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Abstract

We present a simple yet effective self-supervised pre-
training method for image harmonization which can lever-
age large-scale unannotated image datasets. To achieve
this goal, we first generate pre-training data online with
our Label-Efficient Masked Region Transform (LEMaRT)
pipeline. Given an image, LEMaRT generates a foreground
mask and then applies a set of transformations to perturb
various visual attributes, e.g., defocus blur, contrast, satu-
ration, of the region specified by the generated mask. We
then pre-train image harmonization models by recovering
the original image from the perturbed image. Secondly, we
introduce an image harmonization model, namely SwinIH,
by retrofitting the Swin Transformer [27] with a combina-
tion of local and global self-attention mechanisms. Pre-
training SwinIH with LEMaRT results in a new state of
the art for image harmonization, while being label-efficient,
i.e., consuming less annotated data for fine-tuning than ex-
isting methods. Notably, on iHarmony4 dataset [8], SwinIH
outperforms the state of the art, i.e., SCS-Co [16] by a mar-
gin of 0.4 dB when it is fine-tuned on only 50% of the train-
ing data, and by 1.0 dB when it is trained on the full training
dataset.

1. Introduction
The goal of image harmonization is to synthesize photo-
realistic images by extracting and transferring foreground
regions from an image to another (background) image. The
main challenge is the appearance mismatch between the
foreground and the surrounding background, due to dif-
ferences in camera and lens settings, capturing conditions,
such as illumination, and post-capture image processing.
Image harmonization aims to resolve this mismatch by ad-
justing the appearance of the foreground in a composite im-
age to make it compatible with the background. Research
in image harmonization has relevant applications in photo-
realistic image editing and enhancement [42,44], video syn-
thesis [23, 37] and data augmentation for various computer
vision tasks [11, 12, 35].
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Figure 1. Top: given an image, LEMaRT applies a set of transfor-
mations, e.g., brightness, hue adjustment, to obtain a transformed
image. The transformed image is then combined with the original
image to form a composite image, which is used to pre-train our
SwinIH image harmonization model. As shown in the right-hand
column, SwinIH is capable of reconstructing photo-realistic out-
put images after pre-training and fine-tuning. Bottom: using our
LEMaRT pre-training scheme, our image harmonization model
(SwinIH) surpasses state of the art (SOTA) counterparts with less
than 40% of the training data from iHarmony4 for fine-tuning.

Traditional image harmonization approaches perform
color transforms to match the low-level color statistics of
the foreground to the background with the aim to achieve
photorealism [22, 31, 33, 39]. However, the generalization
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ability of these methods is questionable because the eval-
uation was only conducted at a small scale, mainly using
human judgement. More recent works [8] have constructed
real image harmonization datasets with tens to thousands
of images to train learning-based methods. However, due
to the bottleneck of manual editing, these datasets do not
match the scale often required to train large-scale neural
networks. Rendered image datasets [3, 15] are more scal-
able but they suffer from the domain gap between synthetic
and real images. As a result, the performance of image har-
monization models is constrained by the limited size of a
few existing datasets [8, 20] on which they can be trained.

Inspired by the impressive performance leap achieved by
pre-trained models [17, 29] on various downstream tasks,
e.g., image classification, object detection, image caption-
ing, in this work, we introduce a novel self-supervised pre-
training method to boost the performance of image harmo-
nization models while being label-efficient, i.e., consum-
ing small amounts of fine-tuning data. The novelty of our
technique lies in the use of foreground masking strategies
and the perturbation of foreground visual attributes to self-
generate training data without annotations. Hence, we name
our pre-training method as Label-Efficient Masked Region
Transform (LEMaRT). In the first step, LEMaRT proposes
pseudo foreground regions in an image. Subsequently, it ap-
plies a set of transformations to perturb visual attributes of
the foreground, including contrast, sharpness, blur and satu-
ration. These transformations aim to mimic the appearance
discrepancy between the foreground and the background.
Using the transformed image, i.e., image with the perturbed
foreground, as the input, LEMaRT pre-trains image harmo-
nization models to reconstruct the original image, as shown
in the top half of Figure 1.

