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Abstract

Anomaly detection in surveillance videos is a challeng-
ing computer vision task where only normal videos are
available during training. Recent work released the first
virtual anomaly detection dataset to assist real-world detec-
tion. However, an anomaly gap exists because the anoma-
lies are bounded in the virtual dataset but unbounded in the
real world, so it reduces the generalization ability of the
virtual dataset. There also exists a scene gap between vir-
tual and real scenarios, including scene-specific anomalies
(events that are abnormal in one scene but normal in an-
other) and scene-specific attributes, such as the viewpoint
of the surveillance camera. In this paper, we aim to solve
the problem of the anomaly gap and scene gap by proposing
a prompt-based feature mapping framework (PFMF). The
PFEMF contains a mapping network guided by an anomaly
prompt to generate unseen anomalies with unbounded types
in the real scenario, and a mapping adaptation branch to
narrow the scene gap by applying domain classifier and
anomaly classifier. The proposed framework outperforms
the state-of-the-art on three benchmark datasets. Exten-
sive ablation experiments also show the effectiveness of our
framework design.

1. Introduction

Video anomaly detection (VAD) aims to identify abnor-
mal scenarios in surveillance videos with broad applications
in public security. However, due to the small probability of
occurrence, abnormal events are difficult to be observed in
real-life surveillance. The challenge increases because of
the unconstrained nature of abnormal events. Given a spe-
cific scenario, the event different from normal events can
all be regarded as anomalies, so the anomaly type is un-
bounded.
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Most VAD approaches address this challenge by learn-
ing the distribution of normal events in the training stage
and detecting the out-of-distribution events in the testing
stage. These methods are categorized into reconstruction-
based methods [1, 14, 31] to reconstruct the current frame
and prediction-based methods [26,27,27,30, 34] to predict
the upcoming frame. Significant reconstruction or predic-
tion error is regarded as an anomaly. However, due to the
strong generalization ability of the deep networks and the
similarity between normal and abnormal events, the anoma-
lies do not always lead to enough error to be detected. With-
out prior knowledge of abnormal distribution, it is difficult
for the network to detect unseen anomalies.

Therefore, instead of calculating error with the distri-
bution of normal behaviors, some methods [11, 12,53, 54]
try to generate pseudo anomalies to simulate the distribu-
tion of abnormal behaviors. For example, Georgescu et
al. [12] collect a large number of images from Tiny Ima-
geNet unrelated to the detection scenario as pseudo anoma-
lous samples. Their other work [ 1 1] tries to generate tempo-
ral anomalies by reversing the action order or motion irreg-
ularity by extracting intermittent frames. The network can
get a glimpse of the feature distribution different from nor-
mal events by manually applying pseudo anomalies. How-
ever, the main drawback of these methods is the unavoid-
able gap between pseudo and natural anomalies.

To solve the problem of pseudo anomalies, Acsintoae et
al. [2] released a virtual VAD dataset named Ubnormal us-
ing 3D animations and 2D background images. It contains
22 types of anomaly, such as fighting, stealing, laying down,
etc. The distribution of real anomalies can be well eval-
uated by applying the virtual dataset. However, applying
virtual anomalies to real scenarios is a great challenge due
to the large domain gap. Acsintoae et al. [2] train a Cycle-
GAN [60] to achieve video-level style transfer from virtual
to the real domain to address the challenge.

However, existing methods fail to address two key chal-
lenges. Firstly, the anomalies are bounded in the virtual
dataset but unbounded in the real world, and we define
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Figure 1. An overview of prompt-based feature mapping framework (PFMF). The PFMF totally contains three parts, i.e., feature extractor,
prompt-based feature mapping network, and mapping adaptation branch. The feature extractor is used to transform the input instances into
corresponding features, so the mapping process can be completed at the feature level. The prompt-based feature mapping network aims to
map normal features into abnormal feature space under the same domain guided by an anomaly prompt, so the unseen anomalies in the real
domain can be generated from normal features. The mapping adaptation branch is added to make the generated anomalies scene-specific

and solve the problem of scene-specific attributes.

this difference as anomaly gap. Secondly, different scenar-
ios have scene-specific anomalies (events that are abnormal
in one scene but normal in another) and scene-specific at-
tributes (such as the viewpoint of the surveillance camera),
and we define this difference as scene gap.

