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Abstract

Mobile phones have become a ubiquitous and indis-
pensable photographing device in our daily life, while the
small aperture and sensor size make mobile phones more
susceptible to noise and over-saturation, resulting in low
dynamic range (LDR) and low image quality. It is thus
crucial to develop high dynamic range (HDR) imaging
techniques for mobile phones. Unfortunately, the existing
HDR image datasets are mostly constructed by DSLR cam-
eras in daytime, limiting their applicability to the study of
HDR imaging for mobile phones. In this work, we de-
velop, for the first time to our best knowledge, an HDR
image dataset by using mobile phone cameras, namely
Mobile-HDR dataset. Specifically, we utilize three mo-
bile phone cameras to collect paired LDR-HDR images in
the raw image domain, covering both daytime and night-
time scenes with different noise levels. We then propose
a transformer based model with a pyramid cross-attention
alignment module to aggregate highly correlated features
from different exposure frames to perform joint HDR de-
noising and fusion. Experiments validate the advantages
of our dataset and our method on mobile HDR imaging.
Dataset and codes are available at https://github.
com/shuaizhengliu/Joint-HDRDN .

1. Introduction

With the rapid development of mobile communication
techniques and digital imaging sensors, mobile phones have
surpassed DSLR cameras and become the most prevalent
device for photography in our daily life. Nonetheless, due to
the low dynamic range (LDR) of mobile phone sensors [7],
the captured images may lose details in dark and bright
regions under challenging lighting conditions. Therefore,
high dynamic range (HDR) imaging [3] is critical for im-
proving the quality of mobile phone photography.

*Corresponding author. This work is supported by the Hong Kong RGC
RIF grant (R5001-18) and the PolyU-OPPO Joint Innovation Lab.

Actually, HDR imaging has been a long standing re-
search topic in computational photography, even for DSLR
cameras. An effective and commonly used way to construct
an HDR image is to fuse a stack of LDR frames with dif-
ferent exposure levels. If the multiple LDR frames can be
well aligned (e.g., in static scenes), they can be easily fused
to generate the HDR image [3, 23]. Unfortunately, in dy-
namic scenes where there exist camera shaking and/or ob-
ject motion, the fused HDR image may introduce ghost ar-
tifacts caused by inaccurate alignment [45]. Some deghost-
ing methods have been proposed to reject pixels which can
be hardly registered [12, 16]. However, precisely detecting
moving pixels is challenging and rejecting too many pixels
will sacrifice useful information for HDR fusion.

In the past decade, deep learning [15] has demonstrated
its powerful capability to learn image priors from a rich
amount of data [4]. Unfortunately, the development of
deep models for HDR imaging is relatively slow, mainly
due to the lack of suitable training datasets. Kalantari
et al. [10] built the first dataset with LDR-HDR image
pairs by DSLR cameras in daytime. Benefiting from this
dataset, many deep learning algorithms have been proposed
for HDR imaging. Some works [10] employ the convolu-
tional neural network (CNN) for fusion after aligning mul-
tiple frames with optical flow [18], which is however unreli-
able under occlusion and large motions. Subsequent works
resort to employing various networks to directly reconstruct
the HDR image from LDR frames. Liu et al. [19] developed
a deformable convolution based module to align the features
of input frames. Yan et al. [40] proposed a spatial attention
mechanism to suppress undesired features and employed a
dilated convolution network [42] for frame fusion. Follow-
ing this spatial attention mechanism, some fusion networks
have been developed with larger receptive fields, such as
non-local networks [41] and Transformer networks [21].

Though the dataset developed in [10] has largely facili-
tated the research of deep learning on HDR imaging, it is
not well suited for the investigation of HDR imaging tech-
niques for mobile phone cameras. Firstly, due to the small
aperture and sensor size, images captured by mobile phones
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are more susceptible to noise than DSLR cameras, espe-
cially in nighttime. However, the images in dataset [10]
are generally very clean since they are collected by DSLR
cameras in daytime. Compared with DSLR cameras, the
normal exposed frame of mobile phone cameras contains
stronger noise, which should be reduced by fusing with
other frames. Secondly, mobile phone cameras often has
fewer recording bits (12 bit) than DSLR (14 bit), resulting
in larger overexposure areas in the reference frame. There-
fore, mobile HDR imaging is a more challenging problem,
and new dataset and new solutions are demanded.

