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Abstract

Vision-language models (VLMs) can effectively transfer
to various vision tasks via prompt learning. Real-world sce-
narios often require adapting a model to multiple similar yet
distinct tasks. Existing methods focus on learning a specific
prompt for each task, limiting the ability to exploit poten-
tially shared information from other tasks. Naively training
a task-shared prompt using a combination of all tasks ig-
nores fine-grained task correlations. Significant discrepan-
cies across tasks could cause negative transferring. Consid-
ering this, we present Hierarchical Prompt (HiPro) learn-
ing, a simple and effective method for jointly adapting a
pre-trained VLM to multiple downstream tasks. Our method
quantifies inter-task affinity and subsequently constructs a
hierarchical task tree. Task-shared prompts learned by in-
ternal nodes explore the information within the correspond-
ing task group, while task-individual prompts learned by
leaf nodes obtain fine-grained information targeted at each
task. The combination of hierarchical prompts provides
high-quality content of different granularity. We evaluate
HiPro on four multi-task learning datasets. The results
demonstrate the effectiveness of our method.

1. Introduction

Vision-language pre-training [23, 34,49,71, 74] has re-
cently shown great potential to leverage human language
for addressing a wide range of downstream recognition
tasks. Vision-language models (VLMs), e.g., CLIP [49]
and ALIGN [23], align embeddings of images and texts
from massive web data, encouraging the matching image-
text pair to be similar and pushing away the unmatched
pair [6, 19]. During inference, the task-relevant content in
text modality can be provided to query the latent knowledge
of the pre-trained VLMs for facilitating visual recognition.
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Figure 1. Task-shared prompt vs. task-individual prompt on
multi-task learning. We visualize (a) train loss and (b) test er-
ror surface [15] for classifier weights (Wrand, Wind, and Wspr),
which synthesized from the random initialization prompt, task-
individual prompt, and task-shared prompt, respectively, on one of
the target tasks (i.e., the Art task of the Office-Home dataset [65]).
The task-individual prompt is only trained on this task. The task-
shared prompt is trained on the combination of all tasks. The av-
erage weights (wwg:%(wshr—i-wmd)) can perform well to test
samples. More details refer to the supplementary materials.

The provided task-relevant texts, often constructed by
the prompt template and category words, can significantly
influence the recognition performance. Prompt engineer-
ing [23,49], i.e., manually designing prompts, is a straight-
forward way to obtain meaningful prompts for adapting
VLMs. However, it inevitably introduces artificial bias and
relies on time-consuming attempts [49]. Recent advances
on prompt learning [79,80] show an alternative way, which
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Figure 2. The benefits of prompt learning with multiple tasks. Note that DTD [9] dataset and EuroSAT [45] dataset employ the same
task-shared prompt. Task-individual prompt and task-shared prompt can represent different contents of recognition tasks. Ensembling their

zero-shot classifiers can improve performance.

aims to learn the appropriate soft prompt in a data-driven
manner on each downstream task. With few training data,
prompt learning has shown considerable improvement com-
pared with the hand-crafted prompt.

Despite substantial progress, existing approaches [

] still focus on adapting VLMs to the individual task.
However, challenges in realistic situations demand adapting
a model to several similar but different tasks, also known
as the problem of multi-task learning [20, 75]. More im-
portantly, current methods learn the specific prompt corre-
sponding to each task, which can not leverage information
in other tasks to benefit individual tasks. Actually, the trans-
ferred prompt can be reused for similar tasks. For exam-
ple, “a photo of a {class}.” is a general prompt for most
recognition tasks. Specifically, as shown in Figure 2, for
two distinct tasks, i.e., texture images and satellite images,
a well-designed prompt can leverage the potential connec-
tions across them.

This paper explores how to simultaneously adapt a pre-
trained VLM to multiple target tasks through prompting.
A straightforward way is to learn the same prompt for all
tasks. However, this naive approach ignores the charac-
teristics of each task and fails to achieve the optimum on
each task. Nevertheless, we found that the task-shared
prompt can significantly complement the prompt designed
(or learned) individually for each task. As shown in Fig-
ure 2, the task-individual (hand-crafted) prompt captures
the fine-grained content of each task. The task-shared
(hand-crafted) prompt represents the general content across
tasks. The combination of task-shared and task-individual
prompts can embrace both general and fine-grained content
to enhance recognition.