Subsequently, we design an image harmonization model
based on Swin Transformer [27], namely SwinIH, which is
short for Swin Image Harmonization. We build our model
upon Swin Transformer instead of the ViT model [10]
mainly due to the efficiency gain offered by its local shifted
window (Swin) attention. Similar to the design of the
original Swin Transformer, we keep the local self-attention
mechanism in all the Transformer blocks up except the last
one, where we employ global self-attention. We introduce
global self-attention into SwinIH to alleviate block bound-
ary artifacts produced by the Swin Transformer model when
it is directly trained for image harmonization.

We verify that LEMaRT consistently improves the per-
formance of models with a range of vision Transformer and
CNN architectures compared to training only on the target
dataset, e.g., iHarmony4. When we pre-train our SwinIH
model on MS-COCO dataset with LEMaRT and then fine-
tune it on iHarmony4 [8], it outperforms the state of the
art [16] by 0.4 dB while using only 50% of the samples
from iHarmony4 for fine-tuning, and by 1.0 dB when using

all the samples (see the plot in the bottom half of Figure 1).

The key contributions of our work are summarized below.
• We introduce Label-Efficient Masked Region Transform
(LEMaRT), a novel pre-training method for image harmo-
nization, which is able to leverage large-scale unannotated
image datasets.
• We design SwinIH, an image harmonization model based
on the Swin Transformer architecture [27].
• LEMaRT (SwinIH) establishes new state of the art
on iHarmony4 dataset, while consuming significantly less
amount of training data. LEMaRT also boosts the perfor-
mance of models with various network architectures.

2. Related Work

a. Image Harmonization: Most early works extract
and match low-level color statistics of the foreground and
its surrounding background. These works rely on color
histograms [39], multi-level pyramid representations [33],
color clusters [22], etc. The limited representation power of
low-level features negatively affects their performance.

More recent works [8, 20] have constructed datasets at a
reasonable scale to advance learning-based methods. Nu-
merous supervised deep learning-based image harmoniza-
tion models have been trained on these datasets [9, 14, 15,
26]. Tsai et al. [34] combine image harmonization and se-
mantic segmentation under a multi-task setting. S2AM [9]
proposes to predict a foreground mask and to adjust the
appearance of foreground with spatial-separated attention.
RainNet [26] transfers statistics of instance normalization
layers from the background to the foreground. In addition,
generative models have also been trained for image harmo-
nization [4, 8, 45].

Some state of the art (SOTA) methods formulate image
harmonization as a style transfer problem. These meth-
ods learn a domain representation of the foreground and
background with contrastive learning [7] or by maximiz-
ing mutual information between the foreground and back-
ground [24]. More recently, Hang et al. [16] have ad-
vanced state of the art results by adding background and
foreground style consistency constraints and dynamically
sampling negative examples within a contrastive learning
paradigm. Using only a reconstruction loss during pre-
training and fine-tuning, our method is able to outperform
[16] with a much simpler training set up.

b. Transfer Learning: Transfer learning is a well-known
and effective technique for adapting a pre-trained model
to a downstream task, especially with limited training data
[5, 6, 18]. Recent advances in foundation models [1, 19, 29,
36,40,41,43] have resulted in models that can be adapted to
a wide range of downstream tasks. Sofiiuk et al. [30] pro-
pose an image harmonization model which takes visual fea-
tures extracted from a pre-trained segmentation model as an
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Figure 2. Our online data generation and pre-training pipeline (LEMaRT). LEMaRT generates the input composite image Ic for the pre-
training process via masked region transform. The goal of pre-training is to learn an image harmonization model fθ(·), e.g. our SwinIH
model, that can reconstruct the original image I from the composite image Ic.