To address the above limitations of existing HDR
datasets and facilitate the research on real-world mobile
HDR imaging, we establish a new HDR dataset, namely
Mobile-HDR, by using mobile phone cameras. Specifically,
we utilize three mobile phones to collect LDR-HDR im-
age pairs in raw image domain, covering both daytime and
nighttime scenes with different noise levels. In order to ob-
tain high-quality ground truth of HDR images, we first col-
lect noise-free LDR images under each exposure by multi-
frame averaging, and then synthesize the ground truth HDR
image by fusing the generated clean LDR frames. For dy-
namic scenes with object motion, we follow [10] to first
capture multiple exposed frames from static scenes to syn-
thesize the ground truth HDR images, and then replace the
non-reference frames with the images captured in dynamic
scenes as input. To our best knowledge, this is the first mo-
bile HDR dataset with paired training data.

With the established dataset, we propose a new trans-
former based model for joint HDR denoising and fusion.
To enhance denoising and achieve alignment, we design
a pyramid cross-attention module to implicitly align and
fuse input features. The cross-attention operation enables
searching and aggregating highly correlated features from
different frames, while the pyramid structure facilitates the
feature alignment under severe noise, large overexposure
and large motion. A transformer module is then applied
to fuse the aligned features for HDR image recovery.

The contributions of our work can be summarized as fol-
lows. First, we build the first mobile HDR dataset with
LDR-HDR image pairs under various scenes. Second, we
propose a cross-attention based alignment module to per-
form effective joint HDR denoising and fusion. Third, we
perform extensive experiment to validate the advantages of
our dataset and model. Our work provides a new platform
for researchers to investigate and evaluate real-world mo-
bile HDR imaging techniques.

2. Related work
HDR Image Datasets. Datasets are the cornerstone of

algorithm development and evaluation. Before the era of
deep learning, Sen et al. [33] and Tursun et al. [36] provided
8 and 16 scenes of real-world HDR data without ground-

truth HDR images, respectively, for qualitative evaluation
and comparison of different algorithms. In [10], Kalantari
et al. proposed the first paired LDR-HDR dataset, including
74 training and 15 test pairs, making the learning of deep
HDR models possible. Prabhakar et al. [28] later built a
dataset with 582 LDR-HDR pairs. These two datasets re-
gard the medium-exposed image as the reference frame. In
order to explore the cases when other exposures should be
used as the reference, Li et al. [17] collected a dataset where
different LDR frames can be taken as the reference frame,
but it is not publicly available.

All the above datasets are collected by DSLR cameras,
and they are unsuitable for investigating mobile HDR imag-
ing methods due to the different characteristics of camera
sensors and lens, especially for nighttime scenes with strong
noise. In order to facilitate the development of mobile HDR
imaging techniques, we construct an HDR dataset using
mobile phones, covering different scenes and noise levels.

HDR Image Reconstruction. In case the LDR frames
can be strictly aligned, the HDR image can be easily
obtained by fusing them with different weight functions
[3, 23]. In practice, however, ghost artifacts can be gen-
erated by camera motion and subject moving. A number
of methods have been proposed for HDR deghosting in dy-
namic scenes. Early works can be divided into two classes.
The first class aligns LDR frames and fuses them to an HDR
image. The global rigid alignment by translation or homog-
raphy [35, 38] is simple to use but can fail to handle the
foreground motion. Bogoni et al. [2] and Kang et al. [11]
utilized optical flow to deal with moving objects, which are
not robust to occlusion, large motion and saturated areas.
Some works [8, 33, 43, 44] perform patch-based registra-
tion, which are more robust to motion but suffer from heavy
computation. The other class of methods detect inconsistent
pixels and discard them after global alignment, such as local
entropy [9], color consistency [5, 6, 31], median threshold
bitmaps [26], and rank minimization [16,25]. However, the
accurate detection of such pixels is difficult and the rejec-
tion strategy may lose much useful information for fusion.