Our work is motivated by the above two key challenges.
To solve the problem of anomaly gap and scene gap, we pro-
pose a novel framework named prompt-based feature map-
ping framework (PFMF), as shown in Fig. 1. In terms of
narrowing the anomaly gap, the PFMF employs a prompt-
guided mapping network to generate unbounded anomalies
through a divergent mapping process. The prompts are sam-
pled from distribution learned by a variational auto-encoder
(VAE) [17]. As for the scene gap, we introduce a mapping
adaptation branch to solve it. In detail, the branch consists
of an anomaly classifier to make the generated anomalies
scene-specific, and two domain classifiers to reduce the in-
consistency caused by scene-specific attributes.

In summary, this paper makes the following contribu-
tions:

(1) Proposing a novel prompt-based feature mapping
framework (PFMF) for video anomaly detection. This
framework addresses the challenge of applying virtual VAD
datasets with limited anomalies to the real scenario by gen-
erating unseen anomalies with unbounded types.

(2) Proposing a mapping adaptation branch to ensure the
anomalies generated by PFMF are scene-specific and solve
the problem of scene-specific attributes.

(3) Showing the effectiveness of the proposed framework
on three public VAD datasets, ShanghaiTech, Avenue, and
UCF-Crime. Extensive experiments show that the proposed
framework performs the best compared with the state-of-

the-art.

2. Related Work
2.1. Video Anomaly Detection

The goal of the VAD task is to detect anomaly events
in videos. In recent years, many works try to learn the
distribution of normal events and detect out-of-distribution
events in the testing stage [I, 13, 14, 26, 27, 30, 31, 34].
These methods are categorized into reconstruction-based or
prediction-based. Some of the reconstruction-based meth-
ods use generative models [14], sparse coding [31], or deep
auto-encoder [ 1] to reconstruct the current frame based on
several adjacent frames. Prediction-based methods always
predict the future frame using techniques such as motion
feature extraction [27, 34], deep auto-encoder [13, 30] or
ConvLSTM [26]. The occurrence of an anomaly will lead
to significant reconstruction or prediction error. However,
these methods lie in the ‘over-generalizing’ dilemma where
both normal and abnormal frames can be predicted or re-
constructed well because of the strong representation abil-
ity of deep network [32]. Recently, some methods try to
solve this problem by adding pseudo anomalies in the train-
ing process [11, 12,53,54]. The pseudo anomalies are col-
lected from unrelated datasets [12] or generated from nor-
mal events [ |, 54]. However, these methods face the prob-
lem of the large gap between pseudo and natural anomalies.

2.2. Datasets under Virtual Environment

Due to the enormous cost and privacy sensitivity of col-
lecting real-world datasets, generating a virtual dataset has
become a viable alternative in many fields, including per-
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son re-identification [47], semantic segmentation [40], ac-
tion recognition [37], etc. Due to the lack of anomalies in
real-world datasets, instead of generating pseudo anoma-
lies, Acsintoae et al. [2] introduce the first virtual VAD
dataset named Ubnormal with a large number of videos con-
taining anomalies such as falling, fighting, stealing, etc.

2.3. Feature Mapping

Our proposed framework shares underlying similari-
ties with feature mapping techniques in domain adapta-
tion [0, 18,41,57,61]. To address the problem of heteroge-
neous feature spaces in different domains, feature mapping
is used to map data from one domain to another. Two map-
ping paradigms, i.e., common space mapping [41,61] and
asymmetric mapping [0, 18,57] are used. However, the gap
between the real and virtual domains is large. Therefore, in-
stead of mapping features from one domain to another, the
proposed PFMF applies mapping from normal features to
abnormal features under the same domain.