auxiliary input. Instead of leveraging a pre-trained segmen-
tation model for feature extraction, we specifically pre-train
a model for image harmonization. We opt for this direc-
tion based on the hypothesis that pre-training for the same
target task results in better performance than pre-training
for a different task. Inspired by [18], our LEMaRT method
is more suitable for image harmonization than [18] be-
cause LEMaRT creates training samples by applying trans-
formations to the foreground rather than masking the fore-
ground, which makes the pre-training task closer to image
harmonization. In addition, [18] introduces an asymmetric
encoder-decoder architecture, while our SwinIH model is
specifically designed for image harmonization and does not
have an explicit encoder or a decoder.

3. Method
3.1. Problem Formulation

The goal of image harmonization is to synthesize photo-
realistic images by extracting and transferring foreground
regions from an image I1, specified by a binary mask M, to
another (background) image I2. Let Ic = M ⊙ I1 ⊕ (1 −
M)⊙ I2 be the composite image generated by a direct copy
and paste of the foreground region from I1 on top of I2.
The operators ⊙ and ⊕ denote element-wise multiplication
and addition, respectively. Subsequently, an image harmo-
nization function f(·) transforms the composite image Ic
into a harmonized image Î = f(Ic), such that the latter is
photo-realistic. Deep learning-based image harmonization
methods implement this function as a neural network fθ(·)
with parameters denoted by θ. Our goal is to learn θ via
self-supervised pre-training, so that the function fθ(·) can
generate photo-realistic images.

3.2. Online Pre-training Data Generation

We first introduce our data generation and pre-training
pipeline, i.e., LEMaRT that generates the input and the

ground truth for the pre-training process without relying on
any manual annotations. As shown in Figure 2, LEMaRT
applies a set of random transformations such as hue, con-
trast, brightness adjustment and defocus blur to perturb the
original image I. The generated image is referred to as the
transformed image It. The random transformations are de-
signed to mimic different kinds of visual mismatches be-
tween a foreground region and a background image. In
addition, LEMaRT employs a mask generation strategy to
propose a foreground mask M (please refer to § 3.3 for
more details). The mask and the set of transformations are
generated on the fly for each input image I. With these
ingredients, we generate a composite image Ic from the
original image I and the transformed image It as Ic =
M ⊙ It ⊕ (1 − M) ⊙ I. We note that the composite im-
age Ic is generated and fed into the network in an online
fashion.

The goal of pre-training is to learn a harmonization func-
tion fθ(·) to resolve the mismatch of visual appearance be-
tween the foreground and the background of the composite
image Ic. We formulate this task as the reconstruction of the
original image I from the composite image Ic. The original
image I serves as the supervision signal for the pre-training
process under the assumption that visual elements of real
images are in harmony. This formulation is applicable to a
wide range of network architectures, e.g., SwinIH (see § 3.4
for details), ViT [10] and CNN models [23, 32].

3.3. Mask Generation

We now present three foreground mask generation strate-
gies, which we refer to as random, grid and block.
• random: as shown in Figure 4, this strategy first partitions
an image into a regular pattern that consists of m×m even
patches (labelled by white pixels). It then generates a mask
by randomly selecting a subset of the image patches.
• grid: similar to random, this strategy first partitions an
image into regular pattern of m × m even patches. It then
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Figure 3. Illustration of our SwinIH model, i.e., a Transformer-based image harmonization model.

random grid block

Figure 4. Sample masks generated by the three strategies, i.e.,
random, grid and block, introduced in § 3.3.

generates a fixed mask (same for all images) by selecting
image patches following the pattern shown in Figure 4.
• block: inspired by [2], we design a mask generation strat-
egy that attempts to mimic the shape of objects. It gener-
ates a mask in an iterative manner. Each iteration has two
steps, i.e., (1) generating a rectangular region; (2) applying
a random homography to the rectangular region to make the
boundary of the region be composed of slanted lines. If the
rectangular region is smaller than the size of the desired re-
gion to be masked, we generate a new region by executing
the two steps once more and merge the newly generated re-
gion with previously generated regions (please refer to the
supplementary materials for more details).