Recently, with the availability of paired LDR-HDR im-
age dataset [10], deep learning based HDR reconstruction
methods have been developed. Kalantari et al. [10] and
Prabhakar et al. [27,28] employed optical flow [18] or flow
net [34] to align input frames and utilized CNN to merge
them. Wu et al. [39] used an encoder-decoder network to
synthesize HDR image directly from input frames without
alignment. Liu et al. and Pu et al. [30] adopted deformable
convolution to align features implicitly. Yan et al. [40] de-
signed a spatial attention module to detect unaligned area
to suppress the ghosting artifacts. Following this spatial at-
tention module, various CNNs with large receptive fields
[40, 41] have been developed. Since transformers could
better model long-range dependencies than CNN, Liu et
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Figure 1. The synthesis process of LDR-HDR data pairs for dy-
namic scenes. We first keep the foreground object still to capture
three static sets of successive raw images with under-, middle-
and over-exposures, and use them to generate three noise-free
LDR images by average denoising, which are merged to synthe-
size the noise-free HDR image as ground-truth (GT). One middle-
exposure frame, denoted by Lm, is extracted from the correspond-
ing static set. We then move the foreground object and tripods
to capture another two LDR frames, denoted by Lu and Lo, with
under- and over-exposures, respectively. The final LDR inputs are
composed of Lu, Lm and Lo. The LDR frames and synthesized
HDR image are visualized through a simple ISP pipeline.

al. [21] proposed a transformer network for HDR fusion
and achieved state-of-the-art results. Meanwhile, there were
some attempts to utilize GAN networks [24] and few-shot
learning [29] to hallucinate HDR details or relieve the de-
pendency on abundant training data.

Most of the existing methods are developed on images
collected by DSLR cameras, which may not fit well to mo-
bile phone images. Recently, Lecouat et al. [14] proposed
to perform joint HDR and super-resolution with mobile raw
burst images. However, they utilized synthetic raw images
for training, resulting in color halos in the saturated area
and failing to deal with large motion. In this work, we
construct a real-world mobile HDR image dataset and pro-
pose a pyramid cross-attention module to achieve alignment
against noise, saturated area and large motion.

3. The Established Dataset

To facilitate the research on mobile HDR imaging, we
establish a paired LDR-HDR image dataset in raw image
domain by using mobile phone cameras. Specifically, we
utilized four mobile phones equipped with three types of
mobile sensors (IMX586, IMX766 and IMX800) to capture
images under different exposures and lighting conditions,
including indoor, outdoor, daytime and nighttime scenes.
The ISO settings in our dataset range from 100 to 6400,
covering a variety of noise levels. Our dataset is composed

of three subsets: a subset of static scenes with ground-truth
(GT) HDR images, a subset of dynamic scenes with GT
HDR images, and a subset of dynamic scenes without GT
HDR images (used only for visual comparison).

For the subset of static scenes, we capture LDR se-
quences with three exposures (i.e., under-, middle- and
over-exposures) by a mobile phone fixed on tripod with a
customized app, which detects and removes the defective
pixels in each shot. Under each exposure, we take 120 to
400 successive images to facilitate denoising. Generally, the
number of shots increases with the increase of ISO and/or
the decrease of exposure. We then average the shots to ob-
tain the noise-free LDR image for each exposure. After the
noise-free LDR frames of the three exposures are acquired,
we merge them using the weighting function proposed in [3]
to generate the high-quality HDR image as GT, denoted by
H . Then three LDR frames, denoted by Lu, Lm, Lo, are
extracted from the captured successive LDR images with
under-, middle- and over-exposures, respectively, as the
LDR inputs, building the LDR-HDR data pairs. We check
the quality of each sequence and discard the outliers. Fi-
nally, 136 static scenes are collected, including 49 daytime
and 87 nighttime scenes.

