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Abstract

Generalized few-shot semantic segmentation (GFSS)
distinguishes pixels of base and novel classes from the back-
ground simultaneously, conditioning on sufficient data of
base classes and a few examples from novel class. A typical
GFSS approach has two training phases: base class learn-
ing and novel class updating. Nevertheless, such a stand-
alone updating process often compromises the well-learnt
features and results in performance drop on base classes.
In this paper, we propose a new idea of leveraging Projec-
tion onto Orthogonal Prototypes (POP), which updates fea-
tures to identify novel classes without compromising base
classes. POP builds a set of orthogonal prototypes, each of
which represents a semantic class, and makes the prediction
for each class separately based on the features projected
onto its prototype. Technically, POP first learns prototypes
on base data, and then extends the prototype set to novel
classes. The orthogonal constraint of POP encourages the
orthogonality between the learnt prototypes and thus miti-
gates the influence on base class features when generalizing
to novel prototypes. Moreover, we capitalize on the residual
of feature projection as the background representation to
dynamically fit semantic shifting (i.e., background no longer
includes the pixels of novel classes in updating phase). Ex-
tensive experiments on two benchmarks demonstrate that
our POP achieves superior performances on novel classes
without sacrificing much accuracy on base classes. No-
tably, POP outperforms the state-of-the-art fine-tuning by
3.93% overall mIoU on PASCAL-5i in 5-shot scenario.

1. Introduction
Semantic segmentation is to assign semantic labels to

every pixel of an image. With the recent development of
CNNs [10, 13] and vision transformers [6, 18, 23, 24, 35, 41,
42], the state-of-the-art networks have successfully pushed
the limits of semantic segmentation [1, 3, 25, 49] with re-
markable performance improvements. Such achievements
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Figure 1. Comparisons between fine-tuning [26] and Projection
onto Orthogonal Prototypes (POP). In novel class updating phase,
fine-tuning (a) updates the network to predict base and novel
classes, and inevitably compromises the well-learnt representa-
tions for base classes. Instead, POP (b) only updates prototypes
for novel classes and executes predictions for each class separately
on the features projected onto different orthogonal prototypes.

heavily rely on the requirements of large quantities of pixel-
level annotations and it is also difficult to directly apply the
models to the classes unseen in the training set. A straight-
forward way to alleviate this issue is to leverage Few-shot
Semantic Segmentation (FSS) [30, 36, 44], which utilizes
the limited support annotations from unseen/novel classes
to adapt the models. Nevertheless, FSS performs on the as-
sumption that the support images and the query image con-
tain the same novel classes, and solely emphasizes the seg-
mentation of one novel class in the query image at a time. A
more practical scenario namely Generalized Few-shot Se-
mantic Segmentation (GFSS) [33] is recently presented to
simultaneously identify the pixels of base and novel classes
in a query image.

A typical GFSS solution has proceeded along two train-
ing phases: base class learning and novel class updating. In
the first phase, models are trained on abundant base classes’
annotations to classify the pixels of base categories, and
then updated with the limited labeled novel examples in
the second phase to additionally recognize pixels of novel
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classes. For instance, Myers Dean et al. [26] sample some
base data plus novel examples as the supervision to fine-
tune the network, as depicted in Figure 1(a). Despite having
good performances on novel classes, there still exists a clear
performance degradation on base classes. We speculate that
this may be the results of compromising the well-learnt fea-
tures of base classes in fine-tuning. As such, a valid ques-
tion then emerges as is it possible for GFSS to nicely gener-
alize the model to novel classes without sacrificing much
segmentation capability on base classes. In an effort to
answer this question, we seek to represent an image via a
group of uncorrelated feature components each of which
characterizes a specific class. By doing so, it is readily ap-
plicable to learn and integrate new components for novel
classes without affecting the ones learnt for base classes.

