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Abstract

State-of-the-art 3D object detectors are usually trained
on large-scale datasets with high-quality 3D annotations.
However, such 3D annotations are often expensive and
time-consuming, which may not be practical for real ap-
plications. A natural remedy is to adopt semi-supervised
learning (SSL) by leveraging a limited amount of labeled
samples and abundant unlabeled samples. Current pseudo-
labeling-based SSL object detection methods mainly adopt
a teacher-student framework, with a single fixed threshold
strategy to generate supervision signals, which inevitably
brings confused supervision when guiding the student net-
work training. Besides, the data augmentation of the point
cloud in the typical teacher-student framework is too weak,
and only contains basic down sampling and flip-and-shift
(i.e., rotate and scaling), which hinders the effective learn-
ing of feature information. Hence, we address these is-
sues by introducing a novel approach of Hierarchical Su-
pervision and Shuffle Data Augmentation (HSSDA), which
is a simple yet effective teacher-student framework. The
teacher network generates more reasonable supervision for
the student network by designing a dynamic dual-threshold
strategy. Besides, the shuffle data augmentation strategy
is designed to strengthen the feature representation ability
of the student network. Extensive experiments show that
HSSDA consistently outperforms the recent state-of-the-art
methods on different datasets. The code will be released at
https://github.com/azhuantou/HSSDA.

1. Introduction

Kinds of important applications, especially autonomous

driving, have been motivating the rapid development of 3D
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Figure 1. Illustration of (a) the previous teacher compared to our

teacher framework and (b) the previous student compared to our

student framework. The black dashed box includes the RGB im-

age and the corresponding fully annotated 3D point cloud (green

box). The left side of the yellow dotted line in (a) represents

the pseudo-labeling scene generated by the single threshold of

the vanilla teacher network, causing the student network may be

severely misled due to missing mined objects (high threshold) or

false positive objects (low threshold), while our proposed teacher

network generates three groups of pseudo labels(shown as green,

red, blue) to provide hierarchical supervision for the student net-

work. (b) shows our student network adopts stronger shuffled data

augmentation than the vanilla student network to learn the stronger

ability of feature representation.

object detection by the range sensor data (e.g., LiDAR point

cloud). Up to now, many point-based and point-voxel-based

methods [10,30,31,49] have been proposed. Despite the im-

pressive progress, a large amount of accurate instance-level

3D annotations have to be provided for training, which is

more time-consuming and expensive than 2D object annota-

tion. This hinders the application and deployment of exist-
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ing advanced detection models. To this end, how to reduce

the dependence on huge annotated datasets has achieved

growing interest in the object detection community.

As one of the important machine learning schemes for

reducing data annotation, semi-supervised learning (SSL)

aims to improve the generalization ability of model train-

ing with a small number of labeled data together with

large-scale unlabeled samples. In the semi-supervised ob-

ject detection community, most works focus on 2D object

detection [13, 17, 34, 40, 43], among which the teacher-

student model is the mainstream framework. Specifically,

the teacher network with weakly augmented labeled data

generates pseudo labels to train the student network with

strong data augmentation. This pipeline has been widely

verified to be effective, in which the quality of pseudo labels

and the data augmentation strategy are the key and many

works have been proposed to tackle them [2,6,33,34]. Ben-

efiting from 2D semi-supervised object detection, several

3D semi-supervised object detection methods have been

proposed [23, 39, 47, 52], which still mainly adopted the

teacher-student model. These methods, as well as 2D semi-

supervised object detection methods [21,34,55], mainly use

a hard way, e.g., a score threshold, to get pseudo labels to

train the student network. This kind of strategy is difficult

to guarantee the quality of pseudo labels. Taking the score

threshold strategy as an example, if the threshold is too low,

the pseudo labels will contain many false objects, while if

it is too high, the pseudo labels will miss many real ob-

jects which will be improperly used as background (see in

Fig. 1 (a)). As exhibited in [39], only about 30% of the ob-

jects can be mined from the unlabeled scenes even at the

end of the network training. Thus, both of those two cases

will bring the student network confused supervision, which

harms the performance of the teacher-student model. This

would inevitably happen for the single threshold strategy,

even adopting some optimal threshold search method [39].

Thus, how to produce reasonable pseudo labels from the

teacher network output is an important issue to address for

better training the student networks.