For the subset of dynamic scenes with foreground object
motion, we utilize controllable objects to simulate the mo-
tion between LDR frames, following the strategy in [10].
The process is illustrated in Fig. 1. We first keep the ob-
ject still and capture three static sets of images with three
exposures, and synthesize the noise-free HDR GT image
H of this scene by the method applied in static scenes.
Meanwhile, we extract one middle-exposure LDR frame
Lm from the static set as one of the LDR inputs. Then we
move the object and tripod to capture an under-exposure
LDR frame Lu and an over-exposure LDR frame Lo. Fi-
nally, Lu, Lm, Lo and H are taken as the LDR inputs and
HDR GT, respectively. In total, we collected 115 dynamic
scenes, including 15 daytime and 100 nighttime ones.

The above subsets of static and dynamic scenes with
HDR GT can be used to train HDR reconstruction models
and evaluate them quantitatively. In addition, we capture 30
scenes without HDR GT, which contain uncontrolled mov-
ing or static objects captured by hand-held mobile phones,
for qualitative evaluation of different models.

We compare the statistics of our Mobile-HDR dataset
and the Sig17 dataset [10] in Table 1. One can clearly see
that our dataset covers more diverse real-world scenarios
than the Sig17 dataset. Unlike Sig17, which only contains
daytime dynamic scenes, our dataset covers both daytime
and nighttime, dynamic and static scenes, representing the
diverse lighting conditions and various noise levels in prac-
tical scenarios. In addition, the image resolution (4K in
general) of our dataset is much higher than that in Sig17
(1500 × 1000). Fig. 2 show some typical scenes from our
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Table 1. The statistics comparison between Sig17 dataset [10] and our Mobile-HDR dataset.

Data
Camera
Sensor Image Resolution

Dynamic Scenes
w/ HDR GT

Static Scenes
w/ HDR GT

Dynamic Scenes
w/o HDR GT Total

daytime nighttime daytime nighttime daytime nighttime

Sig17 [10]
Canon EOS-5D

Mark II 1500×1000 89 None None None None None 89

Mobile-HDR (ours)
OPPO A95

OPPO FindX3 Pro
HONOR 70 Pro

4000×3000
4608×3456
4096×3072

15 100 49 87 10 20 281

Figure 2. Sample LDR frames in our Mobile-HDR dateset. Var-
ious noise levels can be observed in the zoomed-in regions. The
images are visualized through a simple ISP pipeline.

dataset. One can see the strong noise in dark areas and the
severely over-exposed regions in the LDR images.

4. Method

Overview. Different from HDR reconstruction on DSLR
data, where the normally exposed area of the reference
frame can be directly used for HDR recovery, the normally
exposed areas in the reference frame of mobile camera data
still have strong noise, which needs to be suppressed by fus-
ing with other frames. In addition, the larger overexposed
areas in mobile camera data rely on information from un-
derexposed frames to recover detail. Without an effective
alignment module, ghosting artifacts will become severe in
mobile HDR images. We therefore propose a transformer
based network with a novel pyramid cross-attention align-
ment module to aggregate and align the correlated features
from LDR frames more effectively, achieving denoising and
HDR reconstruction jointly.

Given the set of noisy LDR frames of three exposures
{L1, L2, L3} (sorted by their exposure times), we aim to
reconstruct the noise-free HDR frame H . The middle ex-
posure frame L2 is regraded as the reference frame, so the
estimated noise-free HDR Ĥ should be consistent with L2

in structure but contain the dynamic range information from
all frames. Since LDR images in our dataset are in the RAW
format, they have linear response curve with ambient light-
ing. So we do not need to linearize the LDR images by
using the camera response function (CRF) or gamma cor-

rection. In order to facilitate the alignment, we map the
input LDR images {Li} to the domain of brightness con-
stancy based on the exposure time to get the corresponding
set of {Hi}:

Hi =
Li

ti
,∀i = 1, 2, 3, (1)

where ti denotes the exposure time of the image Li. Fol-
lowing [40], images Ii and Hi are concatenated along the
channel dimension to obtain the tensors Xi = [Li, Hi], i =
1, 2, 3 as the network input. The network outputs the esti-
mated noise-free HDR image Ĥ .