Another perspective is provided for an in-depth explana-
tion. In Figure 1a, we see that, the classifier weights synthe-
sized from the task-individual prompt (trained on the indi-
vidual target task) have lower training loss than the weights
from the task-shared prompt (trained on the combination
of all tasks). However, the performance of task-individual
prompt on the test set is poor (Figure 1b), which implies
that the task-individual prompt has the risk of over-fitting.

Meanwhile, the task-shared prompt, generalizing on various
tasks, can be considered as a regularization to avoid over-
fitting. Averaging weights from the task-shared prompt and
the task-individual prompt can improve the performance on
test data (Figure 1b).

Although similar tasks can facilitate each other by shar-
ing knowledge, we can not assume all the offered tasks
can benefit from training together. Significant discrepancies
across tasks could lead to poor performance, also known as
negative-transfer [73]. On the other hand, even for the ideal
case, i.e., there exists the same beneficial prompt across all
tasks, only learning the global (coarse-grained) task-shared
prompt neglects the information transferred within some
fine-grained task groups.

To address this problem, we present Hierarchical Prompt
(HiPro) learning to capture multi-grained shared informa-
tion while mitigating negative transfer between dissimilar
tasks. Our HiPro constructs a hierarchical task tree by
agglomerative hierarchical clustering based on inter-task
affinity. Specifically, the internal node of the tree repre-
sents a task group containing a cluster of similar tasks (at
descendant leaves). Meanwhile, dissimilar tasks would be
divided into different sub-trees, mitigating conflict. For
each node, HiPro learns a corresponding prompt to cap-
ture the general information of the fine-grained task group.
Our HiPro learns not only task-individual prompts (for leaf
nodes) but also multi-grained task-share prompts (for non-
leaf nodes). For inference, HiPro combines various weights
generated from learned prompts, leveraging the information
in all tasks to improve the performance of the individual
task.

Comprehensive experiments are constructed to validate
the effectiveness of our method. HiPro works well on a
large-scale multi-task learning benchmark consisting of di-
verse visual recognition tasks. Compared with the existing
prompt learning methods [40,79,80], HiPro has a significant
improvement demonstrating the benefit of learning prompts
with multiple tasks. Additional visualizations are also pro-
vided for analysis.
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2. Related Work

Vision-Language Models (VLMs). Foundation models
(e.g., GPT-3 [3], PaLM [&8], and Florence [74]) trained on
massive data show a surprising ability on many applica-
tions. In computer vision, milestone works, i.e., CLIP [50]
and ALIGN [23], which learn the aligned embedding space
of text and images via contrastive learning, demonstrate
surprising transferability on downstream tasks. They in-
spire many researchers to explore better vision-language
pre-training [1, 34,43,69,71,72,74]. To this day, CLIP,
trained on 400 million image-text pairs, is still one of the
best VLM released publicly. VLMs also show great poten-
tial to address various visual tasks with the language prior,
including detection [16, 32, 77], segmentation [31, 53, 68],
and recognition [24, 60, 76].

Prompt Learning. Prompt learning is initially proposed
for adapting the large pre-trained language models in nat-
ural language processing (NLP) [3, 25]. Since various
NLP tasks can be unified as the “text-fo-text” problem [52],
the specialized prompt is applied to guide the language
model to answer the corresponding question [3, 48, 51].
However, manual crafting of prompts is difficult and of-
ten sub-optimal. Recently, automatic prompt generation
[18,26,30,33,57,78] has emerged as a promising way to
adapt language models effectively.

In computer vision, the pioneering work, Context Opti-
mization (CoOp) [80], employs prompt learning to gener-
ate an appropriate prompt closer to the task context for im-
proving the recognition of VLMs. Due to its simplicity and
effectiveness, many works extend CoOp and apply prompt
learning to board vision tasks [5, 10,13,24,27,40,63,79,81].
Despite various progressions of existing works, adapting
VLMs to multi-task learning with prompting is still an
under-explored problem. In addition, although Conditional
CoOp [79] also discusses the poor generalization of the
task-individual prompt on unseen classes, it does not ob-
tain better in-distribution generalization, even worse than
CoOp. Our HiPro demonstrates that training prompts with
data from multiple tasks can effectively improve the in-
distribution generalization of prompt learning. The most
related work [35] is leveraging prompt learning for multiple
perception tasks in autonomous driving scenarios. How-
ever, it has many specialized designing for autonomous
driving, which is difficult to extend to other multi-task
learning settings.