Besides the quality of pseudo labels, data augmentation

is also the key to the teacher-student model as mentioned

previously. Extensive works in 2D semi-supervised object

detection have shown that strong data augmentation is very

important to learn the strong feature representation ability

of the student network. Thus, kinds of strong data aug-

mentation strategies, e.g., Mixup [48], Cutout [6], and Mo-

saic [4] have been widely adopted. However, current 3D

semi-supervised object detection methods adopt some weak

data augmentation strategies, e.g., flip-and-shift. These

kinds of data augmentations are not able to well drive the

student network to learn strong feature representation abil-

ity. Thus, the good effect of data augmentation in 2D semi-

supervised object detection does not appear obviously in 3D

semi-supervised object detection.

To tackle the above issues of the quality of pseudo labels

and data augmentation, we propose a Hierarchical Super-

vision and Shuffle Data Augmentation (HSSDA) method

for 3D semi-supervised object detection. We still adopt

the teacher-student model as our mainframe. For obtain-

ing more reasonable pseudo labels for the student network,

we design a dynamic dual-threshold strategy to divide the

output of the teacher network into three groups: (1) high-

confidence level pseudo labels, (2) ambiguous level pseudo

labels, and (3) low-confidence level pseudo labels, as shown

in Fig. 1 (a). This division provides hierarchical supervision

signals for the student network. Specifically, the first group

is used as the strong labels to learn the student network,

while the second join learning through a soft-weight way.

The higher the score is, the more it affects learning. The

third group is much more likely to tend to be false objects.

We directly delete them from the point cloud to avoid con-

fusing parts of the object point cloud into the background.

For strengthening the feature representation ability of

the student network, we design a shuffle data augmentation

strategy in this paper. As shown in Fig. 1 (b), we first gener-

ate shuffled scenes by splitting and shuffling the point cloud

patches in BEV (bird-eye view) and use them as inputs to

the student model. Next, the feature maps extracted from

the detector backbone are unshuffled back to the original

point cloud geometry location.

To summarize, our contributions are as follows:

• We propose a novel hierarchical supervision gener-

ation and learning strategy for the teacher-student

model. This strategy can provide the student network

hierarchical supervision signal, which can fully utilize

the output of the teacher network.

• We propose a shuffle data augmentation strategy that

can strengthen the feature representation ability of the

student network.

• Our proposed hierarchical supervision strategy and

shuffle data augmentation strategy can be directly ap-

plied to the off-the-shelf 3D semi-supervised point

cloud object detector and extensive experiments

demonstrate that our method has achieved state-of-the-

art results.

2. Related Work
2.1. 3D Object Detection

3D object detection is a fundamental task in the au-

tonomous driving area. The mainstream 3D object detection

methods can be roughly divided into three types: voxel-

based methods [8, 14, 20, 44, 53, 54], point-based meth-

ods [24, 31, 32, 45, 46, 51], and point-voxel-based meth-

ods [9,19,28–30]. For voxel-based methods, voxelization is
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a common operation that transforms irregular point clouds

into voxel grids for applying traditional 2D or 3D convo-

lution. In Voxelnet [56], the voxel-wise encoding layer was

adopted for collective feature representation extraction from

the voxel-wise LiDAR point cloud. VoxSeT [8] presented

a novel transformer-based framework that encoded features

from a larger receptive field. Point-based approaches di-

rectly use the raw point cloud to capture spatial structure

information for feature extraction through networks of the

PointNet series [25, 26]. PointRCNN [31] is the represen-

tative, which directly generates point-level RoIs and uses

the point-level features for further refinement. To acceler-

ate the inference speed for applications, IA-SSD [50] pro-

posed an efficient downsampling way and a contextual cen-

troid perception module to capture geometrical structure.

Point-Voxel-based methods combined voxel representations

with point representations from the point cloud. Built on

the PV-RCNN [29], PV-RCNN++ [30] leveraged a Vector-

Pool aggregation to learn structure features and a sector-

ized proposal-centric keypoints sampling strategy to obtain

more keypoints. All the above fully supervised methods can

be easily embedded into our HSSDA framework, e.g., PV-

RCNN [29] and Voxel-RCNN [5].

2.2. Semi-supervised Learning (SSL)

SSL can greatly reduce the annotations for model train-

ing and most existing works focus on image classifica-

tion, which can be broadly divided into two types: con-

sistency regularization [2, 3, 22, 41] and pseudo-labeling

methods [1, 11, 42]. The former approaches assume the

model’s predictions to be consistent under input perturba-

tions/augmentations (e.g., different contrast, flip, etc.) and

penalize the inconsistency of predictions. Techniques range

from simple augmentation to more complex transforma-

tions such as MixUp [48], as well as stronger automatic

augmentation such as Cutout [6] and CTAugment [2]. The

latter methods exploit pseudo-labeling, where the model

first is trained trains on labeled data and then iteratively

generates the pseudo labels of unlabeled data to add highly

confident predictions for training. It is revisited in deep neu-

ral networks to learn from large amounts of unlabeled data.