Fig. 3(a) illustrates the overall architecture of our pro-
posed model. It mainly consists of three components, i.e.,
the pyramid cross-attention alignment module for aligning
neighborhood frames to the reference frame, the attention
fusion module for fusing aligned features and the merg-
ing subnet for final HDR reconstruction. For each input
tensor Xi, i = 1, 2, 3, we first extract the shallow features
Fi by convolution layers. Then, a pyramid cross-attention
alignment module is used to align non-reference features
Fi, i = 1, 3 to reference features F2. A local skip connec-
tion is used for better training. The aligned features F̃1, F̃3

and F2 are fed into the attention fusion module to get the
fused features. Finally, a merging subnet, which consists of
context-aware transformer blocks, takes the fused features
as input to generate the HDR image. A global residual con-
nection is used to accelerate the training process.

Pyramid Cross Attention Alignment Module. We pro-
pose a pyramid cross attention alignment module to align
features from neighborhood frames to the reference frame.
Since the computation of cross attention will also aggregate
correlated features, the cross attention facilitates the align-
ment and denoising at the same time.

Given the neighbor-frame features Fi, i = 1, 3 and
reference-frame features F2 of the same size H ×W × C,
we first partition them into non-overlapping M × M lo-
cal windows to get two reshaped inputs of size HW

M2 ×
M2 ×C, where HW

M2 is the total number of windows. Then
we compute the cross-attention separately for each win-
dow. For the local window feature from neighbor-frame
Fi ∈ RM2×C , i = 1, 3 and the ones from reference-frame
F2 ∈ RM2×C , the query, key, and value matrices Q, K and
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Figure 3. (a) The overall architecture of the proposed joint HDR denoising and fusion model. (b) The structure of attention fusion module.
(c) The structure of Context-Aware Vision Transformer (CA-ViT) module used in Context-Aware Transformer Block.

V are computed as:

Q = F2PQ,K = FiPK , V = FiPV ,∀i = 1, 3, (2)

where PQ, PK , PV are projection matrices shared across
different windows. The attention matrix is thus computed
in a local window as follows:

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (3)

where B is the learnable relative positional encoding. Fol-
lowing [20], the attention function are performed for h
times in parallel and the result are concatenated for multi-
head cross attention.

In order to handle complex motion, we adopt the pyra-
midal processing and cascading operation like the the PCD
alignment module [37] used in video super-resolution. Con-
sidering that the saturated regions or severely noisy regions
in the reference image are generally difficult to perform
reliable feature matching, we propose an attention trans-
fer mechanism. Intuitively, if the size of query patch is
enlarged, the patch may include some region with details,
which will enable more reliable matching. Since features at
coarse scales are extracted from larger receptive fields, we
perform feature matching in a coarse scale and transfer the
attention coefficients to finer scales.

The proposed pyramid cross-attention module is illus-
trated in Fig. 4(a). We generate an L-level pyramid of

feature representation for each LDR frame. Given the fea-
tures F l

i at l-level, we use strided convolution filters to get
the downsampled features with a factor of 2 at the (l + 1)-
th pyramid level. At the l-th level, cross attention is per-
formed on reference feature F l

2 and neighborhood features
F l
i , i = 1, 3 to get features F lc

i . The attention coefficient
Al+1

i computed by F l+1
2 and F l+1

i from the upper (l+1)-th
level is multiplied with neighborhood feature F l

i to get F lt
i .

