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Abstract

Learning-based video compression has been extensively
studied over the past years, but it still has limitations in
adapting to various motion patterns and entropy models.
In this paper, we propose multi-mode video compression
(MMVC), a block wise mode ensemble deep video com-
pression framework that selects the optimal mode for fea-
ture domain prediction adapting to different motion pat-
terns. Proposed multi-modes include ConvLSTM-based fea-
ture domain prediction, optical flow conditioned feature do-
main prediction, and feature propagation to address a wide
range of cases from static scenes without apparent mo-
tions to dynamic scenes with a moving camera. We parti-
tion the feature space into blocks for temporal prediction
in spatial block-based representations. For entropy coding,
we consider both dense and sparse post-quantization resid-
ual blocks, and apply optional run-length coding to sparse
residuals to improve the compression rate. In this sense, our
method uses a dual-mode entropy coding scheme guided by
a binary density map, which offers significant rate reduc-
tion surpassing the extra cost of transmitting the binary se-
lection map. We validate our scheme with some of the most
popular benchmarking datasets. Compared with state-of-
the-art video compression schemes and standard codecs,
our method yields better or competitive results measured
with PSNR and MS-SSIM.

1. Introduction
Over the past several years, with the emergence and

booming of short videos and video conferences across the
world, video has become the major container of informa-
tion and interaction among people on a daily basis. Conse-
quently, we have been witnessing a vast demand increase on
transmission bandwidth and storage space, together with the
vibrant growth and discovery of handcrafted codecs such
as AVC/H.264 [23], HEVC [23], and the recently released

*Equally contributed authors.

VVC [22], along with a number of learning based meth-
ods [1, 7, 9, 11, 12, 15–17, 21, 27, 30, 31].

Prior works in deep video codecs have underlined the
importance of utilizing and benefiting from deep neural net-
work models, which can exploit complex spatial-temporal
correlations and have the ability of ‘learning’ contextual and
motion features. The main objective of deep video com-
pression is to predict the next frame from previous frames
or historical data, which results in the reduction of amount
of residual information that needs to be encoded and trans-
mitted. This has so far led to two directions: (1) to build ef-
ficient prediction or estimation models, and extract motion
information by leveraging the temporal correlation across
the frames [1, 9, 16, 31]; (2) to make accurate estimation
of the distribution of residual data and push down the in-
formation entropy statistically by appropriate conditioning
[7, 11, 30]. The existing works usually fall in one or a com-
bination of the above two realms. In the light of learning
capability that deep neural networks can offer, we argue and
demonstrate in this work that some measures of adaptively
selecting the right mode among different available models
in the encoding path can be advantageous on top of the ex-
isting schemes, especially when the adaptive model selec-
tion is applied at the block level in the feature space.

Drawing wisdom from conventional video codec stan-
dards that typically address various types of motions (in-
cluding the unchanged contextual information) in the unit of
macroblocks, we present a learning-based, block wise video
compression scheme that applies content-driven mode se-
lection on the fly. Our proposed method consists of four
modes targeting different scenarios:

• Skip mode (S) aims to utilize the frame buffer on the
decoder and find the most condensed representation to
transmit unchanged blocks to achieve the best possi-
ble bitrate. This mode is particularly useful for static
scenes where same backgrounds are captured by a
fixed view camera.

• Optical Flow Conditioned Feature Prediction mode
(OFC) leverages the temporal locality of motions. In
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Figure 1. Overview of our proposed multi-mode video coding method. The current and previous frames are fed into the feature extractor
and then go through branches of prediction modes followed by residual channel removal, quantization, and entropy coding process. We
then select the optimal prediction and entropy coding schemes for each block that lead to the smallest code size.

this mode, we capture the optical flow [24] between the
past two frames, and the warped new frame is treated
as a preliminary prediction to the current frame. This
warping serves as the condition to provide guidance to
the temporal prediction DNN model.

• Feature Propagation mode (FPG) applies to blocks
where changes are detected, but there is no better pre-
diction mode available. This mode copies the previ-
ously reconstructed feature block as the prediction, and
encodes the residual from there.

• For other generic cases, we propose the Feature Pre-
diction mode (FP) for feature domain inter-frame pre-
diction with a ConvLSTM network to produce a pre-
dicted current frame (block).

