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Abstract

Image-text contrastive learning models such as CLIP
have demonstrated strong task transfer ability. The high
generality and usability of these visual models is achieved
via a web-scale data collection process to ensure broad con-
cept coverage, followed by expensive pre-training to feed
all the knowledge into model weights. Alternatively, we
propose REACT, REtrieval-Augmented CusTomization, a
framework to acquire the relevant web knowledge to build
customized visual models for target domains. We retrieve the
most relevant image-text pairs (∼3% of CLIP pre-training
data) from the web-scale database as external knowledge
and propose to customize the model by only training new
modularized blocks while freezing all the original weights.
The effectiveness of REACT is demonstrated via extensive
experiments on classification, retrieval, detection and seg-
mentation tasks, including zero, few, and full-shot settings.
Particularly, on the zero-shot classification task, compared
with CLIP, it achieves up to 5.4% improvement on ImageNet
and 3.7% on the ELEVATER benchmark (20 datasets).

1. Introduction

It has been a fundamental research problem in computer
vision (CV) to build a transferable visual system that can
easily adapt to a wide range of downstream tasks. With
remarkable advances in deep learning, a de facto solution
to achieve this is to train deep neural networks on a large
amount of data to pursue the so-called generic visual repre-
sentations. This dates back to the standard supervised train-
ing on ImageNet [10], whose superb representation power
is further demonstrated in BiT [23]/ViT [12] by scaling up
the training to JFT300M [50]. Along the way, recent efforts
have been applied to the popular image self-supervised learn-
ing [6, 16, 17] to reduce the demand for labeled data. The
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third approach is image-text contrastive learning trained on
billion-scale web-crawled image-text pairs. Such models,
like CLIP [43] and ALIGN [20], are able to achieve great
performance on different downstream domains, without the
need of any human labels.

Excellent empirical performance has been achieved with
the above three pre-training methods, by following the well
established two-stage pre-training then adaptation pipeline:
model pre-training from scratch on large data, then model
adaptation directly on downstream tasks. Specifically, the
pre-trained models are adapted to downstream tasks by con-
sidering the available task-specific samples only: either eval-
uated in a zero-shot task transfer manner, or updated using
linear probing (LP) [43], finetuning (FT) [27], or prompt tun-
ing [44,71]. Following this two-stage pipeline, most research
has reverted to the faith that building transferable visual sys-
tems is equivalent to developing more generic visual models
by feeding all knowledge in the model pre-training stage.
Therefore, the community has been witnessing a trend in
exploring scaling success of pre-training model and data size
with less care on the target domain, hoping that the model
can adapt to any downstream scenario.

In this paper, we argue that the conventional two-stage
pipeline above is over-simplified and less efficient, in achiev-
ing the goal of building a transferable visual system in real-
world settings. Instead, we propose a customization stage in
between the pre-training and adaptation, where customiza-
tion is implemented by systematically leveraging retrieved
external knowledge. The inspiration comes from how hu-
mans are specialized in society for better generalization:
instead of trying to memorize all concepts, humans are
trained/prepared in a relevant subject to master a certain
skill, while maintaining the basic skills in pre-training.

To this end, we explore a systematic approach to acquire
and learn with external knowledge sources from a large
image-text corpus for model customization. The process of
collecting external image-text knowledge is fully automatic
without extra human annotation. The acquired knowledge
typically contains richer information about the concept: rel-
evant images that never appear in the downstream training
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Figure 1. REACT achieves the best zero-shot ImageNet performance among public checkpoints (Left), achieves new SoTA on semi-supervised
ImageNet classification in the 1% labeled data setting (Middle), and consistently transfer better than CLIP on across a variety of tasks,
including ImageNet classification, zero/few/full-shot classification on 20 datasets in ELEVATER benchmark, image-text retrieval, object
detection and segmentation (Right). Please see the detailed numbers and settings in the experimental section. For the left figure, circle size
indicates model size.

and evaluation set, and richer text descriptions about concept
semantics. Such multi-modal knowledge sources are gen-
erally available on the web, and further open-sourced like
LAION [45, 46]. They cover a variety of domains, making it
possible to develop customized visual models for task-level
transfer. Similar retrieval-augmented intuitions have been
exploited in computer vision for class-level transfer [32], but
not yet for task-level transfer (similar to that of CLIP). Our
main findings/contributions can be summarized as follows.