2.4. Prompting Methods

Recently, prompt-based learning has been a popular
method in both natural language processing [4, 25, 36,

,49,51] and computer vision [8, 16,22, 58, 59]. Usu-
ally, prompt in textual form is used to adapt language
model pre-trained on the large dataset to downstream tasks
[4,25,36,36,49,51]. Textual prompts are also used in the
vision-language model [8,22, 58, 59] to complete computer
vision tasks. In addition to applying textual prompts, visual
prompts in the form of the learnable vector are proposed to
fine-turn the Vision Transformer (ViT) [7]. In this work, in-
stead of applying a pre-trained model to downstream tasks,
the proposed anomaly prompt is used to guide the mapping
network to achieve divergent mapping.

3. Method

In this section, we elaborate on the framework and the
training process of our method. An overview of the pro-
posed PFMP is provided in Section 3.1. Then, the training
data organization is explained in Section 3.2. In Section 3.3,
the proposed PFMP is illustrated in detail by describing the
feature mapping procedure (Section 3.3.1), anomaly prompt
(Section 3.3.2), and mapping adaptation branch (Section
3.3.3), respectively. Finally, the optimization process is
elaborated in Section 3.4.

3.1. Overview

The overall framework of our proposed method is shown
in Fig. 1. Here, we call the real-world dataset (Shang-
haiTech, Avenue, or UCF-Crime) as the real domain and
the Ubnormal dataset as the virtual domain. The framework
takes three inputs, i.e., real domain normal instance S,

nor?

virtual domain normal instance S}, and virtual domain
abnormal instance S, . We first use a feature extractor to
obtain the features of three inputs. To solve the problem
of anomaly gap, a feature mapping network assisted by an
anomaly prompt is used to map normal features to abnormal
features. The anomaly prompt is the key factor to generate
unbounded types of anomalies to narrow the anomaly gap.
Then we can generate anomalies in the real domain by the
feature mapping network and a sampled anomaly prompt.
We also propose a mapping adaptation branch to make the
generated anomalies scene-specific and solve the problem
of scene-specific attributes, which greatly narrows the scene
gap. The detail of the proposed PFMF is illustrated in the
following parts.

3.2. Training Data Organization

The virtual VAD dataset provides rich instance-level
anomaly annotations. The dataset annotates whether the
behaviors are abnormal or not, and the outline of each per-
son is also provided. However, the real-world VAD dataset
only contains raw videos without annotations, and abnor-
mal behavior is absent. Therefore, as shown in the left part
of Fig.2, our framework takes three types of inputs, i.e.,
real domain normal instance 57, ., virtual domain normal
instance S ,., and virtual domain abnormal instance S7,,,.
Both S}, and S7,,, are cropped from virtual video based on
outline annotations of each person. Considering the absence
of bounding box annotations in the real domain dataset, we
apply a YOLOV3 object detector [38] pre-trained on the MS
COCO dataset [24] to extract the bounding box of each per-
son.

3.3. Prompt-based Feature Mapping

After obtaining the instance-level inputs, a feature ex-
tractor is used to extract high-dimensional features, as
shown in Fig.2. Then, a feature mapping network is ap-
plied to build a bridge between normal and abnormal fea-
tures in the virtual domain by asymmetric mapping. The
mapping process is guided by an anomaly prompt to gen-
erate unbounded types of anomaly. The prompt generation
process is shown in Fig. 3. Finally, all features are fed into
the mapping adaptation branch to further narrow the scene
gap, as shown in Fig. 4.

3.3.1 Feature Mapping Network

The feature mapping network aims to map normal features
into abnormal feature space under the same domain. De-
note the feature extractor output as X € REXTXHXW,
where C, T, H, W represent channel number, temporal
length, height, and width, respectively. The normal feature
in the real domain is represented as X ., and the normal

nor?

and abnormal features in the virtual domain are represented
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Figure 2. Process of training data organization and feature map-
ping. For virtual domain, the mapping network ¢ maps normal
feature X, to abnormal feature X;,,. Then MAE Loss is used
to minimize the gap between mapped feature X, ,,, and abnormal
feature X,,,. For the real domain, the mapping network learned

in the virtual domain is used to generate unseen anomalies X,

as X7 . and X7, . respectively. The mapping network de-
noted by (.) contains an encoder ¢.(.) to extract high-level
information and a decoder £4(.) to up-sample the encoded
features.