Prior to the mode selection step, The transmitter pro-
duces the optimal low-dimensional representation of each
frame using a learned encoder and decoder pair based on
the image compression framework in [14] for the mapping
from pixel to feature space. The block by block difference
between the previous frame and the current frame repre-
sents the block wise motion. Unlike some state-of-the-art
video compression frameworks that separately encode mo-
tions and residuals, our method does not encode the motion
as it is automatically generated by the prediction using the
information available on both the transmitter and receiver.
To adapt to different dynamics that may exist even within
a single frame for different blocks, our method evaluates

multiple prediction modes that are listed above at the block
level. As a result, we can always obtain residuals that have
the highest sparsity thereby the shortest code length per
block. Furthermore, we propose a residual channel remov-
ing strategy to mask out residual channels that are inessen-
tial to frame reconstruction, exploiting favorable tradeoffs
between noticeably higher compression ratio and negligible
quality degradation.

Technical contributions of this work are summarized as
follows:

• We present MMVC, a dynamic mode selection-based
video compression approach that adapts to different
motion and contextual patterns with Skip mode and
different feature-domain prediction paths in the unit of
block.

• To improve the residual sparsity without losing much
quality while minimizing the bitrate, we propose a
block wise channel removal scheme and a density-
adaptive entropy coding strategy.

• We perform extensive experiments and a compara-
tive study to showcase that MMVC exhibits supe-
rior or similar performance compared to state-of-the-
art learning-based methods and conventional codecs.
In the ablation study, we show the effectiveness of
our scheme by quantifying the utilization of different
modes that varies by video contents and scenes.
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2. Related Works
2.1. Learned Video Compression

Pioneering works in learned video compression gener-
ally inherit the concept and methodology in conventional
codecs. Wu et al. [27] propose to hierarchically interpo-
late the frames between a predefined interval, where both
the forward and backward motions are represented by block
motion vectors. DVC [16] and Agustsson et al. [1] adopt
optical flow based motion estimation and warping schemes.
Habibian et al. [7] map a patch of frames with 3D spatial-
temporal convolutions to a lower-dimensional space and
make temporal predictions on the prior distribution through
GRU. With the progress in designing autoencoder-based
feature extraction and reconstruction as a stepping stone,
recent works have achieved better performance by perform-
ing motion prediction or estimation in the feature domain
(as opposed to the pixel domain), which naturally represents
both motion and residual in a more information-dense form
to benefit compression. FVC [9] learns a feature space off-
set map as motion representation, and the motion compen-
sation step is accomplished by deformable convolution [6].

2.2. Mode Selection and Channel Removal

As a widely adopted tool in the conventional video cod-
ing standards, the idea of mode selection intends to evaluate
different schemes on the fly to address the inter-frame tem-
poral correlations in a context-dependant manner. Based
on this concept, Ladune et al. [10] proposes a network that
learns the pixel wise weighting to determine whether or not
to skip encoding the respective pixel. Hu et al. [8] presents a
hyper-prior guided mode selection scheme that compresses
motion in different resolutions, and it uses a learned mask
to skip the encoding of some residual features.

2.3. Entropy Coding

Most existing works in learned video coding adopt a
learned entropy coding scheme as presented in [3] origi-
nally for image compression to facilitate end-to-end rate-
distortion optimization. This method then evolved to pro-
vide more flexible and accurate entropy modeling by learn-
ing the distribution parameters [4, 19]. Additionally for
video sequences, incorporating temporal cues to obtain
more accurate entropy estimation can lead to higher com-
pression gains. RLVC [30] proposed a probability model
that approximates the distribution of encoded residuals to a
parameterized logistic distribution, conditioned on the fea-
ture of previous frames propagated under a recurrent setup
to establish a richer temporal prior. With a similar insight,
DCVC by Li et al. [11] proposes building an entropy model
with temporal conditions. Recently, Mentzer et al. [17]
introduce a novel transformer-based framework that estab-
lishes a temporally conditioned entropy model and abstracts

all decorrelation efforts by one-shot model execution.

2.4. Quantization and Channel Removal

Adjusting the bin size or quantization granularity is a
technique to address the uneven redundancy between chan-
nels, allowing the content of greater importance to occupy
more quantized bits and the rest with less bits for the max-
imum quality under a similar bitrate. Cui et al. [5] pro-
pose scaling the residual feature with learned channel wise
factors before quantization and inverse-scaling before re-
construction as an effective way of rate adaptation. In our
work, to simplify the datapath but still benefit from the same
concept, a channel wise binary masking (0 or 1 scaling) is
applied to remove disposable channels in the feature blocks
when it offers a favorable tradeoff in the achievable rate vs.
quality.