We propose to explore the potential of the web-scale
image-text corpus as external knowledge to significantly
improve task-level transfer performance on the target do-
main at an affordable cost. A simple and effective strategy
is proposed. To begin with, we build a large-scale multi-
modal indexing system to retrieve the relevant image-text
pairs using CLIP features and approximate nearest neigh-
bor search. For a CV problem, the task instruction is often
sufficiently specified with text such as class names, which
allows us to utilize them as queries to retrieve the relevant
image-text pair knowledge from the indexing system. No
images from the CV problem are needed. To efficiently build
the customized visual model, we propose a novel modular-
ized learning strategy: only updating the additional trainable
weights on the retrieved knowledge, and freezing the origi-
nal model weights. Hence, the model masters the new skill
without forgetting basic skills.

The generality and effectiveness of the proposed cus-
tomization strategy is demonstrated on four CV problems.
We instantiate it with CLIP, and develop the customized
visual models for image classification on ImageNet and
20 datasets in ELEVATER [27], image-text retrieval on
COCO [30]/Flickr [41], as well as object detection and se-
mantic segmentation on COCO [30]. The knowledge bases
are considered as LAION [46] and larger web-crawled multi-
modal data. The retrieval-augmented knowledge (∼3%
image-text pairs compared with the original training data)
significantly improves the model’s zero-shot performance

without the need of accessing any images on downstream
tasks. See Figure 1 for highlighted results. For example,
our ViT-L/14 checkpoint achieves 78.5% zero-shot accuracy
on ImageNet [10], surpassing all public checkpoints from
CLIP [43] and OpenCLIP [18], including those with larger
model size and trained on a much larger LAION-2B [45].
The new customized models demonstrate higher few/full-
shot performance than the generic model counterparts.

Our retrieval system, codebase, and pre-trained models
are publicly available. To make this line of research more
accessible, our retrieved subsets for both ELEVATER and
ImageNet will also be made available, with an easy-to-use
toolkit to download the subsets without storing the whole
dataset locally. It poses a feasible direction for leveraging
the ever-increasing data from the Internet for customized
visual recognition, especially for the low-resource regimes.

2. Related Work
Vision-Language Pretraining. Learning transferable vi-
sual representations from natural language supervision is an
emerging research area. The pioneering works of CLIP [43]
and ALIGN [20] make use of contrastive learning to pretrain
models on billion-scale web-crawled image-text pairs. There
are an increasing number of studies to improve their general-
ity from various modeling perspectives, including training
objectives [11,13,14,38,65,68], scaling techniques [9,40,65],
data efficiency [25, 28], and leveraging multilingual corre-
lations [9, 19]. In academia, several works demonstrate
techniques to improve the learned semantic representations
on datasets at a smaller scale (e.g. CC3M [47], CC12M [4],
YFCC15M [43, 51]), by exploring pretraining on a unified
image-text-label space [59], token-level contrastive loss [61],
and auxiliary within-modality contrastive loss [29,37,58,63].
Complementary to the above works, we build on top of ex-
isting pre-trained generic models, and aim to improve the
model’s performance by customizing them using retrieved
relevant image-text pairs.
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Retrieval-Augmented Models. In natural language pro-
cessing, several works augment large language models with
external data encoded with structured language and rela-
tion representations [3, 15, 22, 26, 31, 39, 66]. Motivated by
retrieval-augmented models in NLP, several recent works
leverage visual and / or textual knowledge to improve clas-
sification [32], question answering [7, 35, 56, 60], image
generation [2, 8, 49, 72], and multi-modal tasks simultane-
ously [62]. RAC [32] improves long-tail classification by
retrieving from a non-parametric memory consisting of pre-
encoded images and text. K-LITE [48] enhances the text
prompts with the retrieved external knowledge that is en-
coded in natural language. Our paper leverages the paired
knowledge of image-text and aims to improve task transfer
performance for core vision problems such as classification,
retrieval, detection and segmentation.

Adaptation of Vision-Language models. CLIP demon-
strates impressive zero-shot and linear probing performance
on different downstream domains. Several works explore
improving the domain adaptation performance on CLIP mod-
els. ELEVATER [27] leverages the text encoder outputs to
initialize the task-specific linear head to improve the lin-
ear probe and finetuning performance of CLIP. Inspired by
prompting techniques in NLP, recent works [44, 71] make
use of learnable prompts that are trained on a few samples on
downstream tasks. Similar to these works, this paper aims
to improve CLIP’s performance on downstream tasks, while
making use of relevant image-text pairs data to improve the
model’s performance, without access to the downstream im-
ages. Furthermore, when downstream samples are available,
they are complimentary to our method.