Notably, perturbation mechanisms of the above two types of

methods play a key role in promoting the model robustness

against noise in network parameters or structure but have

not been explored in SSL for 3D object detection.

2.3. Semi-supervised Object Detection

Inspired by the SSL works in image classification, SSL

is also applied to the 2D object detection to alleviate the

heavy annotation problem [13, 17, 34, 40]. STAC [34] gen-

erated pseudo labels for unlabeled data in an offline manner.

To further improve the quality of pseudo labels, Instant-

Teachering [55] rectified the false predictions via the co-

rectify scheme and experimented with MixUp [48] and Mo-

saic [4]. This work aims to tackle a more challenging

task, SSL for 3D object detection, where large spaces of

7 Degrees-of-Freedom of 3D objects need to be searched.

Recently, several works have been proposed in the 3D

SSL domain. SESS [52] and 3DIoUMatch [39] are the

pioneer approaches for 3D object detection from indoor

and outdoor point cloud data. Similar to 2D SSL meth-

ods, SESS [52] leveraged a triple consistency regularization

strategy to align the 3D proposal from the teacher and stu-

dent network. Following the pseudo-labeling line in SSL,

3DIoUMatch [39] designed a series of filtering strategies

such as objectness, classification, and localization threshold

to obtain high-quality pseudo labels, and a unique IoU esti-

mation branch to further deduplicate the predictions. Differ-

ent from 3DIoUMatch, Proficient Teachers [47] developed

several necessary modules to improve the recall and preci-

sion of pseudo labels and removed the necessity of thresh-

old setting. DetMatch [23] generated more precise pseudo

labels by matching 2D and 3D detection from each modal-

ity. These works employed the EMA weight update strat-

egy to train a student network and then gradually update

the teacher network. Although achieving impressive perfor-

mances with high-quality pseudo labels, the missing-mined

objects and heuristic strong augmentation are ignored. By

contrast, our HSSDA leverages the hierarchical supervision

and shuffle data augmentation to alleviate these issues and

further improve performance.

3. Method

3.1. Preliminary

Problem Definition We first provide the definition of

semi-supervised 3D object detection. In detail, the model

is trained with a set of labeled scenes Ds = {psi , ysi}Ns

i=1

and a set of unlabeled scenes Du = {pui }Nu

i=1, where pi ∈
Rn×{3+r} represents a point cloud scene pi which has n
points with three-dimensional coordinates and additional r-

dimensional information (e.g., color, intensity) that can be

treated as extra features, Ns and Nu are the numbers of la-

beled and unlabeled point cloud scenes, respectively. Gen-

erally speaking, Nu >> Ns. For a scene psi , the annotation

ysi is composed of both 7-dimensional location information

which includes center, size, and orientation, and category of

the 3D bounding boxes.

Teacher-Student Framework Similar to the main-

stream researches [15, 39, 52], our learning paradigm also

builds up on the teacher-student framework which includes

two 3D detectors with the same configurations. Here, we

can use any off-the-shelf state-of-the-art 3D object detec-

tor, e.g., PV-RCNN [29] and Voxel-RCNN [5]. Following

those works, we build the teacher detector via exponential
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Figure 2. Overview of the proposed HSSDA pipeline. We propose a dual-threshold strategy to help the teacher network to generate

hierarchical supervision to train the student network. Besides, we also propose a data augmentation strategy to strengthen the ability of

feature representation of the student network.

moving average (EMA) [37]:

θi+1
t = θit · α+ θis · (1− α), (1)

where α is the EMA decay rate, θt and θs represent the pa-

rameters of the teacher and student networks, respectively,

and i denotes the training step.

3.2. Overview

The pipeline of our HSSDA framework is illustrated in

Fig. 2, which is derived from the basic teacher-student mu-

tual learning framework. In the burn-in stage of training,

we train the detector in a fully supervised manner follow-

ing OpenPCDet [38] with the labeled scenes and keep the

same setting as the used detector. Then, both the teacher

network and student network are initialized with the same

pre-trained weight parameters.

In the mutual learning stage, there are three steps in each

training epoch. The first step is to generate three kinds of

dual-thresholds for each class in a global view, as shown

on the left of the pink dotted line in Fig. 2. Specifically,

we construct a confident scene set Dc composed of labeled

scenes and mined scenes (in the first epoch, it just contains

all labeled scenes). Then we sequentially input each scene

from Dc and its weak augmentation (rotation and scaling)

into the teacher network to produce a pair of predictions.