3. Method
We denote the original temporal sequence of raw frames

as the set X = {x1, x2, · · · , xt−1, xt, · · · }. Corre-
spondingly, on the receiver (and also on the transmitter),
the reconstructed previous frames are available as x̂ =
{x̂1, x̂2, · · · , x̂t−1}. The whole system flow of our pro-
posed video compression scheme, MMVC, is shown in Fig-
ure 1. The system can be divided into four main parts: fea-
ture extraction, temporal prediction, channel removal, and
quantization plus entropy coding. We introduce and specify
each part in later subsections.

3.1. Pixel Space Preprocessing

As an initial step, MMVC partition two consecutive
frames into k × k blocks and calculate the block wise dif-
ferences to form n = {n1,2, n2,3, · · · , nt−1,t, · · · }, where

ni,jt−1,t = ∥xi,jt−1 − xi,jt ∥22, i, j ∈ {1, · · · , k}, (1)

and the superscripts i, j denote the 2D position of a block.
At each time step, we examine the numerical values in the
block wise difference. The blocks with all-(near)zero dif-
ferences are encoded using the Skip mode, where only the
block (positional) index information is recorded and trans-
mitted. With an algorithm parameter ϵ ≈ 0, this step gen-
erates a binary mask m = {m1,2,m2,3, · · · ,mt−1,t, · · · }
each of k × k elements, where

mi,j
t−1,t =

{
0, ni,jt−1,t < ϵ,
1, otherwise.

(2)

The unchanged blocks are masked out, indicating that no
prediction will be performed and no residual will be stored.
Instead, they can be recovered directly from the previously
reconstructed frames by copying their pixel blocks at the
corresponding positions.
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To capture the pixel level motion information and uti-
lize its temporal locality, we obtain the optical flow [24]
O(·) between the previous two reconstructed frames (e.g.,
x̂t−2, x̂t−1) and warp it to the latter one to form a set
{x̄2, · · · , x̄t} that is commonly available on both the trans-
mitter and the receiver. This step can be described as:

x̄t = warp(O(x̂t−2, x̂t−1), x̂t−1). (3)

3.2. Feature Extraction

To this point, the pixel space preparation and optical flow
based warping are accomplished. To extract rich features
across the frames in a compact representation, we train a
set of auto-encoders together with an entropy modeling net-
work to achieve different rate-distortion trade-off points.
Given a trained encoder E(·) and decoder pair D(·), each
raw frame xt is encoded to an optimal feature set foptt using
a back-propagation based iterative scheme [14] that refines
the one-shot encoding output ft = E(xt) through a cou-
pled decoder D(·) to obtain foptt by minimizing the MSE
distortion:

foptt = argmin
ft

d(xt, D(ft)). (4)

Note that foptt is only available at the transmitter since
the raw frame xt is not available at the receiver. Previ-
ously reconstructed frames {x̂t−k, · · · , x̂t−1}, as well as
the warped frame x̄t are encoded (without iterative opti-
mization) to corresponding feature sets f̂t = E(x̂t) and
f̄t = E(x̄t) using the same encoder. These are commonly
available on both the transmitter and receiver.

3.3. Feature Prediction

Fig. 1 depicts our feature space prediction and mode
selection strategy. Prior to the mode selection step, we as-
sume the optimal low-dimensional representation of current
frame foptt and the binary mask mt−1,t for Skip mode in-
dication are ready at the transmitter. We replace conven-
tional motion estimation, compression, and compensation
steps with feature domain prediction optionally conditioned
by pixel-domain optical flow. Residual is the difference be-
tween the optimal feature foptt and the predicted feature.
However, this might lead to large residuals when the pre-
diction is not accurate. To accommodate the rich variety of
motions, we introduce a prediction method consists of three
mode branches, and make mode selections for each block
(not for the entire frame) based on the entropy of residuals.

The Feature Prediction branch is implemented with a
ConvLSTM network, where the predictor PFP takes the re-
constructed features {f̂t−k, · · · , f̂t−1} as inputs, and pro-
duces a predicted current frame feature representation, cap-
turing temporal correlation in the feature domain:

f̃FPt = PFP(f̂<t), with rFPt = foptt − f̃FP
t . (5)

To augment this prediction process with more contextual
cues from certain scenes, we form another prediction path,
called Optical Flow Conditioned Feature Prediction. It uses
the optical flow warped feature f̄t as a conditional input for
a prediction network POPC:

f̃OFC
t = POFC(f̂<t|f̄t), with rOPC

t = foptt − f̃OFC
t .