3. Retrieval-Augmented Customization
3.1. Preliminaries

Computer vision models have achieved strong trans-
fer performance, when learning with large-scale image
data only [17], image-label data [23] and/or image-caption
data [43, 59, 67]. Without loss of generality, we follow [59]
and define a unified triplet-wise format (x, t, y) for image-
text-label data, where x ∈ X is an image, t ∈ T is its
language description, and y ∈ Y is a label indicating the
index of the unique language description in the dataset. In
a general form, the language description is a text sequence
t = [t1, · · · , tL]. It ranges from simple category names
representing visual concepts when L is small, to more free-
form and semantic-rich sentences such as captions when L
is relatively large.

A typical transfer learning pipeline follows the proce-
dure of pre-training then adaptation: (i) With large-scale
pre-training, an image encoder foundation model fθ param-
eterized by θ is first trained to represent image x as a visual
feature vector ṽ ∈ RP×1: ṽ = fθ(x). For recent language-
image models [43], a dual-encoder architecture is often em-

Pre-training
Task

Adaptation

Retrieval-Augmented Customization 

q Definition

q Examples
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Figure 2. Illustration of the proposed REACT framework.

ployed, where an additional text encoder fϕ(t) parameter-
ized by ϕ represents the sentence ũ ∈ RP×1 : ũ = fϕ(t).
(ii) Given a downstream task, model adaptation is typically
performed using the available task-specific information, or
task instruction I. For example, the task-level transfer of a
language-image model is described as:
• Zero-shot. In a customized setting, the simplest task

definition can be provided as a set of category names for
visual recognition, leading to the task instruction I0 =
{t}. No training image x is available, not to mention the
corresponding label y.

• Few/Full-shot. The users may spend annotation cost
to curate N image-label pairs as the training instances,
making the task instruction more specific, IF =
{(xn, tn, yn)}Nn=1, which allows updating the image en-
coder model fθ for better adaptation performance.
In this paper, we assume there exists a web-scale

image-text corpus as the external knowledge source S =
{(xm, tm)}Mm=1, where M is the database size, e.g. 400M
for LAION [46]. One may use the task instruction I as a
query to seek additional relevant knowledge to build a more
transferable visual system. Given the downstream task in-
struction I and an external knowledge source S , our goal is
to learn customized visual-semantic representations, which
are readily transferable to the downstream task of interest,
whose training and evaluation images are not observed dur-
ing the customization process. To this end, we propose
REACT. We illustrate the high-level idea in Figure 2, and
describe the process as follows.

3.2. Multi-modal External Knowledge
Knowledge Base Construction. We explore web-scale
image-text data as the multi-modal knowledge base S in
this paper. Ideally, one may consider the entire web as the
knowledge base, and use Google or Bing search to retrieve
the relevant knowledge. We consider two large static datasets
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with image-text pairs. To control the experiment complexity
and ensure reproducibility, we use LAION-400M [46], a
publicly available database with 400M pairs, for most of
the experiments. To further study the scaling influence of
the retrieval base, we conduct comparisons on Web-800M, a
privately collected web database with 800M pairs.

To facilitate an efficient knowledge acquisition process,
we use pre-trained contrastive models (e.g. CLIP) as the
feature extractor, and build a cross-modal retrieval system
using FAISS [21]. We use its Hierarchical Navigable Small
World (HNSW) approximate k-NN lookup [34] to balance
performance and efficiency. Please see appendix for more
details. After the retrieval system is built on the designated
retrieval pool, it can be efficiently used for retrieving relevant
image-text pairs for various downstream domains.

Retrieval-Augmented Task Instruction. To facilitate the
same interface for various customized visual tasks in the
wild, it is desirable to have the same uniform task instruc-
tion schema. In NLP, all task instructions can follow the
same uniform schema, composed of task definition and pos-
itive/negative examples [36, 55]. Here, the task definition
defines a given task in natural language, completely speci-
fying how an input is expected to be mapped to an output
text. We note a coherence connection between this NLP task
schema and the customized zero/few/full-shot CV settings
in Section 3.1. Following a similar schema, the minimum
requirement to specify a visual task is the task definition
I0, where category names illustrate the target visual con-
cepts in natural language. Though adding human-annotated
examples is a natural way to clarify the task and yield the
complete schema IF, extra cost is introduced.