Since we want to generate unbounded types of anomaly,
we design a divergent mapping process (one normal fea-
ture can be mapped to many types of abnormal features).
Moreover, we apply an anomaly prompt p to indicate the
mapping direction. In virtual domain, the mapped feature

o
Xhap 1s generated as

X:iw,p :Ed([EG(XgOTLpU])’ (1)

where p,, is anomaly prompt for feature in virtual domain,
and [.] means concatenating feature maps along channel di-
mension.

By training the mapping network ¢, we aim to minimize
the mean absolute error (MAE) between the mapped abnor-
mal feature and true abnormal feature in the virtual domain,
as

mé_inMAE( s Xonan)- 2)

abn’ “*map

Through the optimization process of Eq. 2, the normal fea-
ture can be transformed into abnormal feature space.

In the real domain, there are no abnormal samples in the
training set, so the network does not have a perception of
the abnormal feature distribution. To simulate the abnormal
feature distribution in the real domain, we generate abnor-
mal features by using the mapping network learned in the
virtual domain. The formula is defined as:

ngn = Ed([ge(X’:;or)7pT])> (3)
where X

obn, 18 generated anomaly and p,- is the real domain
prompt generated by sampling from a learned distribution.

3.3.2 Anomaly Prompt

To generate unbounded types of anomaly through divergent
feature mapping, we create an anomaly prompt as extra in-
put of the mapping network. Since we can assign different

v
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Figure 3. Generation process of anomaly prompt for feature map-
ping network. It is obtained by concatenating the anomaly vec-
tor (a, or a,) and scene vector (s, or s,). The scene vector is
generated from a ResNet18 network pre-trained in the Places365
dataset. The anomaly vector is sampled from the Gaussian dis-
tribution in VAE. The VAE is trained by reconstructing abnormal
features in the virtual domain.

generated directions by different anomaly prompts, the pro-
duced anomalies tend to be unbounded. The anomaly vector
is obtained by concatenating the scene vector and anomaly
vector, as shown in Fig. 3,

Anomaly vector contains information about anomaly type.
As shown in Fig.3 (a), the anomaly vector in the virtual
domain a, is obtained by squeezing the spatial dimension of
abnormal features through a global average pooling. Then,
a, is fed into a VAE f to generate reconstruction vector a;;.
The VAE is trained by minimizing the mean square error
(MSE) between the anomaly and reconstruction vector, as

mfz'nMSE(f(av),av). “4)

In real domain, we sample a latent variable z from
the posterior distribution of VAE and decode z to obtain
anomaly vector a,, as shown in Fig. 3 (b). Since the VAE
is learned from aligned abnormal features, it can simulate
the distribution of the anomalies. The alignment is done by
the mapping adaptation branch and we will discuss it later.
Then, through sampling latent variables that obey the Gaus-
sian distribution, we can get more types of anomaly vectors.
Scene vector. We aim to make the generated anomaly fea-
tures scene-independent (applicable to any input scene) to
narrow the scene gap. Therefore, additional scene infor-
mation is added by generating scene vector s,.. As shown
in Fig. 3 (b), we fed the scene image (without detection of
YOLOV3) to a ResNet-18 pre-trained on Places365 dataset
[56] to identify scene information. We apply the features
before the softmax in ResNet-18 as the scene vector.
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Figure 4. The mapping adaptation branch in our PFMF contains
one anomaly classifier and two domain classifiers.

Anomaly prompt. After obtaining both the anomaly vec-
tor and scene vector, the anomaly prompt is generated by
concatenating these two vectors to fuse input scene and
anomaly type information. Then, as shown in Fig. 1, we
use anomaly prompt as an extra input of mapping network
to achieve divergent feature mapping.