To materialize our idea, we propose a new Projection
onto Orthogonal Prototypes (POP) framework for GFSS.
POP learns a series of orthogonal prototypes and each pro-
totype corresponds to one specific semantic class. As shown
in Figure 1(b), POP employs an encoder to extract feature
maps of a given query image and then projects them onto
prototypes. The projection on each prototype is regarded
as the discriminative representation with respect to the cor-
responding class and exploited to predict the probability
map of pixels belonging to the class. More specifically,
POP deliberately devises the learning of prototypes from
three standpoints. The first one is to freeze the base pro-
totypes when learning novel ones from support images in
the updating phase. In this way, feature projections on base
prototypes maintain their discriminability of base classes.
Second, POP encourages the prototypes of base and novel
classes to be orthogonal through a prototype orthogonality
loss. Such a constraint decorrelates features projected onto
different prototypes and mitigates the inter-class confusion
caused by extending to novel classes. Finally, in view that
background no longer contains the pixels of novel classes
in updating phase, known as “semantic shifting”, POP mea-
sures the residual of feature projection as the background
representation instead of learning a prototype for “back-
ground”. This way further improves the differentiation be-
tween novel classes and background.

The main contribution of this work is the proposal of a
Projection on Orthogonal Prototypes (POP) framework for
generalized few-shot semantic segmentation. The solution
also leads to the elegant views of how to adapt the trained
model to novel classes without sacrificing well-learnt fea-
tures, and how to represent background pixels dynamically
in the context of semantic shifting, which are problems not
yet fully explored in the literature. We demonstrate that
POP outperforms the state-of-the-art fine-tuning [26] on
two benchmarks (PASCAL-5i and COCO-20i) with evident
improvements on both base and novel classes.

2. Related Work
Semantic Segmentation. Extensive FCN-based methods
have been proposed and achieved remarkable performances.
For example, pyramid pooling [12, 48, 50] and parallel di-
lated convolutions [1, 2, 46, 47] are utilized to aggregate
multi-scale context. The attention mechanism is widely ex-
ploited to model long-range dependencies [8, 14, 17, 21, 43,
45, 51]. Recently, vision transformer has also been proven
effective for semantic segmentation [3, 32, 39]. Though
these efforts lead to high-quality segmentation, it is still dif-
ficult to directly apply the learnt models to unseen classes.
Few-shot Semantic Segmentation. Few-shot semantic
segmentation (FSS) [30] executes pixel-wise labeling on
new classes given a limited number of support examples.
It mainly focuses on the 1-way scenario that requires binary
maps for query images to identify the pixels belonging to
the class labeled in support images. PL [5] and PANet [36]
remould prototype learning for FSS by calculating the co-
sine similarities between pixels and prototypes obtained
from support images. ASR [20] learns several orthogonal
prototypes on the base data to represent novel categories. In
addition, assigning multiple prototypes to each class is also
a promising solution to improve FSS models [16,22,38,40].
Generalized Few-shot Semantic Segmentation. Despite
showing great potential, it is not trivial for FSS approaches
to simultaneously identify the pixels of both base and novel
classes in a query image. Generalized Few-shot Semantic
Segmentation (GFSS) is further presented by Tian et al. [33]
to address this problem. GFSS aims to segment both base
and novel classes from query images through one infer-
ence process without paired support images. To achieve this
goal, CAPL [33] mines contextual cues from both support
and query samples to enrich the classifier for novel class
segmentation. Fine-tuning [26] is another practical and ef-
fective way to adapt models for novel classes.
Orthogonality. Feature orthogonality is known to be help-
ful to improve discriminative ability. DSN [31] constrains
the orthogonality on base data to facilitate few-shot classi-
fication on novel classes. C-FSCIL [11] and OPL [29] rely
on re-training the network to keep the features of each class
orthogonal. Nevertheless, these approaches are not applica-
ble for GFSS since they either ignore the influence between
base and novel classes or compromise the segmentation ca-
pability on base classes after re-training.

Our work focuses on adapting the semantic segmenta-
tion model to novel classes without compromising well-
learnt features for better generalization. Different from ex-
isting GFSS approaches may sacrifice base class segmenta-
tion quality for novel class updating, our POP contributes
by studying not only learning orthogonal prototypes to in-
dependently indicate pixels of base and novel classes, but
also how the background could be nicely represented in the
context of semantic shifting.
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Figure 2. An overview of our Projection onto Orthogonal Prototypes (POP) framework for generalized few-shot semantic segmentation.
The input image is first encoded into dense feature map via a CNN encoder, which is then projected onto a series of orthogonal prototypes to
make prediction of each class independently through a shared classifier. In the base class learning phase, the entire network and prototypes
for base classes are learnt on sufficient base data. In the second phase of novel class updating, we freeze all the modules learnt in the first
phase and only optimize the newly minted prototypes for novel classes along with an additional classifier for novel classes and background
class. As such, the proposed POP generalizes well to novel classes while maintaining the segmentation capability on base classes.