3.4. Network Architecture

Since the pre-training process is agnostic to network archi-
tecture, the only constraint for model design is that it needs
to generate an output image of the same size as the input.
To this end, we choose to implement our image harmo-
nization model based on a Transformer architecture, due to
the recent successes of vision transformer models in various
tasks, including image harmonization [13, 14].

We choose to build our SwinIH model upon Swin atten-
tion blocks [27] due to its improved performance and effi-
ciency over global attention layers used by ViT-style mod-
els [10, 13, 14]. Let H and W denote the height and width
of an input image Ic and N denote the size of an image
patch. The length of the sequence of visual tokens is H·W

N2 .
A global attention layer has a space and time complexity of
O(H

2·W 2

N2 ). On the contrary, the space and time complexity
of a Swin attention block is O(H·W ·K2

N2 ), where the shifted
window size K is smaller than H and W .

The architecture of our SwinIH model is shown in Figure
3. It takes a four-channel image (a channel-wise concatena-

tion of a composite image Ic and a foreground mask M) as
input and generates an output image Î. Our SwinIH model
is composed of three stages. The first two stages consist of
three Swin attention blocks. The third stage has five Swin
attention blocks and a global attention layer. We set the di-
mension of the patch embedding to 128 and double it at the
end of the first two stages with linear projections.

Unlike Swin Transformer [27] which processes its input
in a multi-scale manner1, we choose to preserve the original
resolution of the input. As will be shown in § 4.4, such a
design choice is important as the information loss due to the
reduced resolution hurts model accuracy.

3.5. Objective Function

We adopt the mean squared error (MSE) between the net-
work’s output Î and the original image I as the objective
function for pre-training. When we fine-tune the pre-trained
network, we follow [30] and use a foreground-normalized
MSE loss as the objective function.

4. Experiments

We evaluate our method by comparing its performance with
other state-of-the-art (SOTA) methods and provide insights
into our method through ablation studies. We adopt four
metrics, i.e., mean squared error (MSE), peak signal to
noise ratio (PSNR), foreground mean squared error (fMSE )
[8], and foreground peak signal to noise ratio (fPSNR) [8].

4.1. Datasets

Following previous works [7,8,15], we evaluate our method
on iHarmony4 dataset [8]. For completeness, we also eval-
uate our method on RealHM dataset [20]. Unless otherwise
stated, we pre-train our LEMaRT model on the set of 120K
unlabeled images from the MS COCO dataset [25] and fine-
tune on iHarmony4. There is no overlap between the images
used for pre-training and the images used for fine-tuning
and evaluation. Images in iHarmony4 either come from the
set of labeled images in MS COCO, which is disjoint from
the unlabeled images in MS COCO, or from other datasets.
Following [7, 8, 15, 30, 34], we resize the input images and
the ground truth images to 256× 256.

1Swin Transformer [27] uses a Patch Merging layer to reduce the spa-
tial size of its input by a factor of two at the end of each stage.
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composite DIH S2AM DoveNet BargNet IntrHarm RainNet iS2AM DHT+ SCS-Co LEMaRT
dataset metric image [34] [9] [8] [7] [15] [26] [30] [13] [16] (SwinIH)