It is of high interest to clarify the task using relevant ex-
amples, without human curating cost. Therefore, we propose
to augment the task instruction with the retrieved examples
from the external multi-modal knowledge base S. For each
concept t ∈ I0 in a given task, we first represent it in nat-
ural language q = gprompt(t) using the language prompt
as in [43], through inserting the concept into a set of task-
specific templates P . The task definition is expanded in its
natural language form:

Q = {q | q = gprompt(t),∀t ∈ I0, prompt ∈ P}. (1)

Next, we perform our knowledge retrieval process to
acquire the relevant image-text pair s = gretrieve(q) from
the source S . Two types of retrieval processes are considered
to acquire the top-K pairs:

• Text-to-Text (T2T) retrieval allows us to retrieve more
relevant examples as they have a better match with our
target concept. The T2T-retrieved set for I0 is:

ST2T ={(x, t) ∈ S : argmax
t∈T,|T|=K

fϕ(t)
⊤fϕ(q),∀q ∈ Q} (2)

• Text-to-image (T2I) retrieval allows us to have more di-
versity in the text descriptions in our retrieved examples.
The T2I-retrieved set for I0 is:

ST2I ={(x, t) ∈ S : argmax
x∈X,|X|=K

fθ(x)
⊤fϕ(q), ∀q ∈ Q} (3)

Both ST2T and ST2I are retrieved examples to augment
the task definition I0, without accessing the images in the
training or validation set of the task. Compared to IF, they
are “free” external knowledge to clarify the task and can be
used to build a more transferable system.

3.3. Model Customization
After retrieving the relevant multi-modal examples, one

may employ the naive customization solution by fine-tuning
the full-model initialized from pre-trained weights, as in
Figure 3(a). Alternatively, we propose an affordable solution
to endow pre-trained models with a new capability to lever-
age this external knowledge. The pre-trained generic visual
models have gained strong transfer abilities and access to
a large amount of internal knowledge stored in the model
weights. We freeze the weights of these models so that their
initial capacity remains unchanged. To bridge these pre-
trained models harmoniously to the customized domain, we
consider locked-text gated-image tuning with the following
two techniques, illustrated in Figure 3(d).

Modularized Image Encoder. In order to provide sufficient
expressivity to the model and make it able to adapt well on
retrieved knowledge, we insert gated self-attention dense
blocks in between the original layers of the image encoder,
and train the new blocks from scratch. Those blocks are
made of a self-attention layer, that attends the early layer
inputs, followed by an extra dense feed-forward layer. Please
see a visual illustration of this gated block in the rightmost of
Figure 3(d). We denote the parameters of all new modules as
θ′. This design is inspired by the gated cross-attention-dense
blocks in Flamingo [1] and frozen multi-modal model [52].
The difference is that the trainable module is introduced
in Flamingo to enable cross-modal conditioning, while we
adapt it for model growing in new customized domains.

Frozen Text Encoder. The text encoder in language-image
contrast models represents the task semantic space. To main-
tain it, we propose locked-text tuning, which freezes the text
model weights so that the generic task encoding knowledge
remains locked; see Figure 3(c). This is in contrast with
locked-image tuning (LiT) [68] in Figure 3(b), where the
image encoder is frozen and the text encoder is fine-tuned,
which teaches a text model to read out good representations
from a pre-trained image model for new tasks.

We extract the normalized feature vectors in a hyper-
sphere using ui =

f{θ,θ′}(xi)

∥f{θ,θ′}(xi)∥ and vj =
fϕ(tj)

∥fϕ(tj)∥ . To

customize the model wrt task definition I0, we update θ′

using a bidirectional learning objective between images and
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Figure 3. Illustrative comparisons across different model tuning methods. (a) and (b) are existing baseline tuning methods. For model
customization in a target domain, we found that (c) and (d) work better. One layer of the proposed modularized image encoder in locked-text
gated-image tuning is illustrated in right side.

language on the retrieved knowledge pool ST2T and/or ST2I :

min
{θ′}

LC = Li2t + Lt2i, with B ∼ ST2T or ST2I (4)

Li2t=−
∑
i∈B

1

|P(i)|
∑

k∈P(i)

log
exp(τu⊤

i vk)∑
j∈B exp(τu⊤

i vj)
and (5)

Lt2i=−
∑
j∈B

1

|Q(j)|
∑

k∈Q(j)

log
exp(τu⊤

k vj)∑
i∈B exp(τu⊤

i vj)
(6)

where τ is a temperature hyper-parameter controlling the
strength of penalties on hard negative samples, and P(i) =
{k|k ∈ B,v⊤

k vi ≥ γ}, Q(j) = {k|k ∈ B,v⊤
k vj ≥ γ}. We

set γ = 0.9 for classification tasks to force image-text pairs
sharing the similar text to be positive. Note (4) is a general
form; it reduces to UniCL [59] when γ = 1.0; it further
reduces to the training objective of CLIP [43] when there
is a one-to-one mapping between an image and its paired
caption in a batch, i.e. P(i) = {i} and Q(j) = {j}.