3.3.3 Mapping Adaptation Branch

In addition to the anomaly prompt, the mapping adaptation
branch is also applied in PFMF to narrow the scene gap. As
shown in Fig.4, our mapping adaptation branch contains
one anomaly classifier and two domain classifiers, which
are designed to solve the problem of scene-specific anoma-
lies and scene-specific attributes, respectively.
Anomaly classifier is used to distinguish between normal
and abnormal features for each input scene to explicitly
make the generated anomalies scene-specific, as shown in
Fig.4. For each scene, events that are not normal are all
treated as anomalies. Thus, maximizing the accuracy of
the anomaly classifier can deviate mapped abnormal fea-
tures from normal features in the same scene. Therefore,
the generated anomalies will have different feature distribu-
tion from the normal events in the same scene, so they are
regarded to be scene-specific.
Domain classifier. In addition, the scene-specific attributes
are also a great challenge when applying virtual datasets to
real scenarios. The CycleGAN applied in previous work [2]
can partly reduce some scene-specific attributes like dress-
ing and background. However, scene-specific attributes still
exist, such as the viewpoint of the surveillance camera. We
solve this problem by aligning the feature space between the
virtual and real domain. The alignment can extract com-
mon attributes of two domains and reduces the inconsis-
tency caused by scene-specific attributes.

Inspired by literature [10], we apply two domain clas-
sifiers and use gradient reversal layer (GRL) to train the

feature extractor. The domain classifier is dedicated to rec-
ognizing which domain the input feature belongs to. The
preceding feature extractor tries to puzzle the domain clas-
sifier to shrink the domain gap. The GRL acts as an identity
function during forward-propagation as

R(X) = X, 5)

where R(.) and X represent GRL and input feature, respec-
tively. During backward propagation, GRL reverses the gra-
dient of the preceding feature extractor by multiplying —A,
as

dR

dxX
where I is the identity matrix, and \ is the adaptation fac-
tor, which is set as 1. We aim to extract common attributes
between real and virtual domain rather than the character-
istics between normal and abnormal feature. Therefore, we
design two independent domain classifiers. These two clas-
sifiers separately act on normal or abnormal features in both
domains, so the features with the same label but the differ-
ent domain will have a similar distribution.

=, (0)

3.4. Training and Inference

Loss function. The proposed PFMF is trained in a uni-
fied way. Total loss contains four terms, feature mapping
loss L,,, anomaly classification loss L,, domain classifica-
tion loss Ly, and VAE reconstruction loss L,. We employ
MAE loss for L,, to minimize the error between mapped
and true abnormal features. We also employ MSE loss for
L, to minimize the error between the input anomaly vector
and the reconstruction vector of VAE. For L, and L4, the
cross-entropy loss is applied to achieve anomaly or domain
classification. The entire loss L,;; is the weighted sum of
three terms, as

Lall = Lm + La + Lv + )\d~Ld~ (7)

We empirically find the choice of domain loss weight Ay
impacts the network training.

Inference. The generated anomalies allow the network to
be trained in a fully-supervised way. Given an unseen in-
stance Synseen, it 18 first fed into the feature extractor 6,
then through the anomaly classifier 0. The classification
result in the anomaly classifier is regarded as the instance-
level anomaly score, as

score = softmax(o(6(Sunseen)))- )

Following the operation in literature [! 1], the instance-
level anomaly scores are assembled into an anomaly map
with the same shape as the input frame. The frame-level
anomaly score is obtained by taking the maximum value in
each frame of the anomaly map.
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4. Experiments
4.1. Datasets and Metrics

In addition to the Ubnormal dataset described in Sec-
tion 2.2 and Section 3.2, we evaluate the proposed PFMF
in three real-world VAD datasets, ShanghaiTech [31], Av-
enue [29], and UCF-Crime [42].

ShanghaiTech is a large-scale VAD dataset containing 437
videos captured in 13 locations. The dataset is organized
for unsupervised learning by dividing it into a training set
with 330 videos containing only normal events and a test-
ing set with 107 videos containing both normal and abnor-
mal events. The anomalies include fighting, robbing, riding
bikes on the sidewalk, etc. Each video in the dataset has a
resolution of 480 x 856.