Multi-Task Learning. Multi-task learning (MTL) aims
to improve the average performance of multiple target tasks
from training together. Common methods design strategies
or structures to share information across tasks, including
hard sharing [4, 20], soft sharing [ 1,42, 70], and learn-

able sharing [17,22,37,54,64]. However, training different
tasks on a shared model raises the difficulty of optimization
and could lead to a negative transfer. Several works attempt
to identify the suitable combination of tasks that can bene-
fit from training together, also referred to as task grouping
[14,60,62,75]. Other popular methods [7,36,38,44,73] aim
to improve the optimization dynamics of MTL, e.g., modi-
fying the gradient direction for mitigating conflict [73]. De-
spite significant progress, the exploration of MTL based on
the modern large-scale VLM is still limited, which is an im-
portant step for developing the in-the-wild vision system.
In addition, our method, guiding the frozen VLM to ad-
dress various tasks with the lightweight prompt, is an effi-
cient multi-task learner. We also compare HiPro with ad-
vanced MTL methods based on their variants of prompt
learning. HiPro demonstrates clear improvements com-
pared with MTL baselines.

3. Method

In this section, we introduce our hierarchical prompt
(HiPro) learning to effectively adapt a VLM to multiple
downstream tasks. Following existing works [79, 80], we
use CLIP as the default VLM. Note that our approach can
also be applied to other CLIP-like models. We begin with
brief reviews of zero-shot CLIP [49], and CoOp [80].

3.1. Prerequisites

Zero-Shot CLIP. Relying on pre-training with web-scale
text-image pairs, CLIP [49] learns an aligned feature space
of text and image. CLIP consists of an image encoder f(-)
and a text encoder g(-). The output vector of encoders is
normalized by its L2-norm. Given the pre-defined class
names, it can perform zero-shot inference for the test image.
Image features of the image x are denoted as f(x). Text
features of various class descriptions {¢;}X; can be de-
noted as {g(t;) } £ |, which are generated by a hand-crafted
prompt (e.g., “a photo of a {class}.”) and the provided K
class names. In this way, the image x can be classified to
the i-th class with the largest (cosine) similarity f(x)-g(¢;)
between their features.

Context Optimization (CoOp). Instead of using the
hand-crafted prompt, CoOp [80] aims to learn a soft prompt
that is adjusted to the visual context with few training sam-
ples. Specifically, let p represents the learnable continu-
ous prompt which is a sequence of tokens. Each token is
a vector with the same dimension as the text encoder’s in-
put embeddings. The class descriptions {¢;(p)}X, based
on the prompt p are construed by combining p and the
word embeddings of K class names. Actually, the matrix
[9(t1(p)), --, g(tK (p))] can be considered as the weights of
a K-way linear classifier (denoted as w(p)). Then, CoOp

10890



Train All Task in One Model and Compute Inter-Task Affinity

class
[ s opy,

Pre-trained

Vision-Language
Model

Frozen parameter

i

Shared Prompt

Y par L, Pan)

VoL, @an)

Pair-wise Affinity

S . @ dryr; (Pan) Inter-Task Affinity Metric
Task Hierarchical Clustering and Learn Prompt @ ® |nference: Combine Related Prompt for Each Task
for Each Task Group
Class Names in Task 7
A ( Pre-trained
dog bird cat Vision-Language
i Model
Prompt1 class .
Prompt 3 class Text —l
Prompt7 class Encoder - = v
11 12 13
Wo W Wz
W31 W3z | W3z
/'\Prompt 4/Vrompt5 / rompt 6 ﬁPrompn T ]
o o o o o (e] Task 7 Image [ =rf)w, -z|w, o] ws-2]
Prompt8 Prompt9 Prompt10 Prompt11 Prompt12 Prompt13 Encoder
Task 1 Task 2 Task3 Task 4 Task5 Task6 \ Y,

Figure 3. Hierarchical Prompt Learning. HiPro first estimates the inter-task affinity based on the gradient direction of the task pair. Given
the affinity, a hierarchical task tree is constructed by agglomerative hierarchical clustering. Then, HiPro independently learns a prompt for
each node to capture the information on the corresponding task group. At inference time, for each target task, the fusion classifier weights
are obtained by averaging the classifier weights generated by the task-related prompts (learned by task groups include the target task).

learns prompt p on the target task 7 by the classification
loss as follows:

exp(f(x)-g(ty(p))/7)
SISy exp(f(@)-g(ti(p))/7)

where y and x represent the label and image of the training
sample in task 7, and 7 is a learnable temperature. All
parameters of the pre-trained model (i.e., g(-) and f(-)) are
frozen in training.