In our empirical study we find that locked pre-trained im-
age and text encoders with trainable gated modules in image
encoder work best. Once the customized visual models are
trained with the retrieved knowledge, we transfer it to the
downstream domain for zero/few/full-shot evaluation.

4. Experiments
In this section, we conduct experiments to answer three

research questions: (1) What are the unique advantages of
retrieval-augmented image-text knowledge for task transfer?
(2) How does our design choice of locked-text gated-image
tuning compare to existing methods for model customiza-
tion? (3) Is customization still beneficial in settings where
the training data in downstream tasks are observed, i.e., in
few-shot or full-shot settings? (4) Does customization scales
well to dense prediction tasks like detection/segmentation?

We evaluate our models on four CV problems: image
classification, image-text retrieval, object detection, and se-
mantic segmentation. We first consider ImageNet [10] for
zero-shot task transfer. We then further evaluate our model
on ELEVATER [27], which is an open-set image classifica-
tion benchmark that contains 20 datasets. We also conduct
experiments on image-text retrieval with MSCOCO [30] and

Flickr [64] dataset. Finally, we evaluate on object detection
and semantic segmentation with MSCOCO [30] dataset.

One of the most intriguing benefits of REACT is that it
does not need access to any images from the downstream
task. Therefore, we first evaluate on task-level zero-shot
transfer, which requires no images in the target to be ob-
served [27, 43, 48]. This setting is different from traditional
class-level zero-shot [57], where both the category and im-
ages in evaluation should not be observed in training. We
argue that ImageNet concepts have been observed in CLIP
(Sec. 2.2 of [43]) and other web-scale trained models [28], as
WordNet synsets and common words in English Wikipedia
are explicitly added in the query list when searching for
(image, text) pairs in their training data construction process.

4.1. Image Classification

4.1.1 Zero-Shot on ImageNet-1K

As shown in Table 1, by customizing the generic model
CLIP/OpenCLIP on 10M retrieved image-text pairs from
LAION-400M, REACT achieves a significant and consis-
tent gain (up to 5.4%) on zero-shot image classification on
ImageNet-1K, with different backbones and original pre-
training datasets. There are three interesting findings.

F1: REACT can benefit from model’s own pre-training
data. Compared to OpenCLIP [18] (ViT-B/32) trained on
LAION-400M, by training on 10M relevant pairs from the
same LAION-400M dataset, REACT improves over Open-
CLIP by 3.5%. Note that the model purely uses the image-
text pairs that it has seen during its pre-training, and does
not see any extra data. This shows that REACT can more
adequately adapt to the target domain during the model cus-
tomization stage, suggesting a favorable property that no
new data is required for customization.

F2: REACT efficiently explores new image-text sources,
even for large models. We customize CLIP [43] ViT-L/14
on 10M retrieved relevant image-text pairs, and the model
achieves a 2.8% improvement to 78.1%. This surpasses
the checkpoint with a much larger ViT-H/14 backbone and
trained on a much larger LAION-2B dataset. This suggests
that REACT is a more sample-efficient approach to improve
the model performance on the domain-of-interest.
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Figure 4. Zero-shot comparison on ELEVATER ICinW 20 datasets. REACT (B32) improves over the base checkpoints on most datasets.

fθ Pretrain Data Retrieved Data Method ImageNet-1K
Dataset Size Zero-Shot

B/32

WIT-400M – – CLIP 63.2
L-400M 10M REACT 68.6 (+5.4)

LAION-400M – – OpenCLIP 62.9
L-400M 10M REACT 66.4 (+3.5)

L/14
WIT-400M

– – CLIP 75.3
L-400M 6M REACT 77.6 (+2.3)
L-400M 10M REACT 78.1 (+2.8)
W-800M† 6M REACT 78.5 (+3.2)

LAION-400M – – OpenCLIP 72.8
LAION-2B – – OpenCLIP 75.3

H/14 LAION-2B – – OpenCLIP 78.0

G/14 LAION-2B – – OpenCLIP 80.1
L-2B 12M REACT 81.0 (+0.9)

Table 1. Comparison of zero-shot task transfer with public check-
points from CLIP [43] and OpenCLIP [18]. LAION [45, 46] is
abbreviated as “L” in the table. Web-800M†: a privately collected
web database with 800M image-text pairs. By continue pretrain-
ing on only ∼10M retrieved data, REACT outperforms all public
CLIP/OpenCLIP checkpoints.