Avenue dataset contains 16 videos for training and 21
videos for testing with 15324 frames. Similar to Shang-
haiTech, only the testing set contains abnormal events. Each
video in the dataset has a resolution of 480x856. The
anomalies include throwing objects, running, loitering, etc.
UCF-Crime dataset contains 13 anomaly types, and the to-
tal video length is 128 hours. We use normal videos from
the training set for our model training, and abnormal videos
of human-related anomalies (except classes of explosions,
car accidents, and normal) from the testing set for model
evaluation.

Evaluation Metrics In Section 4.3, we use the accuracy
(Acc) of Ubnormal instance inputs and feature mapping er-
ror (Err) to evaluate the feature mapping effect. The lower
error means a better feature mapping effect. The feature
mapping error is MAE between the mapped and true ab-
normal features. In Section 4.4 and 4.5, We use commonly
used metric, i.e., area under ROC curve (AUC), to evalu-
ate the frame-level anomaly detection performance of our
framework [9, 30, 54]. A Higher AUC value means bet-
ter anomaly detection ability. Following literature [12], we
evaluate both the Micro and Macro versions of AUC.

4.2. Implementation Details

Based on trials of preliminary study (Section 4.3), we set
the layer number of the mapping network to 4 and loss func-
tion to MAE loss for subsequent experiments. Each layer of
the mapping network contains one convolution followed by
an instance normalization and a ReLU activation. As de-
scribed in Section 3.4, the choice of L, influences on the
network training, and it is set to 0.2. Adam optimizer is
used with learning rate of 0.001. The confidence threshold
for the YOLOWV3 detector is set to 0.5 for ShanghaiTech and
UCF-Crime, and 0.95 for Avenue. The temporal length for
each input video clip is set to 7. For the feature extractor,
3D CNN with a total of six convolution layers is applied.

Since the inputs of the proposed framework are from
two domains, we empirically found that batch normaliza-

%;’;Z %\?gg Acc(%) Err(%)
0 80.3 0.98
1 83.4 1.01
MAE | 2 84.0 1.20
3 84.1 1.82
4 85.3 0.81
0 86.9 4.29
1 87.2 6.79
MSE | 2 84.9 533
3 84.1 7.02
4 85.8 6.70

Table 1. Preliminary study to obtain the optimal structure and loss
function for mapping network. Accuracy (Acc) of Ubnormal in-
stance inputs and feature mapping error (Err) are used to evaluate
the feature mapping effect.

tion will lead to optimization failure due to inaccurate run-
ning mean and variance. Therefore, instance normalization
is used in our framework to replace batch normalization.

4.3. Preliminary Study

In this section, we explore the optimal structure and loss
function for the mapping network. Only S}, . and S7,  are
fed to our PFMF in this section because the mapping results
in the real domain cannot be evaluated by reconstruction er-
ror and instance-level accuracy (we do not have abnormal
instances in the real domain). After obtaining virtual do-
main instances described in Section 3.2, we split the 70%
of instances for training and 30% for testing. We design
different structures by changing the down-sampling num-
ber of the mapping network. Setting the layer number to 0
means no down-sampling layer exists in the mapping net-
work. We also evaluate the effect of different feature map-
ping loss L,,, i.e., MAE loss and MSE loss. Results are
shown in Table 1. From the table, we find the MAE loss
can significantly reduce the feature mapping error. When
using MAE loss, deeper layers result in higher accuracy.
The structure with layer number 4 and MAE loss achieves
the lowest feature mapping error with 0.81%. The structure
with layer number 2 and MSE loss obtains the highest accu-
racy, but its feature mapping error is too large (6.79%). In
summary, we apply a mapping network with layer number
4 and MAE loss to our PFMF.