3. Our Method

In this paper, we devise Projection onto Orthogonal Pro-
totypes (POP) framework for generalized few-shot seman-
tic segmentation (GFSS), by decoupling the feature learn-
ing of base classes and novel classes. Figure 2 illustrates an
overview of the whole architecture of POP. We begin this
section by elaborating the problem formulation of GFSS
with the two-phase training scheme. Then, a projection-
based framework is introduced to learn class-wise orthog-
onal prototypes, and extract the residual representation as
background descriptor. Finally, we present the overall ob-
jective combining orthogonal constraint along with the se-
mantic segmentation loss.

3.1. Problem Formulation

In generalized few-shot semantic segmentation, we are
given abundant annotated images for M base classes Cb =
{c1, . . . , cM} and only K labeled images per class for N
novel classes Cn = {cM+1, . . . , cM+N}. The background
category c0 presents the pixels that do not belong to any tar-
get classes. The goal of this task is to simultaneously dis-
tinguish both base and novel classes from backgrounds, i.e.,
M + N + 1 classes in total. Inspired by recent success of
two-phase training scheme in generalized few-shot seman-
tic segmentation [26,33], we formulate our POP framework
in two-phase manner: base class learning and novel class

updating. Accordingly, POP is first trained with sufficient
data for (M +1)-class segmentation (Cb∪{c0}) in the first
phase, and then updates the segmentation head with the few-
shot support data targeting for pixel-wise prediction of all
M +N + 1 classes (Cb ∪Cn ∪ {c0}) in the second phase.

3.2. Projection onto Orthogonal Prototypes

GFSS necessitates the capability to segment both base
and novel classes. In this case, the novel updating pro-
cess should learn and integrate new components for novel
classes without affecting the ones learnt for base classes.
However, the existing approaches [26, 33] in this area still
show obvious performance degradation on base classes in
the second phase. They often suffer from a challenge of
whether to drastically overhaul the network for the perfor-
mance on novel classes or preserve the well-learnt represen-
tation for base classes. We attribute this issue to the highly-
relevant representations to identify different classes, which
interfere with each other when integrating novel classes.

To fulfill the objective of decoupling the feature learning
of base classes and novel classes, we propose to orthogo-
nally decompose the feature map into several uncorrelated
components, each of which characterizes a specific class.
Formally, we denote the dense feature map from the en-
coder network as f ∈ R(H×W )×C , where H , W and C are
the height, the width and the number of channels of feature
map, respectively. Assuming the matrix rank of extracted
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features is r (r ≤ C), the feature map f can be represented
as the weighted summation of r orthogonal bases as:

f =

r∑
i=1

f (i) · ui,

s.t. ui · uj
T = 0 (i ̸= j),

(1)

where {ui ∈ R1×C |i=1...r} is a group of unit bases that
are orthogonal to each other, and f (i) ∈ R(H×W )×1 is the
weight map of the i-th component. This process is well
known as orthogonal decomposition, and widely explored
for Independent Component Analysis (ICA) [4]. In our
work, we treat the basis ui as the prototype of the i-th class
and the corresponding component f (i) · ui as the represen-
tation to identify the pixels of the i-th class. As such, cal-
culating the representation of the i-th class is equivalent to
projecting f to the i-th basis ui:

f ci = f (i) · ui = (f · ui
T ) · ui, (2)

where f ci is the representation the of the i-th class and is
then taken as the input of a shared classifier. In view that
the learnt prototypes are orthogonal to each other, the rep-
resentations of different classes are decorrelated and easy
to be distinguished. More importantly, when integrating a
new target class, we only need to learn a new prototype that
is orthogonal to the existing ones, thereby preserving the
well-learnt representations of other classes.