L7(p) = —log D

3.2. Learning Individual and Shared Knowledge

Our paper aims to jointly learn prompts for vari-
ous downstream tasks. Only learning the task-individual
prompt for each task can not benefit from the shared in-
formation across similar tasks (Figure 2). Additionally, the
task-individual prompt could be over-fitting to the training
data (Figure 1a) with poor generalization on test samples
(Figure 1b). Simply training all tasks together for a task-
shared prompt ignores the fine-grained knowledge of the
individual task and could be under-fitting to each task (Fig-
ure 1). Motivated by the above observations, our method
learns both task-shared and task-individual prompts, which
simultaneously provide general and related content to effec-
tively adapt VLMs.

Given N target tasks {7;}~ ;, G denotes a task group

(i.e., a sub-set of all tasks), which consists of |G| tasks
(1<|G|<N). We can extend the prompt learning method
(discussed above) to the MTL setting. Let pg represents the
learned prompt for tasks of G. We train pg by minimizing
the following loss:

L(pg) = Z L7, (pg),

T:€G

@)

where L7; is the classification loss on the ¢-th task (Eq. 1).

A straightforward way to achieve our motivation is to si-
multaneously learn a global task-shared prompt (denoted as
P, for all tasks and the task-individual prompt (denoted
as p;) for each task (j=1,.., N). Specifically, these N+1
prompts are trained independently with their corresponding
task group. After training, for j-th target task, we aver-
age classifier weights generated from the individual prompt
and the shared prompt to obtain a fusion classifier weights
%(w(pa”)-l—w(pj)), which can effectively classify the im-
age features.

This simple method can significantly improve recogni-
tion results compared with learning an individual prompt on
a single task or learning a shared prompt on all tasks (Table
4). However, a global task-shared prompt can not capture
fine-grained knowledge shared within a part of tasks. In ad-
dition, significant discrepancies across tasks could lead to
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Figure 4. Inter-task affinity on CIFAR-100. Tasks with high se-
mantic relevance are clustered together.

a degradation in performance. Next, we introduce HiPro,
which learns hierarchical prompts for fully exploiting the
fine-grained shared information of various task groups.

3.3. Hierarchical Prompt Learning

Overview. The main idea of HiPro is to identify diverse
fine-grained groups of similar tasks, allowing each task to
benefit from learning with various combinations of other
tasks. By fusing multi-grained shared information, HiPro
obtains better classifier weights that generalize well on test
samples. Specifically, as shown in Figure 3, HiPro first esti-
mates the inter-task affinity based on the gradient direction
of the task pairs. Given the affinity, a hierarchical task tree
is constructed by agglomerative hierarchical clustering. A
node of the task tree represents a task group. Then, HiPro
independently learns a prompt for each node to capture the
transferred information on the corresponding task group.
Finally, for each target task, the fusion classifier weights
are obtained by averaging the classifier weights generated
by the task-related prompts (learned by task groups which
include the target task).

Some MTL works [14, 62] also focus on grouping sim-
ilar tasks and learn a shared network responds to each task
group. However, these methods parameterize transferred
knowledge by a neural network, which would have con-
siderable computational overhead when the number of task
groups becomes large. Meanwhile, despite some progress
in mode connectivity [ 15, 58], fusing large-scale neural net-
works to combine the information in multiple task groups
is still a challenge in practice. In contrast, HiPro parame-
terizes various transferred knowledge with prompts and can
effectively fuse classifiers on the weight space (Figure 1).
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Figure 5. Hierarchical task tree of HiPro on CIFAR-100. Differ-
ent levels of clustering have different granularity, which enables to
obtain semantic prompts of different properties.

Inter-Task Affinity. The inter-task affinity quantifies the
similarity of two tasks, i.e., how much two tasks can benefit
from training together. Existing MTL works indicate that
the gradient conflict is the crucial reason for performance
degradation with joint training [36, 73]. Thus, our methods
measure the affinity of two tasks by the similarity of their
gradients on shared prompts.

