.32
VLT [5] 47.17 95.72 48.74 95.86 47.82 94.66
LAVT [44] 49.32 96.18 49.25 95.08 48.46 95.34
ReLA-50pix 49.96 96.28 51.36 96.35 49.24 95.02
ReLA 56.37 96.32 59.02 97.68 58.40 95.44

5.3. Results on GRES

Comparison with state-of-the-art RES methods. In
Tab. 5, we report the results of classic RES methods on
gRefCOCO. We re-implement these methods using the
same backbone as our model and train them on gRefCOCO.
For one-stage networks, output masks with less than 50 pos-
itive pixels are cleared to all-negative, for better no-target
identification. For the two-stage network MattNet [46],
we let the model predict a binary label for each instance
that indicates whether this candidate is a target, then merge
all target instances. As shown in Tab. 5, these classic
RES methods do not perform well on gRefCOCO that
contains multi-target and no-target samples. Furthermore,
to better verify the effectiveness of explicit modeling, we
add our ReLA on VLT [5] and LAVT [44] to replace the
decoder part of them. From Tab. 5, our explicit relationship
modeling greatly enhances model’s performance. E.g.,
adding ReLA improves the cIoU performance of the LAVT
by more than 4% on the val set.

In Tab. 6, we test the no-target identification perfor-
mance. As shown in the table, T-acc. of all methods are
mostly higher than 95%, showing that our gRefCOCO does
not significantly affect the model’s targeting performance
while being generalized to no-target samples. But from N-
acc. of classic RES methods, we see that even being trained
with no-target samples, it is not satisfactory to identify no-
target samples solely based on the output mask. We also
tested our model with the no-target classifier disabled and
only use the positive pixel count in the output mask to
identify no-target samples (“ReLA-50pix” in Tab. 6). The
performance is similar to other methods. This shows that a
dedicated no-target classifier is desired. However, although
our N-acc. is higher than RES methods, there are still
around 40% of no-target samples are missed. We speculate
that this is because many no-target expressions are very
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Table 7. Results on classic RES in terms of cIoU. U: UMD split. G: Google split.

Methods
Visual

Encoder
Textual
Encoder

RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val(U) test(U) val(G)

MCN [32] Darknet53 bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
VLT [5] Darknet53 bi-GRU 67.52 70.47 65.24 56.30 60.98 50.08 54.96 57.73 52.02
ReSTR [21] ViT-B Transformer 67.22 69.30 64.45 55.78 60.44 48.27 - - 54.48
CRIS [39] CLIP-R101 CLIP 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 -
LAVT [44] Swin-B BERT 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50
VLT [6] Swin-B BERT 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22 62.80
ReLA (ours) Swin-B BERT 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.70

"Everyone except the blurry guy""Everyone"

Image (a)

"two bowls on right"Image (b)

"Girls and the dog""Girls"

Image (c)

"all bowls on top"

Figure 8. Example results of our method on gRefCOCO dataset.

deceptive and similar with real instances in the image. We
believe that no-target identification will be one of our key
focus on the future research for the GRES task.

Qualitative results. Some qualitative examples of our
model on the val set of gRefCOCO are shown in Fig. 8.
In Image (a), our model can detect and precisely segment
multiple targets of the same category (“girls”) or different
categories (“girls and the dog”), showing the strong gen-
eralization ability. Image (b) uses counting words (“two
bowls”) and shared attributes (“on right”) to describe a set
of targets. Image (c) has a compound sentence showing
that our model can understand the excluding relationship:
“except the blurry guy” and makes a good prediction.

Failure cases & discussion. We show some failure
cases of our method in Fig. 9. Image (a) introduces a
possession relationship: “left girl and her laptop”. This
is a very deceptive case. In the image, the laptop in center
is more dominant and closer to the left girl than the left
one, so the model highlighted the center laptop as “her
laptop”. Such a challenging case requires the model to have
a profound understanding of all objects, and a contextual
comprehension of the image and expression. In the second
case, the expression is a no-target expression, referring to
“man in gray shirt sitting on bed”. In the image, there is
indeed a sitting person in grey shirt, but he is sitting on a
black chair very close to the bed. This further requires the
model to look into the fine-grained details of all objects, and
understand those details with image context.

"left girl and her laptop"Image (a)

Failure caseGround-Truth

"man in grey shirt sitting on bed"Image (b)

( No Target )

Figure 9. Failure cases of our method on gRefCOCO dataset.

5.4. Results on Classic RES

We also evaluate our method on the classic RES task and
report the results in Tab. 7. In this experiment, our model
strictly follows the setting of previous methods [5, 44] and
is only trained on the RES datasets. As shown in Tab. 7,
the proposed approach ReLA outperforms other methods on
classic RES. Our performance is consistently higher than
the state-of-the-art LAVT [44] with a margin of 1%∼4%
on three datasets. Although the performance gain of our
proposed method over other methods on classic RES is
lower than that on GRES, the results show that the explicit
relationship modeling is also beneficial to classic RES.
More results are reported in Supplementary Materials.

6. Conclusion
We analyze and address the limitations of the classic

RES task, i.e., it cannot handle multi-target and no-target
expressions. Based on that, a new benchmark, called
Generalized Referring Expression Segmentation (GRES),
is defined to allow an arbitrary number of targets in the ex-
pressions. To support the research on GRES, we construct
a large-scale dataset gRefCOCO. We propose a baseline
method ReLA for GRES to explicitly model the relation-
ship between different image regions and words, which
consistently achieves new state-of-the-art results on the
both classic RES and newly proposed GRES tasks. The
proposed GRES greatly reduces the constraint to the natural
language inputs, increases the application scope to the cases
of multiple instances and no right objects in image, and
opens possible new applications such as image retrieval.
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