(6)
We observed that in some cases neither of the above

modes can outperform directly copying/propagating the re-
spective block in reconstructed features at time t − 1 such
that f̂t = f̂t−1. Hence, this Feature Propagation is adopted
as the third prediction type described as:

f̃FPG
t = f̂t−1, with rFPG

t = foptt − f̃FPG
t . (7)

After having the predicted feature representations un-
der the above modes for all non-skip blocks, the residu-
als (rFPt , rOFC

t , rFPG
t ) are partitioned to equal-sized resid-

ual blocks (rFP,i,jt , rOFC,i,j
t , rFPG,i,j

t ) so that each block
indexed by i and j has a set of residuals from different
modes. The residual block partition side is determined to
keep the number of blocks unchanged from that of pixel
domain blocks (i.e., k × k). To determine the optimal pre-
diction mode, we quantize and entropy encode (introduced
in Section 3.5) each of the block partitioned residuals re-
spectively, and proceed with the one that has the shortest
code length. Therefore, the output of this step is a block-
based residual map ri,jt constructed by block wise optimal
prediction mode selection. This process is described as:

ri,jt = argmin
r̂i,jt

(R(Q(r̂i,jt ))), with

r̂i,jt ∈ {rFP i,jt , rOFC i,j
t , rFPG i,j

t } and i, j ∈ {1, · · · , k},
(8)

where Q(·) and R(·) represent the quantization step and the
bitrate after entropy coding respectively.

3.4. Block Wise Channel Removal

We adopt an adaptive residual channel removal tech-
nique to ensure that more bits are allocated to quality-
critical residual elements. Carefully designed channel
removal criteria can guarantee the reconstruction quality
while reducing the number of bits consumed by unimpor-
tant residual feature channels. In an effort to only preserve
feature channels carrying essential residuals and maintain
the reconstruction quality after channel removal, we inspect
each channel in a block separately. For one residual block
and the predicted block along with it, the least important
channel is selected by evaluating the PSNR degradation per
channel removal. Channels are evaluated and removed iter-
atively in this manner as long as the quality degradation is
within a predefined limit.

18490



Figure 2. Reconstruction with standard codecs (HEVC, VVC) and our MMVC method. Details of the static background and dynamic
objects are well preserved in the frame generated from the predicted features and entropy-coded residuals that are block wise selected from
multiple modes. Compared with HEVC, our result yields less block artifacts preserving finer details. Our method achieves high quality
similar to that of VVC codec, which is the state-of-the-art standard released recently.

3.5. Density-Adaptive Entropy Coding

The quantization and entropy coding is highlighted with
the blue background in Figure 1. This datapath operates
in accordance with the adaptive channel removal strategy,
where pruned residual channels are set to zeros. It also con-
siders sparse non-zero residuals as a result of efficient pre-
diction. Our density-adaptive entropy coding method con-
sists of a block wise sparse path and a dense path as shown
in Figure 1. The density of each non-zero residual block is
first evaluated, and the block is fed into the sparse path when
the density is under a predefined threshold. Otherwise, the
block is fed into the dense path. This mode selection is
recorded as a block wise binary density map.

In the sparse residual path, the non-zero residual posi-
tions are run-length coded prior to conventional arithmetic
encoding, and non-zero residuals are gathered together for
separate arithmetic encoding. The dense path consists of
two options: (1) a learned entropy codec model guided
by the hyperpriors followed by direct quantization [19],
and (2) a conventional arithmetic coding method coupled
with ADMM [20] quantization trained to non-uniformly
discretize the residuals and optimized for minimal quanti-
zation error. We proceed with the option that leads to a
lower rate and record the corresponding block wise entropy
coding mode map wt for the receiver as side information.

Note that we maintain the same entropy coding path
across all channels in each block to limit the cost of bits
to encode wt. To further reduce the bitrate, the binary den-
sity map (sparse vs. dense path) is also entropy coded with
Huffman coding. This method incurs additional bits for
conveying the side information (density map and wt), our
experiments in Section 4.3 confirm that the overall bitrate
reduction offsets the side information overhead.