The specific computation process is illustrated in Fig. 4(b).
Finally, the aligned features at the l-th level F̃ l

i are predicted
by using F lc

i , F lt
i , and ×2 upsampled aligned features from

the the upper (l + 1)-th level F̃ l+1
i as follows:

F̃ l
i = Conv(F lc

i , F lt
i , (F̃ l+1

i )↑2). (4)

Attention Fusion Module. After obtaining the aligned
features, we adopt the attention module proposed in [40] to
suppress harmful features from misaligned, over-exposed
and under-exposed areas, as illustrated in Fig. 3(b). For
each aligned feature from non-reference LDR image (i.e.,
F̃1 and F̃3), we concatenate it with the reference feature F2

as the input of two convolutional layers, generating a spatial
attention map mi, i = 1, 3 ranging between 0 and 1. We
then perform the element-wise multiplication of mi and F̃i

to get the attentioned features F ′
i :

F ′
i = mi ⊙ F̃i, i = 1, 3. (5)
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The features F ′
1, F2, F ′

3 are concatenated and passed
through a convolution layer to obtain the fused features.

Merging Network. The merging network is composed
of several context-aware Transformer blocks (CTB) [21],
which consists of a dual-branch context aware vision Trans-
former (CA-ViT) and a dilated convolution layer, as illus-
trated in Fig. 3(a). The structure of CA-ViT is shown in Fig.
3(c), which employs a window-based multi-head Trans-
former encoder [20] to extract globally long-range features,
and a convolution block with channel attention as another
parallel branch to capture the local information.

Loss Function. The proposed model outputs the esti-
mated HDR image Ĥ within range [0, 1]. If the loss is ap-
plied to Ĥ and ground truth H directly, the training will be
dominated by the brighter areas, hindering the restoration of
dark areas. So we apply the µ-law tone-mapping function
to the HDR image in HDR domain:

T (H) =
log(1 + µH)

log(1 + µ)
, (6)

where T (H) is the tone-mapped HDR image and µ is set
to 5000 in our work. Given the estimated HDR image Ĥ
and the ground truth HDR image H , we utilize the ℓ1 loss
in tone-mapped domain to optimize the network:

L = ∥T (Ĥ)− T (H)∥1. (7)

5. Experiments
Training Data Preparation. Since there is a lack of

paired HDR datasets captured by mobile phones, we con-
structed such a paired dataset, i.e., Mobile-HDR, in this
work for HDR model training and evaluation. We apply
black level correction and range normalization to the raw
data to obtain each Li, and conduct joint HDR denoising
and fusion in a raw-in-raw-out manner. For static scenes,
we add random global motions to the non-reference frames,
i.e., random translation in the range of [0,20] pixels. We
divide our Mobile-HDR dataset with ground-truth into 223
training samples and 28 test samples. For the training sam-
ples, 102 samples are taken from dynamic scenes and 121
from static scenes. While for the test samples, 13 sam-
ples are taken from dynamic scenes and 15 samples are
taken from static scenes. Meanwhile, there are 30 test
samples without ground-truth for visual comparison. Each
sample is composed of three LDR frames with exposure
values {-2,0,2} or {-3,0,3} and the corresponding HDR
frame. Before training, we crop the images into 512 × 512
patches with stride 200. During training, we randomly crop
128 × 128 regions from the 512 × 512 patch as training
samples.

Implement Details. We call our method as Joint-
HDRDN for that it performs HDR denoising and fusion

jointly. The overall model is optimized by the Adam op-
timizer [13] with default parameters. The batch size is set
as 16, and the initial learning rate is 2e-4 and halved after
500 epochs. Our pyramid cross attention alignment module
adopts 3-layer pyramid with partition window size M of 8.
The number of channels is set as 60, and there are 3 context-
aware transformer blocks in our merging subnet. Differ-
ent from the HDR-Tranformer that employs 6 CA-ViT in
each context-aware transformer block, our Joint-HDRDN
has only 4 CA-ViT in each block. Benefiting from our pro-
posed pyramid cross-attention alignment module, our merg-
ing network does not need to stack many transformer blocks
to enlarge the receptive field. The whole training is con-
ducted on four NVIDIA V100 GPUs and costs about three
days to converge.