Based on those pairs of predictions and the object informa-

tion from Dc, we design a dynamic dual-threshold gener-

ation strategy to obtain three kinds of dual-thresholds for

each class in terms of confidence score, objectness score,

and IoU consistency: (τhighcls , τ lowcls ), (τhighobj , τ lowobj ), (τhighiou ,

τ lowiou ). The second step (see the right of the pink dotted

line in Fig. 2) is mainly to mine the hierarchical pseudo la-

bels. Specifically, each unlabeled scene pui and its weak

augmented scene p̃ui are sequentially input to the teacher de-

tector to produce a pair of predictions. Through three mea-

sure rules based on the dual-thresholds obtained in the first

step, we can generate the hierarchical supervision: (1) high-

confidence level pseudo labels, (2) ambiguous level pseudo

labels, and (3) low-confidence level pseudo labels. We add

all high-confidence pseudo labels into the confident scene

set Dc for the next dual-threshold generation. We also add

the ground-truth from labeled scenes into the first group for

following student network training. In the third step, we use

the hierarchical supervision composed of three groups of

pseudo labels to train the student network with our designed

shuffle data augmentation, and then update the teacher net-

work by the EMA strategy according to Eq. (1).

After the mutual training step, we use the 3D detector

from the student network as our final detector. Through the

above procedure, we can see that our designed framework

can train any off-the-shelf 3D detector which consists of a

backbone and a detection head.

3.3. Dynamic dual-threshold generation

The dual threshold generation is dynamically conducted

in each training epoch. Algorithm 1 describes the whole

process of generating dual-thresholds for one class in one

training epoch, given a confidence set Dc = {pci , yci }Nc

i=1, its

pairs of predictions rc, r̃c through the 3D detector, and an

IoU matching threshold τpair. Here τpair is determined ex-

perientially and is used to judge if two 3D bounding boxes

match. Initially, we create three empty sets Pcls, Pobj and

Piou to collect the confidence score, objectness score and

IoU. These three sets will be used to search three optimal

dual-thresholds. Concretely, for the i-th scene, we can fetch

the predicted bounding boxes bri and ground truth bounding
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Algorithm 1: Dynamic dual-threshold generation

Input: confident scene set Dc, pairs of predictions

rc and r̃c, IoU matching threshold τpair.

Output: (τhighcls , τ lowcls ), (τhighobj , τ lowobj ), (τhighiou , τ lowiou )

1 initialize empty sets Pcls, Pobj , and Piou;

2 for each {pci , yci } ∈ Dc do
3 fetch bounding boxes bgti from yci ;

4 fetch bounding boxes bri from rci ;

5 fetch bounding boxes b̃ri from r̃ci ;

6 for bgtij in bgti do
7 compute the matrix M ← IoU(bgtij , b

r
i );

8 if max(M) > τpair then
9 choose index k with max(M);

10 Pcls = Pcls ∪ sccls,

11 sccls is the confidence score of rcik;

12 Pobj = Pobj ∪ scobj ,

13 scobj is the objectness score of rcik;

14 Piou = Piou ∪ vc,

15 vc = max(IoU(brik, b̃
r
i ));

16 (τhighcls , τ lowcls ), (τhighobj , τ lowobj ), (τ
high
iou τ lowiou ) ←

JNB(Pcls,Pobj ,Piou);

boxes bgti from rci and yci , respectively. Further, we utilize

the common IoU-based strategy to pair a predicted box brik
for each ground truth bgtij in the i-th scene, aiming to ob-

tain the predicted confidence scores and predicted object-

ness scores of ground truth objects, and collect these scores

into the confidence score set Pcls and objectness score set

Pobj , respectively. In this way, we can distinguish predic-

tions with different classifications and objectness reliability

in a global view. At the same time, we can also get the

consistency IoU set Piou based on the rci and r̃ci , which fa-

cilitates grading predictions with different localization qual-

ity in a consistency constraints manner. After handling all

scenes, we solve the dual-threshold search problem through

a global clustering algorithm. Specifically, we adopt the

Jenks Natural Breaks (JNB) [12] algorithm to search the

natural turning points or breakpoints based on the three sets.

As shown in Fig. 3 (a) and (b), we can automatically obtain

the dual-threshold τhighcls and τ lowcls for each class. Similarly,

we can automatically obtain the other two dual-thresholds

τobj and τiou, which are detector-agnostic and category-

aware. As mentioned in Sec. 3.2, in each training epoch,

the confident scene Dc will be updated, so all three dual-

thresholds will dynamically change during training.