3.6. Model Training Strategy and Losses

Our mode selection scheme requires a uniform feature
space for different prediction modes. Therefore both predic-
tors (PFP and POFC) need to be optimized under the same
pixel-feature space mapping. To get this mapping regular-
ized under different rates, we first train our Optical Flow
Conditioned Feature Prediction model POFC optimized by:

min
γ,η,ϕ,φ

Rγ(f
opt
t − POFC

η (Eϕ(x̂<t)|Eϕ(x̄t)))+

λ · d(Dφ(f̃
OFC
t + r̂OFC

t ), xt),
(9)

where E(·) and D(·) are the auto-encoder pair, and d(·) is
the distortion calculated by MSE.

After this mapping is fixed (i.e. the weights of en-
coder/decoder pair are trained) for POFC at a specific rate
point, we then optimize the Feature Prediction model PFP

to minimize distortion between the predicted and optimal
features, measured by both MSE and discriminator loss.
This optimization process is expressed as:

min
θ

max
ψ

(1− α) · {Ef∼popt(f)[log Sψ(D(foptt ))]+

Ef∼pf (f)[log(1− Sψ(D(PFP
θ (f̂<t))))]}+

α · d(D(PFP
θ (f̂<t)), xt),

(10)

where S(·) is the discriminator network optimized in the
GAN setting together with the prediction model to judge
whether the reconstructed frame from the feature set is orig-
inal (i.e., raw frame) or not. This discriminator model
makes the training of the prediction model converge faster.
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Figure 3. Rate-distortion curves measured on UVG, MCL-JCV, and HEVC Class B datasets in terms of PSNR and MS-SSIM.

Table 1. Performance results evaluated by BD-Bitrate (BDBR) with PSNR metric (%). We use VVC (low delay P mode) as the anchor
(i.e., BDBR = 0 for VVC). Negative values imply bitrate saving compared to VVC, while positive values imply the opposite.

Dataset Ours AVC HEVC C2F FVC DVC DCVC VCT Li et al. Liu et al. HLVC M-LVC Agustsson et al. RLVC

UVG 0.81 246.70 171.98 12.59 112.14 210.75 98.19 65.49 -2.58 73.97 183.90 161.38 175.24 148.72
MCL-JCV -16.73 188.00 124.56 19.44 72.45 150.08 67.71 44.92 -11.25 – – – 118.78 –

HEVC Class B -28.28 198.79 127.10 14.59 108.01 176.82 66.14 – -20.29 – – 63.72 – –

4. Experiments

4.1. Experimental Setup

Training datasets: We use the Vimeo-90k dataset,
Kinetics dataset, and UGC dataset for training purposes.
The Optical Flow Conditioned Feature Prediction mode is
trained with the Vimeo-90k Septuplet [28], which contains
89,800 short video sequences, with each sequence having
7 consecutive frames of size 488 × 256 pixels. To en-
large the training set, we randomly crop each original se-
quence to four 256× 256-pixel aggregated sequences. The
Feature Prediction mode is trained with part of the Kinet-
ics dataset and the UGC dataset. The Kinetics dataset has
98,000 videos, each of 10 seconds with a resolution higher
than 720p. The UGC dataset is composed of clips each last-
ing for 20 seconds. We combine the videos in Kinetics and
UGC that have resolutions higher than 1080p, and crop the
frames to 1024× 1024 pixels for the training process.

Testing datasets: To evaluate the performance of our
method quantitatively and qualitatively, we perform exper-
iments on three datasets: the UVG dataset [18], the MCL-

JCV dataset [25] and the HEVC class B dataset [23]. All
testing videos we choose have the same 1080p resolution.
And to showcase the benefit of the Optical Flow Condi-
tioned Feature Prediction mode, we also adopt part of the
Kinetics dataset for ablative experiments. Video frames
used for testing are not included in the training dataset.

Evaluation metrics: PSNR and MS-SSIM are used
as the quantitative evaluation metrics in our experiments.
PSNR is a standard way to reflect the degree of distortion in
reconstruction whereas MS-SSIM often serves as a proxy
indicator for perceptual quality.