HCOCO
PSNR↑ 33.9 34.7 35.5 35.8 37.0 37.2 37.1 39.2 39.2 39.9 41.0 ↑1.1

MSE↓ 69.4 51.9 41.1 36.7 24.8 24.9 29.5 16.5 15.0 13.6 10.1 ↓3.5

HAdobe
PSNR↑ 28.2 32.3 33.8 34.3 35.3 35.2 36.2 38.1 37.2 38.3 39.4 ↑1.1

MSE↓ 345.5 92.7 63.4 52.3 39.9 43.0 43.4 21.9 36.8 21.0 18.8 ↓2.2

HFlickr
PSNR↑ 28.3 29.6 30.0 30.2 31.3 31.3 31.6 33.6 33.6 34.2 35.3 ↑1.1

MSE↓ 264.4 163.4 143.5 133.1 97.3 105.1 110.6 69.7 67.9 55.8 40.7 ↓15.1

HD2N
PSNR↑ 34.0 34.6 34.5 35.3 35.7 36.0 34.8 37.7 36.4 37.8 38.1 ↑0.3

MSE↓ 109.7 82.3 76.6 52.0 51.0 55.5 57.4 40.6 49.7 41.8 42.3 ↑1.7

all
PSNR 31.6 33.4 34.3 34.8 35.9 35.9 36.1 38.2 37.9 38.8 39.8 ↑1.0

MSE↓ 172.5 76.8 59.7 52.3 37.8 38.7 40.3 24.4 27.9 21.3 16.8 ↓4.5

Table 1. Our pre-trained image harmonization model, LEMaRT, outperforms state-of-the-art (SOTA) models on iHarmony4. The column
named composite image shows the result for the direct copy and paste of foreground regions on top of background images.

4.2. Implementation Details

We use an AdamW optimizer [28] both during pre-training
and fine-tuning. We set β1 = 0.9, β2 = 0.95, ϵ = 1e−8

and weight decay to 0.05. The window size and the patch
size of SwinIH are set to 32 and 4, respectively. We pre-
train our model for 30 epochs with a batch size of 192 and
a learning rate of 2.7e−2. We then fine-tune the pre-trained
model for 120 epochs with a learning rate of 2.7e−3. A
cosine annealing scheduler controls the change of learning
rate. The minimum learning rate is set to 0.0. We adopt
the random mask generation strategy and set mask ratio to
50% during pre-training. This is the default setting for the
experiments.

4.3. Comparison with SOTA Methods

a. On iHarmony4 Dataset
In Table 1, we present a comparison between the perfor-
mance of our method, LEMaRT (SwinIH), and the per-
formance of existing methods on iHarmony4. Overall,
LEMaRT comprehensively outperforms existing methods
across the two metrics (PSNR and MSE). Most notably, our
method achieves a PSNR of 39.8 dB, which is 1.0 dB higher
than the previous best method. The MSE of our method is
16.8, which is 4.5 lower (21.1% relative improvement) than
the previous best method [16] 2.

We notice that our method, LEMaRT, consistently
achieves better performance than SOTA methods [7–9, 13,
15,16,26,30,34] on three of the four subsets, i.e., HCOCO,
HAdobe and HFlickr of iHarmony4. Meanwhile, on the
HD2N subset, the performance of our method is on par with
SOTA methods. While our method yields higher PSNR, the

2Our method also outperforms SOTA methods across the iHarmony4
dataset in terms of fPSNR and fMSE. For brevity, we omit them in Table 1
and include them in supplementary materials instead.

MSE of our method is higher. We hypothesize that the do-
main of MS COCO, the dataset which we use to pre-train
LEMaRT, is not closely aligned with that of HD2N. For ex-
ample, mountains and buildings are the salient objects in
most images in the HD2N subset. However, they do not
often appear as the main objects in MS COCO images.