Specifically, given a global task-shared prompt p,,;; for
all target tasks, the affinity between the ¢-th task and the j-th
task can be estimated as the following dot product,

3)

In addition, for robust estimation, we average multi-
ple “snapshots” of affinity during training the task-shared
prompt, similar to Fifty et al. [14]. Additionally, to re-
duce sensitivity to prompt initialization, we train multiple
task-shared prompts independently and average their affin-
ity estimations. We empirically find that this simple solu-
tion without additional forwards is effective in our prompt
learning framework. It is no worse than the existing work
[14], which estimates affinity by measuring the effect of one
task’s update on the loss of the other task (Table 4).

dr;,7; (Pait) = Voo £7: (Paut) - Voa £7; (Panr)-

Hierarchical Task Clustering and Prompt Learning.
Given the inter-task affinity dr; 7;, we can build a hierar-
chical task tree with agglomerative hierarchical clustering
[59] for discovering more fine-grained knowledge shared
between some tasks. Specifically, each task is considered
an initial cluster. Then, we iteratively find the two most
similar clusters and merge them to form a new cluster. To
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construct a balanced tree, new clusters are temporarily ex-
cluded, and clustering continues. All excluded clusters are
returned when the remaining clusters are less than 2. This
process is repeated until there exists one cluster.

The main challenge of the clustering process is to calcu-
late the affinity (i.e., similarity) between two task groups
(clusters) since we only have the pair-wise affinity. Our
methods approximate the affinity (denoted as d(G,, Gp)) of
two task groups (G,, Gp) by averaging all affinities of their
task pairs,

WG G) = S drg, @
Gal190] 7 e 7 cq,

which can also be considered as the average linkage cluster-
ing [59]. Each node of the hierarchical task tree represents
a task group with potentially shared information. HiPro ef-
fectively captures multi-grained shared knowledge from all
task groups.

Given M task groups {G;}£, (including groups with a
single task), HiPro independently learns M corresponding
prompts {pg, }M .. Images from all tasks are combined to-
gether in a mini-batch to extract features. For each prompt,
we minimize Eq. 2 with corresponding image features. Al-
though each prompt is trained independently, the training is
still compact. Since texts generated by different prompts are
fed into the text encoder in a batch, one step can optimize
all prompts. Additionally, image features can be reused for
different prompts updating without repeating forward.

Combining Task-Related Prompts for Inference. Fi-
nally, the averaging classifier weights w7, which used to
infer test samples of the j-th target task is:
ity w(pg, ) I(T;€G:)
’LU7’] = M ) (5 )
2= (T5€9:)

where I is the indicator function. It also allows the HiPro to
have no additional computational overhead for inference.

4. Experiments

We evaluate the performance of HiPro on four multi-
task datasets, including Office-Home [65], DomainNet
[47], CIFAR-100 [29], and a large-scale multi-task learn-
ing benchmark with 10 image classification datasets. We
report the average accuracy of each task over 3 runs.

Office-Home [65] contains images collected from four
domains (tasks): Art, Clipart, Product, and Real-World.
There are 65 shared object categories in different domains.
Following MTL works [39, 56], 10% and 20% samples in
each task are used for training and the others are used for
testing.

DomainNet [47] includes about 0.6 million images dis-
tributed among 345 categories. The diversity of categories

makes this dataset extremely challenging. It contains six
different domains: Clipart, Infograph, Painting, Sketch,
Real, and Quickdraw. Following the previous work [56],
we use 1% and 2% of labeled data for training.

CIFAR-100 [29] has coarse and fine labels for its im-
ages. Each coarse category contains 5 fine-grained classes.
Following existing works [54, 55], we treat 20 coarse cat-
egories as the 5-way fine-grained classification tasks. 4%
and 8% samples of training set are used for training.

Large-Scale MTL Benchmark consists of 10 differ-
ent downstream tasks, including fine-grained recognition
(OxfordPets [46], StanfordCars [28], Flowers102 [45],
Food101 [2], and FGVCAircraft [41]), texture recogni-
tion (DTD [9]), scene recognition (SUN397 [67]), general
recognition (Caltech101 [12]), action recognition (UCF101
[61]), and satellite image recognition (EuroSAT [21]). We
construct this experiment to evaluate the performance of our
HiPro in real scenarios. Following the splitting of [49, 80],
we sample 1, 2, 4, 8, and 16 training samples of each class
from downstream tasks for training. Our evaluation metrics
are the same as CoOp [80].