Training details: We train the two prediction modes
separately so that the training procedure can be divided into
two stages. First, we train the encoder-decoder pair, the
context and entropy model, together with the Optical Flow
Conditioned Feature Prediction model POFC (Feature Pre-
dictor path is disabled) end-to-end till convergence. We
optimize our model involved in the experiments only with
MSE as the distortion loss. To achieve different bitrates for
rate-distortion tradeoffs, we curate a set of Lagrange mul-
tipliers as λ = {2, 64, 256, 1024, 2048, 4096}. The model
is optimized for 10M steps with a batch size of 16. The
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Figure 4. Reconstruction of multiple prediction modes without using the information from residual, where FP and OFC stands for Feature
Prediction and Optical Flow conditioned Feature Prediction respectively.

learning rate is initialized to be 10−4, which is scaled to
half every 2M steps. As each individual value λi leads to
a unique bitrate along with the quality, we end up having a
set of trained encoder-decoder pairs for various rates. Dur-
ing the second stage in the training procedure, we fix the
parameters in the trained encoder-decoder pair, and we pro-
ceed to obtain the optimal feature representations foptt from
iterative back-propagation through the decoder. These ob-
tained optimal features serve as the input to train the Feature
Prediction model PFP, which is optimized by discriminator
loss in addition to the MSE loss for enhanced visual quality.
We train PFP model at an initial learning rate of 5 × 10−4

for 20M steps with a batch size of 8, and we decay the learn-
ing rate by half for every 2M steps after training 10M steps.

4.2. Results and Analysis

Quantitative Results: To demonstrate the performance
of our proposed MMVC, we evaluate our rate and distor-
tion tradeoff curves and PSNR-based BD-Bitrate measure-
ments with the state-of-the-art learned video compression
algorithms published in recent years. Specifically, we in-
clude results from DVC [16], FVC [9], Liu et al. [15],
DCVC [11], C2F [8], VCT [17], Li et al. [12] [12], HLVC
[29], M-LVC [13], Agustsson et al. [2], and RLVC [30].
We also include measurements from traditional codec stan-
dards: AVC [26], HEVC [23], and the latest VVC [22]. Fol-
lowing the prior work [11], we choose to encode AVC and
HEVC under veryslow mode with a GoP of 12/10. Com-
pared with veryfast, the veryslow mode compresses video
frames to a lower bitrate at the cost of longer encoding time,
which aligns better with our target to generate high quality
frames with the lowest bitrate but potentially longer latency.
For VVC encoding, we use the low delay P mode with a
GoP size of 100 and set the IntraPeriod to be 4.

Figure 3 presents the rate-distortion curves measured
with PSNR and MS-SSIM on UVG, MCL-JCV, and HEVC

Class B datasets. The performance curves demonstrate
that our proposed method outperforms the state-of-the-
art learning-based approaches and conventional codecs in
terms of PSNR for most of the bitrates we cover. Par-
ticularly at 0.1 bit-per-pixel (bpp), our approach achieves
2dB quality improvement on average compared with HEVC
(veryslow) for all testing datasets. Although not specially
trained or fine-tuned for MS-SSIM, our method achieves
comparative performance under the MS-SSIM metric con-
sistently across all test datasets, especially in higher bpp
regions. Table 1 shows the BD-Bitrate (BDBR) results in
terms of PSNR anchored to VVC. The evaluation is based
on UVG, MCL-JCV, and HEVC Class B datasets. Our
method demonstrates competitive or superior performance
compared to other schemes in Table 1.

Qualitative Analysis: Figure 2 shows example recon-
structed frames from the UVG dataset. Our approach ex-
hibits similar quality (if not more visually appealing) with
a bpp comparable to other codecs. The details of dynamic
motions are well preserved at less than 0.1 bpp, demonstrat-
ing that MMVC can accurately predict the next frame by a
combination of different modes. For the background field,
the sharpness of our reconstructed frame is (subjectively)
better than other standard codecs. The complementary na-
ture of different prediction modes in our scheme is visual-
ized in Figure 4, which shows the decoded scenes directly
obtained from the predicted features using a specific mode
for the entire frame without residual compensation. Us-
ing FP mode only leads to sharper details in general, but it
loses some contents such as the vehicle behind the fountain
and the rider’s leg. On the contrary, applying OFC mode
only results in unfaithful reconstructions near the horse’s
legs. By adopting multiple prediction modes that comple-
ment each other (FP + OFC), our prediction is able to cover
content variety in the original frame. The resulting residual
is sparse and can be condensed to a shorter bitstream.
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Table 2. Mode utilization and performance on the UVG dataset and Kinetics dataset, where FP, OFC, FPG, and S stands for Feature
Prediction, Optical Flow Conditioned Feature Prediction, Feature Propagation, and Skip mode respectively.