4.4. Comparisons with State-of-the-art

In this section, we compare the performance of the pro-
posed PFMF with state-of-the-art methods in Micro and
Macro AUC(%). Noticing that current advanced methods
[39] and [2] apply multi-task framework ( [1 1] and [12] re-
spectively) provided by Georgescu et al. as the backbone.
Therefore, we evaluate our PEMF with or without the multi-
task backbone [11] in Avenue and ShanghaiTech dataset.
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" Avenue ShanghaiTech
S | Method AUC AUC
Micro| Macro| Micro| Macro
oo| Liuetal. [27] 85.1 - 72.8 -
§ Leeetal. [19] 87.2 - - -
Sultani et al. [42] - - 76.5 -
Lee et al. [20] 90.0 - 76.2 -
o| Ionescuetal. [15] 874 | 904 | 787 | 84.9
§ Gong et al. [13] 90.4 - 84.9 -
Nguyen et al. [34] 86.9 - - -
Wu et al. [50] 86.6 - - -
Park et al. [35] 88.5 - 70.5 -
Sun et al. [43] 89.6 - 74.7 -
K| Luetal. [30] 85.8 - 77.9 -
S| Wang et al. [18] 870 | - | 793| -
Yu et al. [52] 89.6 - 74.8 -
Tang et al. [44] 85.1 - 73.0 -
Wang et al. [46] 88.3 - 76.6 -
Astrid et al. [3] 87.1 - 73.7 -
—| Liuet al. [28] 91.1 - 76.2 -
§ Madan et al. [33] 886 | - | 746 | -
Lietal. [21] 88.8 - 73.9 -
Georgescu etal. [11] 915 ] 919 | 824 | 89.3
Georgescu et al. [12] 923 | 904 | 82.7 | 89.3
Zaheer et al. [54] 74.2 - 79.6 -
Lietal. [23] 82.0 - - -
«| Zaheer et al. [53] - - 69.9 -
§ Cho et al. [5] 880 | - |763| -
Zhong et al. [55] 89.0 - 74.5 -
Ristea et al. [39]* 929 | 919 | 83.6 | 89.5
Acsintoae etal. [2]V* | 93.0 | 93.2 | 83.7 | 90.5
PFMF (ours)” 91.8 | 92.3 | 83.8 | 87.8
PFMF (ours)"* 93.6 | 939 | 85.0 | 914

Table 2. Quantitative comparisons between our proposed PFMF
and state-of-the-arts [2,3,5, 1 1-13,15,19-21,23,27,28,30,33-35,
39,42-44,46,48,50,52-55] in Micro and Macro AUC (%). Bold
font indicates the best results.

¥ These methods apply virtual dataset for training.

* These methods use multi-task model ( [1 1] or [12]) as backbone.

Method Micro AUC | Macro AUC
Park et al. [35] 55.5 62.4
Ristca et al. [39] 60.6 64.2
Georgescu et al. [11] 62.3 65.5
PFMF (ours) 67.9 74.0

Table 3. Results in human-related anomalies of UCF-Crime
dataset.

For UCF-Crime, we did not use the multi-task backbone.

Avenue. The proposed PFMF achieves the best in the Av-
enue dataset compared with state-of-the-art [2,3,5, 1 1-13,

feature | anomaly | mapping AUC
mapping | prompt | adaptation | Micro | Macro
- - - 73.6 74.5
v - - 78.9 84.2
v - v 80.9 86.5
v v - 80.0 85.3
v 4 v 83.8 87.8

Table 4. Ablation study of the proposed PFMEF. Total five groups of
experiments are conducted in the ShanghaiTech dataset to evaluate
the effect of each network component.
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Figure 5. Distributions of features generated by our PEFMF and
the method of Georgescu et al. [11] visualized by t-SNE [45].
The blue points denote the extracted features of normal videos
in ShanghaiTech [31] and Avenue [29] datasets. The red points
indicate the abnormal features generated by our PFMF or [11].
The features of normal and abnormal events are tangled together
for [11], but our proposed PFMF shows better performance with
Nebula-like feature distribution. The pattern of concentrated nor-
mal features and dispersed abnormal features is consistent with
our perception of anomalies that most normal behaviors are simi-
lar, while abnormal behaviors are a highly variable open set. The
figure indicates that the generated features are close to the distri-
bution of real anomalies.

15,19-21,23,27,28,30,33-35,39,43,44,46,48,50,52,54,55]
with micro AUC 93.6% and macro AUC 93.9%, which are
0.6% and 0.7% higher than the second best model [2]. With-
out the multi-task backbone [1 1], our PFMF can still obtain
the best macro AUC of 92.3%.