F3: Scaling up the retrieval pool increases performance.
We perform REACT in a privately collected dataset with over
800M pairs, and train a customized model on 6M retrieved
pairs. The performance is increased to 78.5%, yielding 0.9%
gain compared with 6M pairs retrieved from LAION-400M.
This suggests that REACT scales well with the larger retrieval
pool. It showcases REACT as a cost-efficient approach to
leveraging the ever-increasing web image-text corpus.

4.1.2 Zero-, Few-, and Full-Shot on ELEVATER

As a proxy for performing vision tasks for many customized
scenarios in the wild, we consider the image classification in
the wild (ICinW) benchmark in ELEVATER [27]. It consists
of 20 datasets from a diverse selection of domains and covers
a wide range of concepts, totaling 1151 classes.

We perform multi-modal knowledge retrieval for 20
datasets together – the retrieved samples are around 10M
image-text pairs in total, on which one single customized
visual model is trained. After the process, we feed the cus-
tomized model to different downstream tasks separately. For
each downstream dataset, we use the official ELEVATER
toolkit to obtain the train/val/test splits, and perform zero-

Few-shot Full-shot
Method Zero-Shot LP FT LP FT

CLIP 56.8 65.4 63.3 78.4 80.4
REACT 60.6 68.9 68.4 80.4 81.8

Gains (+3.8) (+3.5) (+5.1) (+2.0) (+1.4)

Table 2. The average scores of image classification performance on
20 datasets in ELEVATER. REACT consistently outperforms CLIP
in both data-limited and data-rich regimes.

shot, few-shot, and full-shot evaluation.
We report the average scores in Table 2. It achieves 3.8%

improvement in the zero-shot setting, even when we do not
perform a separate customization for different datasets. This
demonstrates the robustness of our customization process.
Further, we see the consistent improvement in few-shot and
full-shot settings, including both linear probe (LP) and fine-
tuning (FT). This result is encouraging, as it demonstrates
that when we have access to some or all data from the down-
stream task, the proposed model customization stage remains
beneficial. Therefore, we advocate model customization pro-
cess in both data-limited and data-rich settings.

Breakdown Analysis. Next, we ask why does the retrieved
image-text knowledge improve the zero-shot task transfer
performance on a broad range of datasets? We compare
the breakdown performance on all 20 datasets in Figure 4
for the zero-shot settings. Out of 20 datasets, the retrieval-
augmented knowledge shows superior/comparable/inferior
performance to the baseline on 15/1/4 datasets for CLIP
and 14/0/6 datasets for OpenCLIP, respectively. Most of
the improved and failure datasets are consistent for both
checkpoints. For the top two datasets that gains the most,
i.e. StanfordCars and FGVC Aircraft, relevant image-text
knowledge is retrieved from the web-crawled data LAION-
400M to describe the concepts; see Fig. 5a. Interestingly,
this observation is complementary to K-LITE [48], which
failed on these two datasets, because no knowledge was
extracted from Wiktionary for them, as it often requires
domain-specific knowledge and even visual knowledge to
best define a car brand (e.g. BMW X6 SUV or Audi R8) or
an aircraft model type (e.g. DC-10 or A321).
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(a) Success examples. The two datasets with largest improvement in Fig. 4:
Stanford-Cars [24] and FGVC-Aircraft [33]. There is a high concept con-
verage for these datasets in LAION, resulting in a relevant and diverse
retrieved set.

❑ Task Samples ❑ Retrieved Image-Text Pairs

lymph node lymph … tumor… Microscopic enlargement of a mast cell

(b) Failure case. The dataset with the largest degradation in Fig. 4: Patch-
Camelyon [54]. LAION-400M has a low concept coverage on this domain,
and the retrieved samples are in a different distribution from the target set.

Figure 5. Success and failure cases in ELEVATER benchmark. We
show class name and the caption of the first retrieved image-text
pairs, others are similar and omitted due to limited space.

Limitations. As shown in Fig. 4, REACT struggles on the
PatchCamelyon dataset, a cancer cell recognition benchmark.
We visualize the retrieved samples and the samples from the
original training set in Fig. 5b. The retrieved images are
either instruction photos and from another sensing method,
which exhibits a different visual distribution from Patch-
Camelyon. This suggests the importance of ensuring the
retrieval quality for the domain-of-interest.

4.2. Image-Text Retrieval

To demonstrate the generality of REACT, we consider
Flickr30K [64] and MSCOCO [30] image-text retrieval tasks,
in both zero-shot and full-shot settings. We use the standard
image-text contrastive objective [43]. For image-text re-
trieval task, following [20, 43], we use the CLIP-L/14 with
336x336 input resolution in both zero-shot, customization,
and fine-tuning stage. We use the captions from MSCOCO
as queries to retrieve 6M image-text pairs and perform cus-
tomization. Note that none of the caption queries are used in
the model training stage.