Dataset UVG Kinetics

Prediction mode PSNR (dB) Removed Bpp Bitrate PSNR (dB) Removed Bpp Bitrate
channels saving channels saving

FP 38.0 23% 0.146 0% 37.7 29.8% 0.136 0%
OFC 36.9 47% 0.118 19.2% 37.4 49.3% 0.106 22.1%

FP+OFC 38.1 27% 0.096 34.3% 37.7 41.6% 0.099 27.2%
FP+OFC+FPG 38.2 27% 0.084 42.5% 37.7 43.5% 0.096 29.4%

FP+OFC+FPG+S 38.2 44% 0.081 44.5% 37.8 50.8% 0.088 35.3%

Mode utilization FP OFC FPG S FP OFC FPG S
78.1% 10.6% 6% 5.3% 37.6% 38.3% 12% 11.6%

4.3. Ablation Study

Mode utilization: We summarize mode utilization for
the UVG dataset and 20 selected video sequences from
the Kinetics dataset at relatively low bitrates of 0.081 and
0.088, respectively. As presented in Table 2, this analysis
involves evaluating the separate performance of each pre-
diction mode, examining the impact of utilizing multiple
prediction modes, and quantifying gains provided by skip-
ping the encoding of unchanged blocks (i.e., Skip mode).

As shown in Table 2, the Feature Prediction and Optical
Flow Conditioned Feature Prediction modes achieve com-
parable performance. For UVG, FP slightly outperforms
OFC with 1dB higher PSNR and only 20% higher bitrate.
Meanwhile, OFC is more favorable than FP for the Kinet-
ics dataset. By adopting the ensemble of both modes (FP
+ OFC), the quality is preserved with an even lower bitrate,
indicating that these two prediction modes can complement
each other by capturing different motion patterns. Includ-
ing the Feature Propagation mode as an alternative predic-
tion path further reduces the bitrate without degrading the
quality. The compression ratio improves noticeably by in-
troducing the Skip mode as the final additional mode. For
sequences in the UVG dataset, we observe that usage of FP
surpasses other modes significantly. However, in the Ki-
netics dataset where the scenes are captured mostly by a
fixed-view camera showcases higher utilization of the other
modes. Fixed backgrounds in Kinetics sequences enable
higher utilization of the Skip mode for significant bitrate
reduction. In general, introducing Skip mode reduces the
required bitrate for the same quality.

Effectiveness of channel removal and density-
adaptive entropy coding: One column in Table 2 shows
the percentage of removed residual channels for various
prediction modes. It shows that the percentage of removed
residual channels is generally higher as the prediction be-
comes more accurate with mode selections from the full
ensemble of available prediction modes (FP+OFC+FPG+S)

Table 3. Percentage of additional bitrate saving from density-
adaptive entropy coding module compared to the baseline of using
FP mode and dense path only on the Kinetics dataset. Note that
the S mode is not included because it does not involve any residual
coding.

Prediction mode Dense path only Dense + sparse paths

FP 0% 4.1%
FP+OFC 6.3% 21.2%

FP+OFC+FPG 6.5% 23.9%

compared to the single mode case (FP only).
Table 3 summarizes the additional bitrate saving by the

density-adaptive entropy coding compared to the baseline
of using FP mode and dense-path only. The evaluation
is based on the Kinetics dataset at a relatively low bpp
of 0.165, where the utilization of each prediction mode
is well balanced. Allowing more prediction modes gen-
erally reduces the density of the residual. Thus the pro-
posed density-adaptive entropy coding provides more sig-
nificant savings (an additional 23.9% saving) when it is
combined with the full ensemble of available prediction
modes (FP+OFC+FPG). This saving includes the overhead
of sending the density map and mode selection side infor-
mation.

5. Conclusion
In this work, we present a dynamic mode selection based

video coding scheme MMVC. It can dynamically switch be-
tween multiple prediction paths adapting to distinct motion
patterns that appear on different blocks within a frame. To
further reduce the required bitrate for the prediction resid-
ual encoding, we propose a channel removal approach to-
gether with a density-adaptive entropy coding scheme to at-
tain more compact residual representations when the resid-
ual entropy and density significantly vary block wise. Eval-
uations with various test datasets confirm that our method
can attain outstanding rate-distortion trade-offs.
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