In Figure 5, we compare the harmonized images gener-
ated by three SOTA methods, i.e., RainNet, iS2AM, DHT+,
and our method, i.e., LEMaRT (SwinIH). We see that
LEMaRT can generate photo-realistic images. Compared
to other methods, LEMaRT is better at making color cor-
rections, thanks to the pre-training process during which
LEMaRT learns the distribution of photo-realistic images.

b. On RealHM Dataset
In Table 2, we compare the performance of our method,
LEMaRT, with multiple SOTA methods on RealHM
dataset. We pre-train our model on 120K images from
Open Images V6 [21] for 22 epochs and then fine-tune our
model on iHarmony4 for 1 epoch with a learning rate of
5.3e−3. We see that LEMaRT comfortably outperforms
DoveNet [8] and S2AM [9], and achieves comparable re-
sults to SSH [20]. A comparison of the harmonized images
generated by our LEMaRT method and existing methods
can be found in the supplementary materials.

method DoveNet [8] S2AM [9] SSH [20] LEMaRT
MSE ↓ 214.1 283.3 206.9 206.1
PSNR ↑ 27.4 26.8 27.9 27.6

Table 2. Comparison between our pre-trained model, LEMaRT,
and SOTA models on RealHM.

4.4. Ablation Studies

We conduct ablation studies to gain insights into various
aspects of our method. These aspects include the general-
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SwinIH ViT [10] ResNet [38] HRNet [32] HT+ [13]
dataset metric w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

all

PSNR↑ 37.0 39.0 35.7 38.4 34.6 36.3 33.2 35.3 37.7 38.9
MSE↓ 35.5 20.9 48.2 24.1 64.4 44.2 78.5 48.4 31.4 22.3

fPSNR↑ 24.5 26.6 23.1 25.9 21.9 23.4 20.6 22.7 25.1 26.3
fMSE↓ 386.6 250.0 499.9 282.6 645.3 459.9 811.9 510.6 342.6 266.5

Table 3. Effect of pre-training on different image harmonization models, i.e., our SwinIH, ViT [10], ResNet [38], HRNet [32] and HT+ [13].
We compare their performance when they are trained on iHarmony4 from scratch (w/o columns), and when they are fine-tuned after being
pre-trained with LEMaRT using the unlabeled images in MS COCO (w/ columns).

ization ability of our LEMaRT method across different net-
work architectures, its efficiency in terms of data and an-
notation consumption, the design choices of our SwinIH
model, and the sensitivity of its performance to the mask
generation strategy and the mask size.

a. Generalization Across Network Architectures
The goal of the first ablation study is to understand
the effectiveness of the proposed pre-training method,
i.e., LEMaRT, on various network architectures, includ-
ing vision Transformers and convolutional neural networks
(CNNs). Specifically, we adopt five different networks, i.e.,
SwinIH, ViT [10], ResNet [38], HRNet [32] and HT+ [13].
SwinIH refers to our model introduced in § 3.4. ViT refers
to the vision Transformer model that adopts global atten-
tion. ResNet is a variant of the ResNet generator intro-
duced in pix2pixHD [38]. We remove the down sampling
operators to make it suitable for image harmonization. We
re-implement HT+ [13], a ViT-style Transformer model de-
signed for image harmonization. Our implementation has
comparable results (0.3 dB higher PSNR, and 0.9 higher
MSE) with those reported in [13]. We compare the perfor-
mance of the five networks when they are trained on iHar-
mony4 from scratch (w/o columns in Table 3), and when
they are fine-tuned after being pre-trained with LEMaRT
(w/ columns). We train (or fine-tune) SwinIH, ViT, ResNet
and HRNet on iHarmony4 for 30 epochs, and HT+ for 120
epochs to be consistent with the results reported in [13].
Other settings are kept the same as the default setting.

As shown in Table 3, pre-training on MS COCO with
LEMaRT significantly improves performance of the mod-
els under study over training from scratch on iHarmony4.
Specifically, the performance boost ranges from 1.2 to 2.7
dB in terms of PSNR and 1.2 to 2.8 dB in terms of fPSNR.
In particular, LEMaRT improves the PSNR of our SwinIH
model by 2.0 dB and its MSE by 14.6. Moreover, LEMaRT
is effective not only for models adapted from other vision
tasks, but also for those specifically designed for image har-
monization, such as HT+ [13].

b. Data Efficiency
Next, we evaluate the effectiveness of LEMaRT with re-
spect to the amount of fine-tuning data. As before, we

pre-train our SwinIH model in two settings: training from
scratch on iHarmony4 only and pre-training followed by
fine-tuning. For both settings, we vary the amount of fine-
tuning data by uniformly sampling between 1% and 100%
of the iHarmony4 training set.