Nevertheless, the limit of prototype orthogonality (i.e.,
ui · uj

T = 0) is not differentiable and hard to be imple-
mented by gradient propagation. Hence, we present a prac-
tical alternative to relax the hard limit to a soft orthogonal
constraint. Specifically, a prototype orthogonality loss is
devised by minimizing absolute value of the inner product
between prototypes:

Lorth =
1

r′(r′ − 1)

∑
i ̸=j

|ui · uj
T |, (3)

where r′ < r is the number of target classes. The orthogo-
nality loss Lorth restricts the averaged correlation of differ-
ent prototype pairs, and is minimized when the prototypes
are orthogonal to each other.

3.3. Residual as Background Representation

The background class c0 is a special category in segmen-
tation tasks, and indicates the pixels that do not belong to
any target classes. One common practice is to treat target
classes and background class equally, which reaches rea-
sonable performances on various segmentation tasks. How-
ever, such a simple strategy is not acclimatized to GFSS
task due to the effect of the “semantic shifting” between two
phases. More precisely, in the first phase, the pixels of both

novel classes Cn and background class c0 are labeled as
background. When integrating novel classes in the second
phase, the semantic meaning of background changes since
it no longer includes the pixels of novel classes. We regard
this gap as semantic shifting of background, which results in
the confusion between novel classes and background class.

In order to bridge the gap between two phases, we pro-
pose to exploit the residual of feature projection as the back-
ground representation in POP, instead of constructing an in-
dependent prototype. The residual here is defined as the
summation of remaining components after projecting f to
the target classes. For instance, in the base class learning
phase, the first M components in Eq.(1) are the projections
for M base classes and the remaining r − M components
are background components:

f =

M∑
i=1

f (i) · ui︸ ︷︷ ︸
base classes

+

r∑
i=M+1

f (i) · ui︸ ︷︷ ︸
background

.
(4)

Note that the background here actually includes the pixels
of novel and background classes. In view of the difficulty
on learning the remaining r−M components, we reformu-
late the background representation as the residual of feature
projection by subtracting the components of bases classes:

f c0 =

r∑
i=M+1

f (i) · ui = f −
M∑
i=1

f (i) · ui, (5)

where f c0 is orthogonal to the feature f ci of each class
ci due to the orthogonality constraint between prototypes.
Moreover, this reformulation avoids the estimation of ma-
trix rank r, which is more practical.

For the novel class updating phase, the background com-
ponents in Eq. (4) are separated into two parts, i.e., N com-
ponents for N novel classes and r−M −N components as
the updated background representation. The decomposition
of feature f in this phase is represented as

f =

M∑
i=1

f (i) · ui︸ ︷︷ ︸
base classes

+

M+N∑
i=M+1

f (i) · ui︸ ︷︷ ︸
novel classes

+

r∑
i=M+N+1

f (i) · ui︸ ︷︷ ︸
background

.

(6)
Similar to Eq.(5), the updated background representation is
measured by the residual of feature projection to base and
novel classes:

f c0 = f −
M∑
i=1

f (i) · ui −
M+N∑
i=M+1

f (i) · ui. (7)

In this way, the background representation is dynamically
adjusted with respect to the change of target classes. It re-
mains orthogonal to the representations of both base classes
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and novel classes, such that the confusion between novel
classes and background class is alleviated.

3.4. Optimization

Following the common practice [26, 33], the optimiza-
tion of our POP framework contains two phases: base class
learning and novel class updating.

Base class learning. In the first phase, the entire net-
work is trained on sufficient base data to optimize the en-
coded representations and segment base classes. The over-
all training objective function of POP combines the seman-
tic segmentation loss of base classes and the orthogonality
loss between prototypes: L = Lseg + λLorth, where Lseg

denotes the cross entropy loss for segmentation and λ is a
scale factor of the orthogonality loss.

Novel class updating. The second phase involves the
K-shot support data of novel classes and expands the set of
target classes. We freeze all the modules learnt in the first
phase and only optimize the newly constructed prototypes
for novel classes along with an additional classifier for novel
classes and background class. The loss function is the same
as that in the first phase (i.e., L = Lseg + λLorth), and the
orthogonality loss Lorth is utilized over the prototypes of
both base classes and novel classes.