3.4. Hierarchical supervision generation

As shown in Fig. 2, with the three dual-thresholds for

each class, we divide the mined object pseudo labels from
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Figure 3. Selection of the dual-threshold based on the Jenks Natu-

ral Breaks [12]. In each subplot, the blue line represents the sorted

scores from the sequence pool P and the red and green dash lines

indicate the high threshold and low threshold, respectively. (a)

and (b) show the process of dynamic confidence IoU selection for

‘Car’ and ‘Pedestrian’. Similarly, (c) and (d) show the selection of

dynamic consistency IoU threshold.

unlabeled scenes into hierarchical supervision which in-

cludes (1) high-confidence level pseudo labels, (2) ambigu-

ous level pseudo labels and (3) low-confidence level pseudo

labels. Specifically, the high-confidence level pseudo la-

bel ỹi is chosen when the predicted result rui of unlabeled

scenes from the teacher network meets all three following

inequalities simultaneously, i.e., sucls > τhighcls , suobj > τhighobj

and vu > τhighiou , where sucls and suobj are the confidence

score and the objectness score of the chosen predicted re-

sult, respectively, and vu is the consistency IoU between

chosen rui and r̃ui . Besides, we group the rest of the predic-

tions as ambiguous level pseudo labels, which meet all three

following inequalities simultaneously, i.e., sucls > τ lowcls ,

suobj > τ lowobj and vu > τ lowiou . As for those predictions that

neither belong to the high-confidence level nor ambiguous

level, we mark them as low-confidence level predictions.

As mentioned previously, we also add the ground-truth

from labeled scenes into the group of high-confidence level

pseudo labels which provide strong object label supervi-

sion for the student network, while the ambiguous level

group will supervise the student network training through

a soft-weight way which will be introduced in Sec. 3.6.

Following [16], we leverage the points removal strategy

to eliminate noise information based on the group of low-

confidence level pseudo labels.

3.5. Shuffle Data Augmentation

Weak-strong data augmentation plays a significant role

in the teacher-student style framework, which guides the

model to learn strong feature representation. As mentioned

previously, the data augmentation of the student network of
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current methods is too weak to learn the strong ability of

feature representation. However, due to the huge modality

difference between 2D images and 3D point cloud, it is not

feasible to directly apply the widely-used data augmenta-

tion strategies, e.g., color transformation or Mixup [48] to

point cloud for object detection. Thus, we propose a shuffle

data augmentation strategy for the student network. Specif-

ically, as shown in Fig. 2, given a scene p̂ui from the teacher

network, we first clip the range of point cloud scene into

[x1, x2] for the X axis, [y1, y2] for the Y axis and compress

the Z axis to form BEV (bird-eye-view) grid. Then we split

each scene into R × C (e.g., 2 × 2) patches and generate

the same shaped R×C position information to shuffle each

scene patch. By feeding the shuffled patches to the detector

backbone for feature extraction, the teacher network with a

weak branch and the student network with a strong branch

can achieve obvious differences, which is beneficial for the

student network to learn more complex and peculiar infor-

mation from hierarchical supervision. Then we leverage

the position information to unshuffle the patch features for

further regression and classification in the detection head.

Although shuffled patches make it difficult to distinguish

the edges or parts of objects in scenes, the unshuffle opera-

tion before the detection head restores the original location

from the feature space. Hence, our student network deliv-

ers more effort into learning with weaker features, which

would strengthen the ability of feature representation, and

especially benefit to detect objects with weak feature due

to small sizes, e.g., ‘Pedestrian’, ‘Cyclist’, which will be

shown in experiments.

3.6. Training Objective Function

Following [17, 36], we freeze the optimization of the

teacher detector, and the student detector is trained on both

unlabeled scenes with the hierarchical supervision and la-

beled scenes with the ground-truth. More specifically, the

training objective consists of a supervised loss for labeled

and unlabeled scenes.

Ls =
∑

i

Lcls (p
s
i , y

s
i ) + Lreg (p

s
i , y

s
i ) , (2)

Lu =
∑

i

Lcls

(
p̂ui , ỹ

u
ij

)
+ Lreg

(
p̂ui , ỹ

u
ij

)

+wijLcls

(
p̂ui , ŷ

u
ij

)
+ wijLreg

(
p̂ui , ŷ

u
ij

)
, (3)

where Lcls is the classification loss, Lreg is the regression

loss, ŷuij and ỹuij are the j-th ambiguous level pseudo la-

bels and high-confidence level pseudo labels generated by

the teacher detector in the i-th scene, and wij = rclsij · robjij

denotes the soft-weight for ambiguous level pseudo labels

ŷuij , which is determined by a combination of predicted

confidence score and predicted objectness reliability score.