As shown in Table 3, REACT improves the generic CLIP
counterparts on both zero-shot and full-shot retrieval for
Flickr30K and MSCOCO datasets. The gain on zero-shot
task transfer is large. On Flickr30K, it achieves 3.4%/10.0%
recall improvement for I2T and T2I retrieval, respectively.
Afer fine-tuning on full training data, REACT still improves
over the baseline slightly. It provides another piece of ev-

Method
Flickr30K MSCOCO

Img → Text Text → Img Img → Text Text → Img
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Z
er

o-
Sh

ot

ImgBert [42] 70.7 90.2 54.3 79.6 44.0 71.2 32.3 59.0
ALIGN [20] 88.6 98.7 75.7 93.8 58.6 83.0 45.6 69.8
CLIP [43] 88.0 98.7 68.7 90.6 58.4 81.5 37.8 62.4

CLIP† 87.0 98.3 66.5 88.0 59.2 80.7 37.8 62.4
REACT 90.4 99.1 76.5 93.7 63.3 85.1 47.5 72.0

Bletchley† 90.8 98.2 78.0 94.0 66.7 85.6 48.9 72.7
REACT 92.1 98.7 79.2 94.7 67.7 85.9 50.5 74.4

Fi
ne

-t
un

ed GPO [5] 88.7 98.9 76.1 94.5 68.1 90.2 52.7 80.2
ALIGN [20] 95.3 99.8 84.9 97.4 77.0 93.5 59.9 83.3
CLIP† 96.4 99.8 86.5 97.9 78.3 93.8 60.9 83.8
REACT 96.6 99.9 86.8 98.0 78.7 94.0 61.1 84.1

Table 3. Image-text retrieval results on Flickr30K [41] and
MSCOCO [30] datasets. CLIP†, Bletchley†: our evaluation.

Pretrain Backbone Region MSCOCO AP50

Method Proposals Novel Base All

Z
er

o-
Sh

ot CLIP ResNet-50 GT 58.6 58.2 58.3
REACT ResNet-50 GT 58.9 (+0.3) 59.4 (+1.2) 59.3 (+1.0)

CLIP ResNet-50 RPN 29.7 24.0 25.5
REACT ResNet-50 RPN 31.6 (+1.9) 25.4 (+1.4) 27.0 (+1.5)

O
V

D CLIP ResNet-50 – 14.2 52.8 42.7
REACT ResNet-50 – 20.6 (+6.4) 55.1 (+2.3) 46.1 (+3.4)

Table 4. Zero-shot and open-vocabulary object detection results on
MSCOCO [30] dataset using RegionCLIP [69] pipeline.

idence for REACT in data-rich settings. Furthermore, we
conduct the same customization procedure of REACT on a
large checkpoint Bletchley [53] with 864M parameters, and
observe consistent gains over both datasets. It demonstrates
that REACT scales well with model size on retrieval tasks.

4.3. Dense Prediction Tasks

Although REACT is optimized with the image-level con-
trastive loss during the customization stage, we find it ben-
eficial for dense prediction tasks as well. We showcase its
application to dense prediction tasks on object detection and
semantic segmentation.

Object Detection. For object detection, we choose the state-
of-the-art RegionCLIP [69] as our framework. We conduct
experiments in two settings: zero-shot inference and open-
vocabulary object detection (OVD) on MSCOCO dataset.
We perform the model customization following the same
setting as Sec. 4.2. Following RegionCLIP, we conduct ex-
periments on ResNet50 backbone. The results are shown in
Table 4. REACT consistently improves over CLIP checkpoint
under all settings.

For zero-shot inference, when ground-truth region pro-
posal is used, REACT improves over CLIP by +1.0 on overall
AP50; when the pretrained RPN is used, REACT demon-
strates +1.5/+1.4/+1.9 AP50 improvements on novel, base,
and all classes, respectively.