Data enrichment. The second phase demands the train-
ing images of both base and novel classes. As a result
of highly unbalanced data between base classes and novel
classes, simply merging the two training sets leads to poor
performance on novel classes. Inspired by the fine-tuning
approaches [26,37], we establish a balanced training subset
by randomly sampling K examples per base class. Such a
subset in the second phase has been proven to be effective
for partially retraining the knowledge of base classes while
integrating novel classes [26, 37]. Besides, we further pro-
mote the subset by two data enrichment strategies:

1) Relabeling. Recall that there is semantic shifting
problem between two training phases. In the training im-
ages of base classes, the pixels of novel classes are labeled
as background. Such annotation misleads the network opti-
mization in the second phase. Therefore, after each epoch,
we utilize the latest POP model to relabel the background
pixels in the image of base classes, and replace the back-
ground annotation with the class with the highest predicted
probability across the novel classes and background class.

2) Resampling. The subset only selects a few samples
from the images of base classes. It underuses the large
amount of training data, and makes the network sensitive
to the choice of few-shot samples. Hence, we propose
to resample the training images of base classes after each
epoch. This strategy, on one hand, well balances the num-
ber of training images for different classes, and on the other,
makes full use of the entire base training set.

4. Experiments
We empirically verify the merit of our POP by conduct-

ing a thorough evaluation of generalized few-shot semantic
segmentation on PASCAL-5i [30] and COCO-20i [27].

4.1. Datasets and Experimental Settings

Datasets. The PASCAL-5i [30] is built on the PAS-
CAL VOC 2012 [7] dataset with the extended annotations
of SDS [9], and contains 12,031 images with high-quality
pixel-level annotations of 20 classes. All the images are
split into two sets of 10,582 and 1,449 for training and
validation, respectively. Following the standard protocol
in [30,33], the 20 classes are evenly partitioned into 4 folds
(5 classes per fold) for cross-validation. Furthermore, we
evaluate the capability of our POP on a more challeng-
ing COCO-20i [27] dataset. COCO-20i is created upon
COCO [19] , and includes 122,218 images being annotated
with 80 object classes. In between, 82,081 and 40,137 im-
ages are exploited for training and validation. Similarly,
experiments on COCO-20i are also conducted with cross-
validation on 4 folds (20 classes per fold) following [27,33].

Evaluation Settings. For both datasets, once we vali-
date the model on one fold, the classes in this fold serve
as “novel classes” and the classes in the other 3 folds plus
background play the role of “base classes”. In the base class
learning phase, we select all images that have at least one
pixel belonging to base classes from the original training
set for model training. Note that the pixels of novel classes
in the selected images are considered as background at this
stage. In the novel class updating phase, we mimic the few-
shot setting by randomly sampling K images containing
pixels of novel classes from the original training set. All
the images in the validation set are utilized for the evalu-
ation on both base and novel classes. In the experiments,
the Intersection over Union (IoU) per class and mean IoU
(mIoU) over the base, novel, and all classes are adopted as
the performance metrics. We average the mIoU over all the
folds for cross-validation and regard the mean values as the
final performance. For stability, we repeat each experiment
five times with different random seeds and report the mean
values. The same setting is also exploited in [26, 33].

Network Structure. In order to make the capacity of our
model comparable to the baselines of generalized few-shot
semantic segmentation, we follow [33] and exploit the PSP-
Net [50] originated from the ImageNet pre-trained ResNet-
50 as the encoder. The spatial resolution of the feature map
extracted through the encoder is 1

8 of the input image and
the probability maps produced by POP are upsampled via
bilinear interpolation for pixel-level predictions. The num-
ber of prototypes depends on the datasets. For PASCAL-
5i [30], POP has 15 prototypes in the base class learning
phase, and then 5 prototypes are additionally included for
novel class updating. Similarly, POP maintains 60 and 80
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Table 1. Performance comparisons on PASCAL-5i under the generalized few-shot segmentation settings. We report mIoU (%) over base
classes (Base), novel classes (Novel), and all classes (Base + Novel = Total). All models are based on ResNet-50. † indicates that the
images containing novel classes are excluded by base class learning phase.