Thanks to the clean scenes generated by the noise points re-

moval operation and further obtaining complex scenes by

GT sampling data augmentation [44], we do not force each

training batch to contain a mixture of labeled scenes psi and

unlabeled scenes pui with a certain ratio (e.g., 1 : 1 in [39]),

but randomly sample each batch from the entire dataset for

training. Hence, the training loss is defined as follows:

L = Ls + Lu. (4)

Thus, we remove the hyper-parameter to trade-off between

Ls and Lu as used in the common teacher-student frame-

work [17, 34, 39].

4. Experiments
4.1. Datasets and Evaluation Metrics

KITTI Dataset. Following the state-of-the-art meth-

ods [23, 39], we evaluate our HSSDA on the KITTI 3D de-

tection benchmark [7], and we use the divided train split

of 3,712 samples and val split of 3,769 samples as a com-

mon practice [29]. Then we sample three different 1% and

2% labeled scenes over train split based on the released

3DIoUMatch [39] splits. The reported results are averaged

over model training on three sampled splits and evaluated

on the val split. In addition, the KITTI benchmark has three

difficulty levels (easy, moderate, and hard) due to the oc-

clusion and truncation levels of objects. For fair compar-

isons, we report the mAP with 40 recall positions, with a

3D IoU threshold of 0.7, 0.5, and 0.5 for the three classes:

car, pedestrian, and cyclist, respectively.

Waymo Open Dataset. We also evaluate our HSSDA on

the Waymo Open Dataset [35], which is one of the biggest

autonomous driving datasets, containing 798 sequences (ap-

proximately 158k point cloud scenes) for training and 202

sequences (approximately 40k point cloud scenes) for val-

idation, whilst the view of annotations is in full 360◦ field.

We find that even only 1% of the labeled Waymo scenes

contain approximately 3 times as many object annotations

as the full KITTI train split. Thus, we sample 1% of the 798

training sequences (approximately 1.4k point cloud scenes)

and report the standard mean average precision (mAP) as

well as mAPH, which represent the heading angle factors.

In addition, the prediction results are split into LEVEL 1

and LEVEL 2 for 3D objects including more than five Li-

DAR points and one LiDAR point, respectively.

4.2. Implementation Details

At the training stage, the student network of our HSSDA

is end-to-end optimized with the ADAM optimizer and

a cosine annealing learning rate [18]. As for the weak

augmentation for the teacher network, we randomly flip

each scene along X-axis and Y-axis with 0.5 probability,

and then scale it with a uniformly sampled factor from

[0.91, 1.12]. Finally, we rotate the point cloud around Z-

axis with a random angle sampled from
[−π

4 ,
π
4

]
. For
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Model Modality
1% 2% 20%

Car Ped. Cyc. Avg. Car Ped. Cyc. Avg. Car Ped. Cyc. Avg.

PV-RCNN [29] LiDAR 73.5 28.7 28.4 43.5 76.6 40.8 45.5 54.3 77.9 47.1 58.9 61.3

3DIoUMatch [39] (PVR.-based) LiDAR 76.0 31.7 36.4 48.0 78.7 48.2 56.2 61.0 - - - -

DetMatch [23] (PVR.&FR. [27]-based) LiDAR + RGB 77.5 57.3 42.3 59.0 78.2 54.1 64.7 65.6 78.7 57.6 69.6 68.7

Our HSSDA (PVR.-based) LiDAR 80.9 51.9 45.7 59.5 81.9 58.2 65.8 68.6 82.5 59.1 73.2 71.6

Table 1. Experimental results on KITTI dataset compared with recent state-of-the-art methods. For fair comparison, the results are reported

with 40 recall positions, under IoU thresholds 0.7, 0.5, and 0.5 for ‘Car’, ‘Pedestrian’, and ‘Cyclist’, respectively.

1% Data

(∼ 1.4k scenes)
Modality

Veh. (LEVEL 1) Veh. (LEVEL 2) Ped. (LEVEL 1) Ped. (LEVEL 2) Cyc. (LEVEL 1) Cyc. (LEVEL 2)

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PV-RCNN [29] LiDAR 47.3 45.6 43.6 42.0 28.9 15.6 26.2 14.1 - - - -

DetMatch [23] (PVR.& FR. [27]-based) LiDAR+RGB 52.2 51.1 48.1 47.2 39.5 18.9 35.8 17.1 - - - -

Improvement - +4.9 +5.5 +4.5 +5.2 +10.6 +3.3 +9.6 +3.0 - - - -

PV-RCNN [29] (Reproduced by us) LiDAR 48.5 46.2 45.5 43.3 30.1 15.7 27.3 15.9 4.5 3.0 4.3 2.9

Our HSSDA (PVR.-based) LiDAR 56.4 53.8 49.7 47.3 40.1 20.9 33.5 17.5 29.1 20.9 27.9 20.0
Improvement - +7.9 +7.6 +4.2 +4.0 +10.0 +5.2 +6.2 +1.6 +24.6 +17.9 +23.6 +17.1

Table 2. Performance comparison on the Waymo Open Dataset with 202 validation sequences for the 3D detection.