ShanghaiTech. From Table 2, the proposed PEMF also out-
performs state-of-the-art [2, 3,5, 1113, 15,20, 21,27, 28,
30,33,35,39,42-44,46,48,52-55] with micro AUC 85.0%
and macro AUC 91.4%. The PFMF outperforms the second
best [2] by 1.3% and 0.9%, respectively. Without the effect
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Figure 6. Visualization of anomaly score prediction results for test
video 07 in Avenue dataset. The green line denotes the anomaly
prediction of the proposed PFMF. The red area denotes the abnor-
mal interval.

of multi-task backbone [11], the proposed PFMF can also
achieve the best micro AUC of 83.8%, even higher than [2]
with backbone [11].

UCF-Crime. Due to the lack of published results on
human-related anomalies on the UCF-Crime dataset, we
implement the code of literature [11, 35, 39], where [39]
takes [35] as the backbone. As shown in Table 3, the pro-
posed PFMF shows a great advantage with a 5.6% increase
in Micro AUC and an 8.5% increase in Macro AUC than the
second best.

4.5. Ablation Study

We analyze the role played by each part of the pro-
posed PFMF. A total of five groups of experiments are
conducted in the ShanghaiTech dataset, as shown in Ta-
ble 4. When removing the feature mapping part, the per-
formance drops significantly with Micro AUC 73.6% and
Macro AUC 74.5%. By adding feature mapping, the Mi-
cro and Macro AUC increase by 5.3% and 9.7%, respec-
tively, which indicating that the significance of feature map-
ping to align the normal and abnormal features. In addi-
tion, the mapping adaptation branch also plays an important
role in PFMF by narrowing the scene gap. Furthermore, the
anomaly prompt improves model performance by generat-
ing unbounded types of anomalies. With all components,
the final PFMF achieves the best performance with Micro
AUC of 83.8% and Macro AUC of 87.8%.

4.6. Visualization

To validate that we can generate unbounded anomalies,
we visualize the distribution of normal and abnormal fea-
tures generated by PFMF via t-SNE [45], which is shown in
Fig.5. For comparison, we also visualized the distribution
of normal and abnormal features generated by [1 1], where
the abnormal features are generated by reversing the action
order and extracting intermittent frame, as also shown in

Ground Truth
Anomaly Prediction
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Anomaly Score
o
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o

0 50 100 150 200 250 300 350 400 450
Frames

Figure 7. Visualization of anomaly score prediction results for test
video 05_0018 in ShanghaiTech dataset. The green line denotes
the anomaly prediction of the proposed PEMF. The red area de-
notes the abnormal interval.

Fig.5. From the figures, we can obverse that for PEMF,
the normal features extracted from ShanghaiTech and Av-
enue concentrate at the center, and the abnormal features
are scattered around in a divergent state. However, for [1 1],
the features of normal and abnormal instances are tangled
together. From the comparison, we can see that the results
of our method are consistent with our perception of anoma-
lies that most normal behaviors are similar and the abnormal
behaviors are a highly variable open set. This indicates that
the generated features are close to the distribution of real
unbounded anomalies, which on the other hand validates
the effectiveness of our anomaly prompt.

To further show what we learn in PFMF, we visualized
the anomaly score prediction of test video 07 in Avenue
and test video 050018 in ShanghaiTech, which are demon-
strated in Fig. 6 and Fig.7. From the figure, the proposed
PFMF can correctly detect the anomalies in both samples.

5. Conclusion

In this paper, we solve the problem of anomaly gap and
scene gap between virtual and real scenarios by proposing
anovel PFMF. The proposed framework includes a prompt-
guided mapping network to generate unseen anomalies with
unbounded types, and a mapping adaptation branch to nar-
row the scene gap by applying anomaly classifier and do-
main classifier. Our approach provides a new paradigm for
leveraging virtual datasets to avoid cumbersome anomaly
collection in the real scenario. The proposed PFMF per-
forms state-of-the-art on three benchmark datasets, and the
ablation study shows the effectiveness of each component
of our model design. In the future, we aim to extend the
proposed paradigm of utilizing virtual datasets to more ar-
eas.
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