Methods
1-shot 5-shot 10-shot

Base Novel Total Base Novel Total Base Novel Total

CANet [44] 8.73 2.42 7.23 9.05 1.52 7.26 - - -
PFENet [34] 8.32 2.67 6.97 8.83 1.89 7.18 - - -
PANet [36] 31.88 11.25 26.97 32.95 15.25 28.74 - - -
BAM [15] 73.62 32.96 63.94 73.57 34.35 64.23 - - -

CAPL† [33] 65.48 18.85 54.38 66.14 22.41 55.72 69.09 27.17 59.11
FT [26] 66.84 18.82 55.41 72.03 46.40 65.93 73.02 52.55 68.14
FT-Triplet [26] 66.41 19.71 55.31 71.31 50.46 66.35 72.87 57.00 69.10

POP† 67.73 19.85 56.45 71.34 43.48 64.71 72.23 50.49 67.05
POP 73.92 35.51 64.77 74.78 55.87 70.28 74.99 58.77 71.13

Table 2. Performance comparisons on COCO-20i under the generalized few-shot segmentation settings. Models are based on ResNet-50.

Methods
1-shot 5-shot 10-shot

Base Novel Total Base Novel Total Base Novel Total

CAPL† [33] 44.61 7.05 35.46 45.24 11.05 36.80 45.51 10.82 36.95
FT [26] 43.42 8.94 34.90 47.18 24.72 41.63 48.18 30.03 43.70
FT-Triplet [26] 43.64 9.23 35.14 46.61 28.84 41.36 46.61 34.49 43.27

POP† 47.09 7.27 37.26 48.61 20.07 41.56 49.13 26.48 43.54
POP 54.71 15.31 44.98 54.90 29.97 48.75 55.01 35.05 50.08

prototypes in two training phases on COCO-20i, respec-
tively. The dimension of the prototypes is set as 512.

Training Strategy. Our POP is implemented on Py-
Torch [28]. The mini-batch stochastic gradient descent with
momentum 0.9 and weight decay 0.0001 is exploited to op-
timize the model. During the base class learning, the initial
learning rate is set to 0.01 which is annealed down to zero
following a “poly” policy whose power is fixed to 0.9. The
batch size is set as 8 for both datasets and the training of
each model takes 50 epochs. For novel class updating, we
update the model with a fixed learning rate 0.01 for 500
epochs, and the batch size is set as 2 and 8 for PASCAL-
5i and COCO-20i, respectively. For data augmentation,
we employ the 473 × 473 patches randomly cropped from
the random scaled images. Each patch is randomly flipped
along horizontal direction. The trade-off parameter λ is set
as 10 empirically.

Baseline Approaches. We compared the following ap-
proaches: (1) CAPL [33] capitalizes on the contextual co-
occurrence cues to enrich the prototypes in the classifier for
novel class segmentation. (2) FT [26] directly fine-tunes
the model on some sampled data from base classes plus
novel examples for novel class updating. Moreover, we
also report the setting of FT which additionally leverages
a triplet loss regularization to augment the learnt models.
(3) Following [33], we form a prototype for each class by
averaging features of pixels belonging to the correspond-
ing class in all training images and utilize prototypes to

segment the query image. By doing so, we can remould
the three prototype-based FSS approaches of CANet [44],
PFENet [34] and PANet [36] for GFSS. The reported results
are directly drawn from [33]. (4) BAM [15] is an FSS model
that segments all base classes and one novel class through
one inference process. To adapt for GFSS, we execute mul-
tiple inferences each of which takes the query image and
support images of one novel class as the inputs. Follow-
ing [15], we fuse the model outputs as the final prediction.

4.2. Performance Comparison

Quantitative Analysis. We compare with several
state-of-the-art techniques on PASCAL-5i and COCO-20i

datasets. Table 1 summarizes the mIoU performances
of capitalizing on different number of shots (K-shot) on
PASCAL-5i. Overall, the results across three K-shot set-
tings consistently indicate that our POP successfully adapts
the models for novel classes and achieves the better perfor-
mances than other baselines including the remoulded FSS
methods and GFSS approaches. In particular, the mIoU
of POP on all classes, i.e., Total, reaches 64.77%, 70.28%
and 71.13% on 1-shot, 5-shot and 10-shot scenarios, re-
spectively, making the absolute gain over the best competi-
tors by 0.83%, 3.93%, and 2.03%. CAPL, FT and POP
generally exhibit higher mIoU against the reshaped FSS
approaches of CANet, PFENet and PANet. This some-
what reveals the weakness of the episodic training/testing
scheme of FSS, which once only distinguishes pixels be-
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Figure 3. Twelve examples of semantic segmentation from PASCAL-5i by POP and the state-of-the-art FT method under 5-shot setting.