Evaluation Metrics. We use PSNR and SSIM in both
raw domain and sRGB domain, as well as HDR-VDP-2 in
sRGB domain [22], as evaluation metrics. The HDR results
in sRGB domain is obtained by passing the HDR results in
raw domain through a simple ISP pipeline as in SIDD [1],
which involves white balance, demosaicking, color correc-
tion and sRGB space transfer. The parameters are from the
metadata of the reference frame. For both raw domain and
sRGB domain, PSNR and SSIM are evaluated in both lin-
ear domain (i.e., PSNR-l and SSIM-µ) and the tone-mapped
domain with µ-law (i.e. SSIM-l and SSIM-µ). Moreover,
since HDR-VDP-2 is developed specifically for qualitative
evaluation of HDR images, we compute it in sRGB domain.

Comparison with State-of-the-Arts. We compare our
proposed Joint-HDRDN method with state-of-the-art HDR
reconstruction methods, including DeepHDR [39], AHDR-
Net [40], NHDRRNet [41] and HDR-Transformer [21]. For
fair comparison, we retrain these deep HDR models on our
training dataset and then evaluate them on our test dataset.

Table 2 compares the quantitative results of competing
methods. It can be observed that transformer based algo-
rithms outperform CNN based methods, while our proposed
Joint-HDRDN surpasses HDR-Transformer, which is the
previous state-of-the-art, by up to 0.38dB and 0.95dB in
terms of PSNR-µ and PSNR-l in raw domain. Further-
more, after rendering images from raw domain to sRGB
domain, our model still outperforms other competitors by
a large margin, which demonstrates the effectiveness of our
strategy of performing HDR fusion and denoising jointly by
using pyramid cross-attention.

Fig. 5 compares the visual results of our method and its
competitors on some challenging scenarios in our dataset.
All HDR results are first passed through a simple ISP and
then tone-mapped by the Reinhard [32] operator. It can be
seen that our method achieves significantly better visual re-
sults. On the reference frames which have high-exposure or
severe noise, our method can recover fine details without in-
troducing much artifacts. In comparison, the other methods
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Figure 5. Visual comparison between our Joint-HDRDN and other state-of-the-arts HDR reconstruction methods on two scenes from our
test dataset. All images go through a simple ISP pipeline for visualization. The HDR results are tone-mapped for better comparison.

suffer from the ghosting artifacts or residual noise. Previ-
ous methods don’t consider the impact of noise on the final
HDR image quality. Meanwhile, they usually just resort
to modeling long-range dependency to hallucinate reason-
able content for over-exposed areas and attention module
to suppress unaligned areas to alleviate ghost artifacts. So
they do not make efficient use of other frames to recover
details. Additionally, they will produce ghosting artifacts
inevitably due to the lack of specific alignment design, espe-
cially for the large over-exposed areas. In contrast, our pro-
posed pyramid cross-attention alignment module searches
and aggregates beneficial features from other frames more
effectively, which can better reproduce the details and alle-

viate the artifacts. More visual comparison examples can be
found in the supplementary file.

Ablation Study on Training Dataset. To further
demonstrate the necessity of constructing our Mobile-HDR
dataset to develop mobile HDR techniques, we train the
HDR-Transformer [21] and our Joint-HDRDN models on
the DSLR camera captured Sig17 dataset [10] and our
Mobile-HDR dataset, respectively, and evaluate them on
our test dataset, which consists of data captured by mo-
bile phone cameras. Since Sig17 provides the demosaciked
data, we compare the results in the sRGB domain.

The quantitative results are shown in Table 3, which ver-
ifies that the DSLR dataset cannot well support the research
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Table 2. Quantitative comparison of proposed Joint-HDRDN method with state-of-the-art HDR reconstruction methods.

Methods Raw sRGB
PSNR-µ PSNR-l SSIM-µ SSIM-l PSNR-µ PSNR-l SSIM-µ SSIM-l HDR-VDP-2

DeepHDR [39] 37.94 35.29 0.9559 0.9869 34.91 36.43 0.9537 0.9799 44.23
AHDRNet [40] 38.16 35.49 0.9571 0.9872 34.85 36.64 0.9524 0.9803 44.98

NHDRRNet [41] 37.57 34.54 0.9517 0.9850 34.27 36.04 0.946 0.9774 44.81
HDR-Transformer [21] 38.54 35.42 0.9599 0.9873 35.50 36.67 0.9572 0.9809 45.60

Joint-HDRDN (ours) 38.92 36.37 0.9616 0.9888 35.70 37.46 0.9588 0.9825 45.96

Table 3. Quantitative comparison between models trained on dif-
ferent training sets.