Training Details. Following the wildly used setting in
prompt learning [ ], we use CLIP with ResNet-50 vi-
sion backbone as our default model. Prompt with 16 tokens
are randomly initialized with Gaussian distribution of 0.02
standard deviation [80]. Prompt is trained by the SGD op-
timizer for 100 epochs with a learning rate of 0.001 and the
cosine decay scheduler. Batch size is 20. The checkpoint
of the last epoch is used for evaluation. We estimate the
inter-task affinity every 5 steps with 8 task-shared prompts.

Comparison methods. We compare HiPro with four
prompt learning baselines: (1) Zero-Shot CLIP; (2) the
standard CoOp [80] trained on an individual task; (3) Co-
CoOp [79], which generates a conditional prompt based on
the current image; (4) ProDA [40] that learns a distribu-
tion of diverse prompts. For a fair comparison, we limit the
number of learnable prompts of ProDA so that its #parame-
ters are close to HiPro. As the most related method, CoOp-
MTL is the multi-task version of CoOp, which trains a task-
shared prompt with samples from all tasks. We also se-
lect several representative methods of MTL and apply them
to CoOp-MTL. PCGrad [73] projects conflicting gradients
to the normal plane for mitigating competing. IMTL [38]
aims to seek the Pareto point that enables balanced perfor-
mance across tasks. TAG [14] is a similar work to our
method, which groups different tasks and trains a shared
network for each group.”

*Note that TAG uses a branch-and-bound-like algorithm to select the
best combination of tasks, which is an NP-hard problem. On CIFAR-100
(with 20 tasks), it is expected to take many years.
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Single-Task Learning

Multi-Task Learning

Method  ZeroShot CoOp CoCoOp ProDA CoOp-MTL TAG PCGrad IMTL HiPro(Ours)
Art 71.34 71.444+1.26 73.05£0.28 73.38+0.51 71.85+0.69 72.424+0.62 74.15+0.24 74.71+£0.72 75.84+0.50
Clipart 51.91 59.574+0.02 57.97+£047 61.64+046 60.44+0.22 59.744+0.65 58.70+0.55 57.43+042 63.28-+0.66
10% Real 82.35 83.72+0.55 84.84+0.50 84.2940.19 82.61+0.39 83.52+0.60 84.47+0.22 85.17+0.12 85.81+0.14
Product 81.75 87.61+0.07 87.44+0.35 88.12+0.21 85.88+0.27 86.06+0.29 86.32+0.26 87.03+0.24 89.14+0.11
Average 71.84 75.594+0.21 75.83+0.25 76.86+0.20 75.20+£0.12 75.43+0.67 75.91+0.13 76.08+0.31 78.52+0.17
Art 71.42 73.67+0.30 74.94+1.12 75.59+040 74.16+£0.60 73.36+1.18 75.37+0.66 75.37+043 76.83+£0.04
Clipart 52.23 63.61+0.65 59.85+0.38 65.71+£0.54 62.67+0.38 64.11+0.43 60.98+0.19 59.33+0.20 67.37+£0.41
20% Real 82.59 84.79+0.15 85.98+0.32 86.09+0.35 84.23+0.12 83.79+0.89 85.03+0.18 85.52+0.21  87.01+0.34
Product 81.47 88.62+0.47 88.40+0.19 89.89+0.23 86.84+0.27 87.30+0.40 87.08+0.29 88.05+0.11  90.12+0.12
Average 71.93 77.684+0.23 77.29+£0.38 79.32+0.17 76.98+0.04 77.144+0.50 77.12+0.23 77.07+0.09  80.33+0.06

Table 1. Comparison to various methods on Office-Home, using the average accuracy (%) over 3 runs.