longing to one specific class by abstracting the knowledge
of such class from support images. As such, FSS models
result in inferior performances for GFSS, where the models
necessitate to identify novel classes and all possible base
classes simultaneously. BAM in part alleviates the limita-
tion of FSS scheme by additionally employing a base class
segmentation branch, that is pre-trained on base data and
frozen when FSS training to refine the predictions of novel
classes. As such, adapting BAM to GFSS can segment the
base classes well and yield good performances.

Compared to GFSS models of CAPL and FT in which
the segmentation of base classes may be affected by novel
class updating, POP improves the segmentation quality of
base classes. The results basically indicate the advantage
of freezing the well-learnt representations of base classes
in model updating. On novel classes, the mIoU of POP is
35.51% in 1-shot scenario and further increased to 55.87%
when knowing 5 labeled images (5-shot) for each category.
As a good performer in 1-shot setting, BAM benefits from
the frozen base representations and a well-tuned base-novel
fusion strategy. Nevertheless, BAM still suffers from inter-
class confusion and is inferior to POP, especially when hav-
ing more available novel examples. The results in general
verify the impact of learning orthogonal prototypes in POP.
Please note that for a fair comparison, we follow CAPL [33]
and also implement POP with the dataset filtration that ex-
cludes the images containing pixels of novel classes in base
class learning phase. We denote such run as POP†. POP†

constantly outperforms CAPL across different few-shot set-
tings, demonstrating the effectiveness of representing an
image via a group of uncorrelated features by POP.

Table 2 details the performance comparisons of 1-shot,
5-shot and 10-shot experiments on COCO-20i dataset. Sim-
ilar to the observations on PASCAL-5i, POP surpasses the
best-performing baseline FT-Triplet on 5-shot by 8.29%,
1.13% and 7.39% in terms of mIoU on base, novel and

all classes, respectively. Furthermore, POP obtains better
segmentation quality on base classes against other methods
across different k-shot settings. The results again empiri-
cally validate our proposal.

Qualitative Analysis. Figure 3 showcases twelve se-
mantic segmentation examples in PASCAL-5i, by our POP
and the state-of-the-art FT [26] method under 5-shot setting
of GFSS. Clearly, POP attains much more promising seg-
mentation results. Taking the query images in the first three
columns on the left as the examples, POP nicely identifies
the novel class “Person”, but FT fails to recognize this cat-
egory. Moreover, the novel class “Dog” in the fourth exam-
ple on the left is well segmented by both models and POP
distinguishes the base class of “Sofa” more precisely.

4.3. Experimental Analysis

Evaluation on POP Designs. We first examine the per-
formance contribution of different factors in POP. In be-
tween, PRO projects the features on the learnt prototypes to
predict the class of each pixel and base prototypes are frozen
when learning novel ones in the updating phase. ORT fur-
ther encourages the orthogonality between prototypes of
different classes to alleviate inter-class confusion. RES is
our residual background representation that measures the
residual of feature projection to categorize background pix-
els rather than learn a prototype for “background”.

Table 3 shows the mIoU improvement on the PASCAL-
5i dataset by considering one more factors in POP for
GFSS. Note that the data enrichment strategies are not em-
ployed in the experiments here. We start from the basic
run of FT [26] that capitalizes on the same features to clas-
sify the pixels of base and novel classes in the images.
PRO successfully boosts up the total mIoU performance
from 55.41% to 59.59% under 1-shot setting and introduces
5.53% mIoU improvement on base classes. This basically
proves that PRO is a very effective and practical way for
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Table 3. Ablation studies of POP on PASCAL-5i. PRO represents
segmentation via feature projection on learnt prototypes. ORT de-
notes the orthogonality constraint on prototypes. RES means that
the background is represented by residual of feature projection.