3D Detection (Car) 3D Detection (Ped) 3D Detection (Cyc)
Model Data

Easy Mod Hard Easy Mod Hard Easy Mod Hard

Voxel-RCNN [5] 1% 87.9 74.0 67.1 23.7 19.0 17.4 44.8 37.0 25.5

Ours (Voxel-RCNN-based) 1% 92.5 81.7 77.5 50.7 43.9 42.4 65.2 48.3 42.5
Voxel-RCNN [5] 2% 89.2 76.5 71.5 44.2 40.2 34.4 56.7 39.9 37.4

Ours (Voxel-RCNN-based) 2% 91.6 82.0 77.9 64.9 58.3 50.9 88.0 65.7 60.9

Table 3. Experimental results on KITTI dataset based on the

Voxel-RCNN detector, where the metrics are the same as Tab. 1.

the KITTI Dataset, the X-axis and Y-axis are limited in

[0, 70.4]m and [−40, 40]m in the shuffle data augmentation,

and our HSSDA (PV-RCNN-based) is trained for 80 epochs

with the batch size 50. For the Waymo Open Dataset, the

point cloud scene is clipped into [−75.2, 75.2]m for X and

Y axes, and training with the batch size 30 for 10 epochs.

We set the value of τpair to 0.5 in all experiments according

to the evaluation metric in the public datasets.

4.3. Main Results

KITTI Dataset. We first evaluate our proposed model

on the popular KITTI dataset. Tab. 1 lists the results of dif-

ferent methods. From this table, we can observe that our ap-

proach significantly outperforms the state-of-the-art meth-

ods. Specifically, our approach has a remarkable boost in

the ‘Car’ class for all settings, which has improvements of

7.4, 5.3, and 4.6 points compared to the PV-RCNN baseline

for 1%, 2%, and 20%, respectively. Even compared to the

recently proposed DetMatch [23] which uses two modalities

of LiDAR and RGB, our methods just with LiDAR still have

better results for most of the settings. Besides, we replace

the point-voxel-based PV-RCNN 3D detector with a repre-

sentative voxel-based Voxel-RCNN [5] 3D detector. The

similarly impressive experimental results in Tab. 3 demon-

strate the effectiveness of our HSSDA.

Waymo Dataset. For the more challenging Waymo

Dataset, our approach still has a significant improvement in

performance compared to the state-of-the-art methods. As

shown in Tab. 2, our approach surpasses DetMatch [23]. It

is worth mentioning that the proposed method achieves 29.1

mAP for ‘Cyclist’, which far exceeds the baseline.

4.4. Ablation Study

In this section, we present a series of ablation studies to

analyze the effect of our proposed strategies in HSSDA. All

the experiments are conducted based on the Voxel-RCNN

detector with the 2% KITTI split and evaluated on val split

due to its fast training speed. Tab. 4 summarizes the abla-

tion results on our shuffle data augmentation (SDA) and hi-

erarchical supervision (HS) of the teacher network, which

provides three levels of supervision: high-confidence level

(H LEV) pseudo labels, ambiguous level (A LEV) pseudo

labels, and low-confidence level (L LEV) pseudo labels.

Effect of the hierarchical supervision. It can be found

that only considering the high-confidence level pseudo la-

bels will perform better than the baseline as shown in Exp.2

in Tab. 4, but the improvements are limited by the con-

fused background supervision. The introduction of ambigu-

ous level supervision information can lead to further per-

formance improvements which can be seen in Exp.3. Fur-

thermore, we can observe that from Exp.4 generating clean

scenes via low-confidence supervision can significantly im-

prove the detection accuracy, which indicates the effective-

ness of the points removal operation. Besides, the collab-

oration of three different levels of supervisions can greatly

improve performance, as shown in Exp.5 of Tab. 4. Those

results mean that all hierarchical supervisions have contri-

butions to final performance when they work together.

Effect of the shuffle data augmentation. Exp.5 in

Tab. 4 shows the effect of our shuffle data augmentation

strategy. The classes of ‘Pedestrian’ and ‘Cyclist’ have very

weak original features due to their small sizes. Both of them

usually are very hard to detect. However, our shuffle data

augmentation strategy can significantly improve their per-

formance. It can be also observed that a slight drop for

‘Car’ may be due to the shuffle data augmentation splitting

the original objects, leading to blurred edges for locating.
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Exp.
Hierarchical Supervision (HS)

SDA
3D Detection

mAP
H LEV A LEV L LEV Car Ped. Cyc.