Single-Task Learning Multi-Task Learning

Method ZeroShot CoOp CoCoOp ProDA CoOp-MTL TAG PCGrad IMTL HiPro(Ours)
Clipart 54.82 49.65+0.23 56.48+0.65 56.71+0.32 54.36+0.03 50.94+1.54 57.61+0.12 58.77+0.22 58.79+0.38
Real 77.69 76.26+0.30  79.67+0.10 78.06+0.11 72.66£0.10 72.404+0.70 77.494+0.27 78.61+0.18 79.0640.10
Infograph 40.84 33.23+0.58 43.85+0.23 43.56£0.26 40.68+0.11 34.24+0.41 44.694+0.23 45.41+0.11 43.94+0.44
1% Sketch 49.24 44.40+0.29 51.46+0.69 50.21+0.27 48.86+0.33 47.11+0.24 52.05+0.17 52.694+0.14 53.26+0.07
Quickdraw 5.95 17.01£0.13  12.01+0.23 15.07+1.35 12.74+0.21 15.234+0.10 11.70+0.23 11.31+0.17 17.66+0.31
Painting 54.59 52.88+0.53 58.73£0.20 58.904+0.34 54.96+0.30 53.404+1.63 58.61+0.17 59.27+0.29 60.66-0.32
Average 47.19 45.57+£0.12 50.37+0.15 50.424+0.35 47.38+0.07 45.554+0.43 50.36+0.15 50.98+0.07 52.23£0.13
Clipart 54.82 49.59+0.35 56.67+0.29 56.514+0.46 55.34+0.07 51.204+1.01 57.93+0.12 58.79+0.32  60.06=-0.08
Real 77.69 76.71+£0.30 80.28+0.11 78.54+0.05 73.74+£0.11 73.484+0.28 77.374+0.28 78.55+0.16 79.774+0.08
Infograph 40.84 34.37+0.73  44.91+0.05 43.20+£0.44 40.90+0.41 35.17+£0.44 44.1940.27 44.90+0.11 43.61+0.23
2% Sketch 49.24 45.7240.45 52.7940.12 51.1940.17 50.31+£0.23 49.3840.33 52.824+0.08 53.424+0.29 54.67+0.14
Quickdraw 5.95 20.38+0.54 13.10+0.23 16.07+£0.68 13.754+0.08 17.08+£0.39 12.474+0.15 11.604+0.26 20.43+0.05
Painting 54.59 53.07£0.36 59.95+0.21 58.454+0.18 56.22+0.29 54.364+1.62 59.18+0.22 59.66+0.14 61.57+0.16
Average 47.19 46.64+0.24 51.28+0.11 50.664+0.17 48.38+0.03 46.78+0.51 50.66+0.10 51.15+0.17 53.35£0.10

Table 2. Comparison to various methods on DomainNet, using the average accuracy (%) over 3 runs.

4.1. Visualization

We visualize the inter-task affinity (Figure 4) and the hi-
erarchical task tree (Figure 5) on the CIFAR-100 dataset.
Tasks with high semantic relevance are clustered together.
Meanwhile, the different levels of clustering have different
granularity, which enables to obtain semantic prompts of
different properties. More visualizations of clustering re-
sults can be found in the supplementary materials.

4.2. Main Results

Office-Home. The results are shown in Table 1. We can
see that our HiPro has consistent improvements over differ-
ent splits compared with other baselines. Compared with
CoOp and CoOp-MTL, HiPro shows a large improvement,
which indicates the necessity of combining the task-shared
and the task-individual knowledge. In addition, our method
also outperforms advanced MTL methods. On Office-Home
(20%), advanced MTL methods can not outperform the
basic MTL baseline CoOp-MTL, even worse than CoOp.
However, HiPro shows non-trial improvements compared
with CoOp (2.6%) and CoOp-MTL (3.3%).

DomainNet. As shown in Table 2, we can obtain con-
sistent conclusions with Office-Home. Our approach ef-
fectively leverages individual and shared information, re-
sulting in large improvements with CoOp and CoOp-MTL.
Our HiPro outperforms CoOp by 6.6% on the 1% split and
6.7% on the 2% split, confirming our motivations to use
data of multiple tasks for learning prompts. Similarly, our
method substantially outperforms CoOp-MTL by 4.8% on
the 1% split and 4.9% on the 2% split. Although IMTL and
PCGrad are better than HiPro on the Infograph task, they
have a significant performance degradation on the Quick-
draw dataset. In addition, our method still outperforms
them in most tasks, and obtains the best result on average
accuracy. CoCoOp outperforms HiPro on Real and Info-
graph tasks with 2% split. However, it has a longer infer-
ence time since the conditional prompt requires to be fed
to the text encoder. HiPro is also better than these complex
prompt learning methods (i.e., CoCoOp and ProDA) by a
large margin in the average accuracy.