PRO ORT RES
1-shot 5-shot

Base Novel Total Base Novel Total

- - - 66.84 18.82 55.41 72.03 46.40 65.93
✓ - - 72.37 18.71 59.59 73.39 46.99 67.10
✓ ✓ - 72.82 23.65 61.11 73.76 50.69 68.27
✓ ✓ ✓ 73.11 32.29 63.39 74.32 53.46 69.36

Table 4. Ablation studies of data enrichment strategies for novel
class updating on PASCAL-5i. RL denotes relabeling which pro-
vides pseudo labels for background pixels in images of base data.
RS represents the resampling strategy that randomly selects differ-
ent base data for each epoch of novel class updating.

RL RS
1-shot 5-shot

Base Novel Total Base Novel Total

- - 73.11 32.29 63.39 74.32 53.46 69.36
✓ - 73.10 35.08 64.04 74.39 54.81 69.73
- ✓ 72.86 27.74 62.12 74.31 52.12 69.03
✓ ✓ 73.92 35.51 64.77 74.78 55.87 70.28

GFSS to generalize the model to novel classes without sac-
rificing much accuracy on base classes. The performance
gain of ORT is 0.45% and 4.94% in terms of mIoU on
base and novel classes, respectively. The results verify the
idea of learning orthogonal prototypes for feature projec-
tion. Measuring the residual of feature projection as back-
ground representation by RES further contributes a mIoU
increase of 8.64% and 2.77% on novel classes in 1-shot and
5-shot settings. That empirically manifests the superiority
of RES to dynamically fit semantic shifting in GFSS.

Evaluation on Data Enrichment. To better study the
contribution of each design in data enrichment, we then
conduct the comparisons on POP configured with differ-
ent enrichment strategies. Table 4 lists the results of both
1-shot and 5-shot scenarios. In particular, relabeling the
background pixels in base samples leads to over 1% mIoU
improvements on novel classes. The results indicate that
assigning pseudo labels to novel class pixels in base data
could refine noisy background labels and ease the prototype
learning for novel classes. The performance gain tends to
be larger when updating the model on more base data via
resampling. The performance however drops if solely us-
ing resampling. We speculate that this may be the result of
involving more novel class pixels which may be incorrectly
regarded as background due to semantic shifting.

Confusion Matrix Visualization. Figure 4 depicts the
confusion matrices of FT and POP under 5-shot scenario
on the second fold of PASCAL-5i. We visualize the ma-
trix after each training phase and highlight the difference in

Base class learning
(Phase1)

Novel class updating
(Phase2)

Difference
(Phase2-Phase1)

Base: 72.91 % 
Novel: --

Base: 68.37 % 
Novel: 45.50%

Base: -4.54 % 
Novel: +45.50%

Base: 72.92 % 
Novel: --

Base: 72.79 % 
Novel: 63.36%

Base: -0.13 % 
Novel: +63.36%
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Figure 4. The difference of confusion matrices between two train-
ing phases. Compared to FT, POP obtains higher novel class per-
formance after novel class updating without sacrificing much ac-
curacy on base classes learnt in base class learning.

between. After the first phase of base class learning, both
models achieve over 72.9% mIoU on base classes. Through
the second phase of novel class updating, the mIoU on novel
classes is 45.50% by FT but the performance decreases to
68.37% on base classes. In contrast, POP reaches 63.36%
mIoU on novel class with only 0.13% mIoU drop on base
classes. That again validates the good property of POP to
identify novel classes without compromising base ones.

5. Conclusion
We have presented Projection onto Orthogonal Proto-

types (POP) framework, which explores a principled way
to generalize the model to novel classes without sacrificing
much segmentation capability on base classes for GFSS. In
particular, we study the problem by learning a group of pro-
totypes and each represents a semantic class, thereby pre-
dicting each class separately with respect to the projections
on its prototype. Technically, POP learns prototypes first
on base classes and then updates the prototypes to support
novel classes, with orthogonal constraint. Moreover, POP
measures the residual of feature projection as the back-
ground representation to better mitigate semantic shifting.
Experiments conducted on two datasets of PASCAL-5i and
COCO-20i validate our proposal and analysis. Performance
improvements are observed when comparing to both GFSS
and remoulded FSS techniques.
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