For OVD, we can see that with the REACT, the detector
yields improved performance on base with +2.3 AP50, and
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mIoU
Method zero-shot w/ refine w/ finetune

MaskCLIP [70] 12.5 14.6 18.1
REACT (Locked-Text) 14.4 (+1.9) 18.2 (+3.6) 20.7 (+2.6)
REACT (Locked-Text Gated-Image) 14.5 (+2.0) 16.3 (+1.7) 19.2 (+1.1)

Table 5. Zero-shot and annotation-free semantic segmentation
results on COCO Stuff [30] using MaskCLIP [70] (ViT-B/16).

importantly, it significantly improves novel categories with
+6.4 AP50. This suggests that the injected knowledge during
the model customization stage improves the learned fine-
grained visual feature that is beneficial to both seen and
unseen categories for object detection, when the downstream
coarse-grained data is available. This is favored, because
(1) the weakly-supervised data such as the coarse-grained
image-text pairs requires much less human annotation cost
than fine-grained bounding box annotation, (2) the paired
data in REACT is free, as it is retrieved from the web, where
COCO image-text pairs are not used in customized training.
Semantic Segmentation. For semantic segmentation, we
choose the state-of-the-art MaskCLIP [70] as the framework.
It investigates three evaluation settings for segmentation.
First, it makes use of the pretrained CLIP checkpoint to dis-
cover the alignment between grid visual features and the
text prompt features, so as to perform zero-shot semantic
segmentation. Second, to further improve the performance,
MaskCLIP [70] proposes two techniques for refining its
zero-shot predictions: key smoothing and prompt denois-
ing. Lastly, when the training images are available, without
the need to access the training labels, it further proposes
MaskCLIP+ [70] to perform full-shot finetuning on the target
training set using pseudo-labels. Following MaskCLIP [70],
we use ViT-B/16 checkpoints, and use their official code base
to train and evaluate models. We report results in Table 5.

On all of the three settings, REACT demonstrates im-
provements over the MaskCLIP. Notably, when refinement
techniques are used, REACT with locked-text tuning demon-
strates a significant 3.6% gain in mIoU. Surprisingly, without
seeing the downstream COCO images, the zero-shot evalua-
tion of REACT (18.2) even slightly outperforms MaskCLIP+
(18.1), which is finetuned on the downstream training COCO
images with self-training.
Summary. These results are encouraging, as it shows that
the customized knowledge from REACT transfers well to
dense prediction tasks like detection and segmentation.

4.4. Ablation Studies
We ablate REACT on ImageNet with CLIP ViT-B/32

checkpoint, with 10M retrieved image-text pairs from
LAION-400M. See more ablations in supplementary.
Tuning strategy. We ablate the design choices in the model
customization stage: (1) direct tuning the pre-trained weights
vs. training gated blocks from scratch; (2) updating visual vs.
text encoder. We report results in Table 6. First, a frozen text

IN1K COCO R@1
Method Visual Text # Train. Acc. T2I I2T

D
ir

ec
t CLIP [43] ✗ ✗ – 63.2 48.8 29.9

Locked-Image [68] ✗ ✓ 63.4M 63.7 50.5 34.2
Locked-Text ✓ ✗ 88.1M 66.9 51.1 36.1
Full-model ✓ ✓ 151.3M 64.3 54.3 37.9

G
at

ed ✗ ✓ 18.9M 63.0 49.5 33.5
Locked-Text Gated-Image ✓ ✗ 42.5M 68.6 53.4 38.1

✓ ✓ 89.8M 68.7 54.3 39.9

Table 6. Ablation: tuning strategy. For our model customization
purpose, we advocate locked-text (gated-image) tuning methods in
gray rows. ✓: trainable, ✗: locked.

encoder consistently outperforms a frozen visual encoder.
We conjecture the phenomenon is due to that the retrieved
texts have a much more limited space, comparing to text
space in the original pre-training set (e.g. LAION-400M), as
the concepts are limited to the query classes from the target
domain. Therefore, fine-tuning the text encoder may tend to
collapse the pre-trained semantic space.

We advocate two tuning methods for model customiza-
tion. Locked-text gated-image tuning has a strong adaptation
power, and is efficient in the model customization stage, with
fewer trainable parameters. Locked-text tuning is also an ef-
fective way of customizing the models to downstream tasks,
without the need of adding extra parameters. By default, we
use gated blocks for its superior performance and efficiency.

Retrieval size. We observe that training with a small re-
trieval size is more likely to overfit. We find that a larger
retrieval size generally yields better performance, and satu-
rates at around 6-10M image-text pairs.

Retrieval Size 0 1M 3M 6M 10M
ImageNet-1K Accuracy 63.2 64.8 66.9 68.6 68.6

5. Conclusion

We presented REACT, a plug-and-play framework for
leveraging large-scale image-text corpus as external knowl-
edge to efficiently customize models on downstream tasks.
Extensive experiments demonstrate its generality and effec-
tiveness in image classification, image-text retrieval, object
detection, and semantic segmentation, on more than 20 dif-
ferent downstream datasets. We highly advocate the model
customization stage for building more transferable visual
system for different downstream tasks.
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