DSLR training set Our training set
HDR-Transformer [21] Ours HDR-Transformer [21] Ours

PSNR-l(sRGB) 23.59 23.45 36.67 37.46
SSIM-l(sRGB) 0.4276 0.4134 0.9809 0.9825

HDRTransformer        Ours HDRTransformer          Ours
   

Our tonemapped HDR Image

With Sig17 trainset With Our trainset

Figure 6. Visual comparison between models trained on DSLR
dataset [10] and our Mobile-HDR dataset.

of HDR imaging on mobile phones. This is mainly because
the mobile phone images have stronger noise and larger
overexposed areas caused by the smaller aperture and sen-
sor size. As shown in Fig. 6, models trained on the DSLR
dataset are hard to remove the heavy noise in mobile phone
images, and the over-exposed areas have obvious ghost ar-
tifacts. In addition, existing methods such as HDRTrans-
former are not designed for mobile HDR imaging. Even re-
trained on our Mobile-HDR datasset, they still show many
ghosting artifacts in over-exposed areas and blurry details in
noisy regions. Therefore, it is necessary to construct a mo-
bile HDR image dataset to facilitate the research on mobile
HDR imaging, such as more effective denoising, alignment,
fusion and the joint tasks of them.

Ablation Study on Network. In order to validate the
effectiveness of different components in our Joint-HDRDN
network, we evaluate the following variants of our model:

- Baseline. We replace our pyramid cross-attention
alignment module with the attention feature extractor
adopted by HDR-Transformer and AHDRNet, while keep-
ing the merging network unchanged. That is, the baseline
shares the same components as HDR-Transformer but has
fewer CA-ViT blocks (12 vs. 18).

- w/o Attention Transfer. This variant removes the at-

Table 4. Quantitative results of the ablation studies.

Method PSNR-µ(raw) PSNR-l(raw) HDR-VDP-2

Baseline 38.41 35.26 45.42
w/o Attention Transfer 38.81 36.00 45.68
w/o Attention Fusion 38.71 36.20 45.72

Our full model 38.92 36.37 45.96

tention transfer mechanism adopted in our pyramid cross-
attention alignment module.

- w/o Attention Fusion. This variant removes the atten-
tion fusion module and directly stacks the aligned features
as the fused features.

Table 4 lists the quantitative results of our ablation study.
Compared with the baseline, which shares the same merg-
ing network as our full model but removes the alignment
module, the full model achieves 0.51dB and 1.11dB advan-
tages in PSNR-µ and PSNR-l, respectively, demonstrating
the effectiveness of our proposed pyramid cross-attention
alignment module. The attention transfer mechanism is
proposed to alleviate the difficulties in aligning with over-
exposed reference regions. As shown in the table, if we
remove the attention transfer from our alignment module,
the performance will drop by 0.37dB in PSNR-l, validating
the roles of attention transfer mechanism. The attention fu-
sion module is also useful since the PSNR-µ will drop by
0.21dB if we remove it.

6. Conclusion

We established, for the first time to our best knowledge,
a real-world mobile HDR image dataset, namely Mobile-
HDR, to facilitate researches on mobile HDR imaging.
Different from the existing HDR image datasets, which
were mostly collected in daytime with DSLR cameras,
our dataset was collected by mobile phone cameras un-
der different lighting conditions and scenes, which con-
tained stronger noises and larger over-exposed areas. We
consequently developed a new HDR image reconstruction
network, namely Joint-HDRDN, which employed a novel
pyramid cross-attention alignment module to perform HDR
fusion and denoising jointly. Extensive experiments vali-
dated the effectiveness of our proposed dataset and model.
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