CIFAR-100. We provide the detailed results of CIFAR-
100 in Table 3. In contrast to DomainNet and OfficeHome,
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Method 4% 8%

ZeroShot 63.76 63.76
. _ CoOp 73.604£0.19  76.0040.10
Single-Task Learning 00 72564031 75.1740.21
ProDA 74974022 76.66+0.18

CoOp-MTL _ 72.774042 75424011

. . PCGrad  73.0740.16  76.76+0.27
Multi-Task Learning IMTL 69.2840.40  71.0840.13
HiPro(Ours)  75.53+0.15  77.4040.09

Table 3. Comparison to various methods on CIFAR-100, using
the average accuracy (%) over 3 runs.

different tasks of CIFAR-100 have different concepts. Note
that IMTL, which performs well on Office-Home and Do-
mainNet, suffers significant performance degradation on the
CIFAR-100 dataset. This phenomenon indicates the sensi-
tivity of IMTL to the dataset. In contrast, our approach still
clearly outperforms other comparison method, demonstrat-
ing the robustness of our approach.

Large-Scale MTL benchmark The average scores of 10
downstream tasks with various samples are shown in Fig-
ure 6. Our HiPro is compared with CoOp, Linear Probe,
and Zero-Shot CLIP. Linear Probe CLIP is training a linear
classifier with fixed image features. We can see that HiPro
significantly and consistently improves the performance of
CoOp, which trains on each individual task. It outperforms
CoOp by 4.9% on 1-shot. These experiments show that our
HiPro, which learns multi-grained task-shared prompts, can
capture shared knowledge for effectively adapting VLMs to
complex realistic scenarios.

4.3. Ablation Studies

In this section, we construct ablation experiments to fur-
ther analyze our proposed method HiPro.

Comparison with Shr+Ind. As discussed in Section
3.2, we can learn a global task-sharing prompt to facili-
tate task-individual prompts for each task. As shown in
Table 4, this simple approach can significantly improve per-
formance compared to CoOp-MTL (with only task-shared
prompt) or CoOp (with only task-individual prompts), ver-
ifying our motivation for simultaneously learning task-
shared prompts and task-individual prompts. In addition,
our HiPro outperforms Shr+Ind clearly on the DomainNet
dataset, which suggests the benefit of learning fine-grained
shared prompts. HiPro and Shr+Ind are very closed in
Office-Home. The main reason is that OfficeHome has only
4 tasks allowing HiPro to learn 1-2 additional groups.

Comparison with Random Grouping. We compare the
task groups obtained from HiPro with the randomly gener-
ated task groups. In Table 4, our HiPro outperforms random
group tasks, which demonstrates the significance of our hi-
erarchical task clustering.

~
N

DN
A\ =

—

—e— HiPro (ours)
CoOp
—e— Linear Probe CLIP
) %  Zero-Shot CLIP
012 4 8 16
Number of training samples per class

Score (%)
whn U N
- N

Figure 6. Average results of 10 image classification tasks.
Comparison with prompt-based methods of leveraging VLM, i.e.,
hand-crafted prompts (zero-shot CLIP [49]) and prompt tuning
(CoOp [80]), and the linear probing. We report the average re-
sults on 10 downstream datasets with various training samples.

Method DomainNet Office-Home
1% 2% 10% 20%

CoOp 455740.12  46.644+0.24  75.5940.21 77.6840.23
CoOp-MTL 47.38+0.07  48.38+0.03  75.20+0.12  76.984+0.04
Shr+Ind 50.7240.07  51.8940.04  78.044+0.08  80.04+0.22
Rand Group 48.96+3.38  49.4243.84  77.734£0.18  79.3240.31
HiPro+TAG 51.884+0.07  53.1440.12  78.24+0.17  80.12+0.30
HiPro (Ours)  52.23+0.13  53.35+0.10  78.524+0.17  80.33+0.06

Table 4. Ablation Studies on DomainNet and Office-Home.

Estimating the affinity by TAG [14]. TAG measures
the affinity between two tasks by observing the effect of the
optimization of one task on the training loss of the other
task. In Table 4, We empirically find that, in our prompt
learning framework, the simple gradient inner product can
have a similar performance to TAG.

5. Conclusion

In this paper, we investigate the limitations of learning
specific prompts corresponding to each task or sharing con-
sistent prompts for all tasks, and demonstrate the combi-
nation of task-shared and task-individual prompts can sig-
nificantly improve the results. We propose the hierarchy
prompt learning to further explore task relatedness, which
hierarchically clusters tasks into a tree structure. Specifi-
cally, the task-shared prompt learned by internal nodes of
the tree explores information in other tasks to benefit indi-
vidual tasks, while the task-individual prompt learned by
leaf nodes obtains fine-grained representations targeted at
each task. The results and visualizations on three datasets
demonstrate the effectiveness of our method.
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