The results in Figure 6 are consistent with the previ-
ous section, in the sense that pre-training improves image
harmonization accuracy by a large margin (up to 2.4 dB
in terms of PSNR and 299.1 in terms of MSE) regardless
of the amount of fine-tuning data. More importantly, the
LEMaRT pre-training scheme is more beneficial to the low
data regime than the high data regime. For example, when
using no more than 10% of the fine-tuning data, the per-
formance boost attributed to pre-training ranges between
2.3 and 2.4 dB, whereas the improvement at 100% of fine-
tuning data declines to 1.4 dB. We observe a similar trend
in the MSE measure, where the MSE improvement drops
from around 300.0 at 1% of iHarmony4 training data to less
than 90.0 when using the full training set.

c. Model Design Choices

In this experiment, we pay attention to two design choices
of our SwinIH model. The first choice is to maintain the in-
put resolution across all the transformer blocks or to adopt
a bottleneck layer similar to encoder-decoder models. The
second choice is whether to use efficient local attention, i.e.,
Swin attention, across all the blocks or to use global atten-
tion as well. This choice stems from a visual observation
that the Swin attention occasionally induces block-shaped
visual artifacts in harmonized images, as shown in Figure 7.
Therefore, it prompts the necessity to modify model archi-
tecture to maintain a balance between efficiency and visual
quality.

To gain insights into these aspects, we compare SwinIH,
its two variants, i.e., SwinIH-MS, SwinIH-Local, and Swin
Transformer (Swin-T) [27]. SwinIH is introduced in § 3.4.
SwinIH-MS differs from SwinIH in that it first reduces and
then enlarges the resolution of feature maps at deeper layers.
SwinIH-Local replaces the global attention layer of SwinIH
with a Swin attention block. As discussed in § 3.4, Swin-
T is composed of Swin attention blocks and uses a Patch
Merging layer to reduce the spatial size of feature maps.
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Figure 5. Qualitative comparison between our method, LEMaRT (SwinIH), and three SOTA methods (RainNet [26], iS2AM [30], DHT+
[13]) on the iHarmony4 dataset. Compared to other methods, LEMaRT is better at color correction, thanks to the pre-training process
during which LEMaRT learns the distribution of photo-realistic images.
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Figure 6. Performance of our SwinIH model when it is fine-tuned on a portion (1–50%) of the iHarmony4 dataset. One variant is trained
from scratch using the all training data from the iHarmony4 dataset (referred to as w/o LEMaRT). The other is pre-trained with LEMaRT
and then fine-tuned using the all training data from the iHarmony4 dataset (referred to as LEMaRT) .

We add a Patch Splitting layer (does the opposite of a Patch
Merging layer) to enlarge the size of feature maps to make
it suitable for image harmonization.

As shown in Table 4, SwinIH significantly outperforms
SwinIH-MS and Swin-T across all four metrics, e.g., by 0.7
dB and 0.9 dB in terms of PSNR, and by 5.8 and 11.5 in

terms of MSE, respectively. We hypothesize that the per-
formance drop is caused by the information loss when the
resolution of a feature map is reduced. The performance of
SwinIH-Local and that of SwinIH are comparable in terms
of PSNR and MSE. However, as shown in Figure 7, SwinIH
produces results that are of higher visual quality. As shown
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Figure 7. Qualitative comparison between the results of SwinIH-
Local and SwinIH. SwinIH-Local occasionally generates images
with block-shaped visual artifacts, while SwinIH does not.