1 - - - - 76.5 40.2 39.9 52.2

2 � - - - 75.9 51.8 51.5 59.7

3 � � - - 78.8 51.1 52.2 60.7

4 � � � - 82.4 56.0 61.3 66.5

5 � � � � 82.0 58.3 65.7 68.6

Table 4. Ablation study of different components in HSSDA.

Method R C 3D Detection
mAP

Car Ped. Cyc.

HS 1 1 82.4 56.0 61.3 66.5

HS + SDA

1 2 82.5 57.1 64.3 67.9

2 2 82.0 58.3 65.7 68.6
2 4 81.2 56.8 65.5 67.8

4 4 81.1 54.8 65.8 67.2

Table 5. Results of various combinations of R and C.

Our shuffle data augmentation has two hyperparameters:

R and C, which decide the number of scene patches to shuf-

fle. To evaluate the effect of two hyperparameters, we inves-

tigate the performance of the proposed HSSDA with differ-

ent combinations of R and C in Tab. 5. We can observe that

the model achieves the best result when R = C = 2 (i.e.,
the scene grids are split into 4 patches and perform random

shuffle). Hence, we set R and C to 2 in all our experiments.

4.5. Quality Analysis

In this section, we analyze the quality of the generated

pseudo labels which play a key role during model train-

ing. First of all, if the 3D IoU between pseudo labels and

ground-truth boxes of labeled scenes is bigger than 0.5 with

the same class, we regard the pseudo-label as a correctly

mined object. From Tab. 6, we can see the final precision

of our high-confidence level pseudo labels for each class on

the KITTI dataset is particularly accurate, which indicates

the effectiveness of our dual-threshold strategy. Besides, we

provide qualitative results of wrong high-confidence level

pseudo labels in Fig. 4. For ease of viewing, we only show

the object of one failure case in each scene. (a) and (b) in

Fig. 4 show that the common failures for ‘Car’ usually occur

with similar classes (such as vans and trucks). Interestingly,

our method can reliably mine some real objects which were

not annotated in the dataset (see Fig. 4 (c) and Fig. 4 (d)).

Additionally, due to the small sizes of ‘Pedestrian’, most of

the failure examples are caused by inaccurate localization,

as shown in Fig. 4 (e) and (f) (the ground truth and pseudo-

labeling 3D bounding box are drawn in red and cyan.)

5. Conclusion
In this paper, we propose a novel teacher-student-based

method for 3D semi-supervised object detection, called

HSSDA. Through the dual-threshold strategy in the teacher

network, we can provide hierarchical supervision to effec-

Category
Split setting on KITTI

1% 2% 20%

Car 96.73 (4627/4783) 98.69 (4476/4535) 98.88 (4508/4559)

Pedestrian 85.58 (204/239) 92.29 (273/296) 93.67 (74/79)

Cyclist 95.53 (107/112) 95.00 (114/120) 96.33 (105/109)

Table 6. Final precision of high-confidence level pseudo labels

on ‘Car’, ‘Pedestrian’ and ‘Cyclist’ classes with different SSL set-

tings. The blue and red numbers represent the total and correctly

number of mined pseudo labels, respectively.

a b c

d e f

Figure 4. Qualitative analysis of pseudo labels on KITTI. For a

better view, we only show the objects we are interested in and set

the pseudo-labeling car, pseudo-labeling pedestrian, and ground

truth bounding box in green, cyan, and red, respectively, whilst

projecting boxes in point cloud back to RGB images. (a) and (b)

show the case of category errors, (c) and (d) show the missing-

annotated instance of the dataset, and (e) and (f) show the case of

poorly localized pseudo labels. Best viewed in color.

tively train the student network, while eliminating the neg-

ative impact of missing-mined objects of unlabeled scenes.

In addition, the shuffle data augmentation strategy shuffles

the input and unshuffles the feature blocks to strengthen the

feature representation ability of the student network. Ex-

tensive experiments validate the superiority of our method

in challenging datasets.Our HSSDA can train any 3D detec-

tor which consists of a backbone and detection head.

Limitations. Our HSSDA designs a dynamic dual-

threshold strategy that determines the optimal threshold in

a global view. So, we need to use the teacher network for

additional validation, which requires more training time. In

addition, the shuffle data augmentation may split the com-

plete objects resulting in blurred edges and locating.
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