model
dataset metric SwinIH MS Local Swin-T

all

PSNR↑ 37.0 36.3 37.0 36.1
MSE↓ 35.5 41.3 35.1 47.0

fPSNR↑ 24.5 23.7 24.5 23.2
fMSE↓ 386.6 454.5 385.2 499.3

Table 4. Performance comparison of SwinIH, its two variants, i.e.,
SwinIH-Local (denoted as Local), SwinIH-MS (denoted as MS),
and Swin Transformer (denoted as Swin-T) [27] on iHarmony4.

in Figure 7, SwinIH-Local produces visible block bound-
aries. This is caused by the shifted window (Swin) atten-
tion, which prevents visual tokens at the border of each win-
dow to attend to its neighboring visual tokens in adjacent
windows. SwinIH is able to remove these block-shaped arti-
facts. This demonstrates the benefit of using a combination
of global and local attention. To maintain high computa-
tional and memory efficiency, we only employ it in the last
layer of our model.

d. Mask Generation Strategy

mask generation strategy
dataset metric random grid block

all

PSNR↑ 39.0 37.1 38.6
MSE↓ 20.9 33.5 23.2

fPSNR↑ 26.6 24.5 26.1
fMSE↓ 250.0 380.3 273.8

Table 5. Comparison of three mask generation strategies intro-
duced in § 3.3: random, grid, block, on iHarmony4.

Here we study the sensitivity of harmonization performance
with respect to the mask generation strategy. To this end,
we compare the three strategies discussed in § 3.3, i.e., ran-
dom, grid and block. We measure the performance of our
model after being pre-trained on MS COCO and fine-tuned
on iHarmony4 for 30 epochs.

As seen in Table 5, the performance of grid strategy
is worse that of the other two strategies. This result is
expected, as the grid strategy can only transform image
patches at specific locations. Therefore, it is not flexible
for cases where there are multiple foreground regions or
they cover an area larger than a grid cell. To our surprise,
the random strategy achieves comparable performance to
the block strategy, which is designed to mimic test cases.
This result confirms that there is no need for a special mask
generation algorithm that is tuned for the LEMaRT pre-
training scheme. In other words, this simplifies the design
and broadens the applicability of LEMaRT to new datasets.

e. Foreground Mask Size

mask ratio
dataset metric 30% 50% 70%

all

PSNR↑ 38.8 39.0 39.0
MSE↓ 21.8 20.9 21.2

fPSNR↑ 26.4 26.6 26.5
fMSE↓ 255.0 250.0 250.5

Table 6. Image harmonization metrics corresponding to three dif-
ferent foreground mask ratios on iHarmony4.

We examine the sensitivity of image harmonization results
to the foreground mask size. Here, the foreground size is
measured by the ratio of the foreground mask size to the
image size. In this experiment, we fine-tune the pre-trained
models for 30 epochs. In Table 6, we show the quantita-
tive metrics at three different foreground mask ratios, 30%,
50% and 70%. We see that these metrics do not vary signifi-
cantly between the three ratios. For example, fPSNR varies
within a range with 0.2 dB width and fMSE varies within a
range whose width is smaller than 5.0. This indicates that
the size of generated foreground masks does not have sig-
nificant impact on performance of pre-trained models.

5. Conclusion

In this work, we introduced Label-Efficient Masked Region
Transform (LEMaRT), an effective technique of online data
generation for self-supervised pre-training of image harmo-
nization models. LEMaRT provides a simple, yet effec-
tive way to leverage large-scale unannotated datasets. In
addition, we derived a Swin Transformer-based model that
is more efficient than ViT-style Transformer networks for
image harmonization. Extensive experiments on the iHar-
mony4 dataset validate the effectiveness of both our pre-
training method and our model. We set a new state of the
art for image harmonization, while showing that our pre-
training method is much more label-efficient than the exist-
ing methods and is consistently applicable to a wide range
of network architectures for image harmonization.
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