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Abstract

3D semantic segmentation on multi-scan large-scale
point clouds plays an important role in autonomous sys-
tems. Unlike the single-scan-based semantic segmentation
task, this task requires distinguishing the motion states of
points in addition to their semantic categories. However,
methods designed for single-scan-based segmentation tasks
perform poorly on the multi-scan task due to the lacking of
an effective way to integrate temporal information. We pro-
pose MarS3D, a plug-and-play motion-aware module for
semantic segmentation on multi-scan 3D point clouds. This
module can be flexibly combined with single-scan models
to allow them to have multi-scan perception abilities. The
model encompasses two key designs: the Cross-Frame Fea-
ture Embedding module for enriching representation learn-
ing and the Motion-Aware Feature Learning module for en-
hancing motion awareness. Extensive experiments show
that MarS3D can improve the performance of the base-
line model by a large margin. The code is available at
https://github.com/CVMI-Lab/MarS3D.

1. Introduction
3D semantic segmentation on multi-scan large-scale

point clouds is a fundamental computer vision task that ben-
efits many downstream problems in autonomous systems,
such as decision-making, motion planning, and 3D recon-
struction, to name just a few. Compared with the single-
scan semantic segmentation task, this task requires under-
standing not only the semantic categories but also the mo-
tion states (e.g., moving or static) of points based on multi-
scan point cloud data.

In the past few years, extensive research has been con-
ducted on single-scan semantic segmentation with signifi-
cant research advancements [4, 5, 12, 25, 31, 33, 36]. These
approaches are also applied to process multi-scan point
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Figure 1. Comparison of our proposed method, MarS3D, with
baseline method using SPVCNN [25] as the backbone on Se-
manticKITTI [1] dataset. MarS3D achieves excellent results in
the classification of semantic categories and motion states, while
the baseline method can not distinguish motion well from static.

clouds, wherein multiple point clouds are fused to form
a single point cloud before being fed to the network for
processing. Albeit simple, this strategy may lose tempo-
ral information and make distinguishing motion states a
challenging problem. As a result, they perform poorly
in classifying the motion states of objects. As shown
in Figure 1, the simple point cloud fusion strategy can-
not effectively enable the model to distinguish the motion
states of cars even with a state-of-the-art backbone network
SPVCNN [25]. Recently, there have been some early at-
tempts [7, 23, 24, 28] to employ attention modules [24] and
recurrent networks [7,23,28] to fuse information across dif-
ferent temporal frames. However, these approaches do not
perform well on the multi-scan task due to the insufficiency
of temporal representations and the limited feature extrac-
tion ability of the model.

In sum, a systematic investigation of utilizing the
rich spatial-temporal information from multiple-point cloud
scans is still lacking. This requires answering two critical
questions: (1) how can we leverage the multi-scan informa-
tion to improve representation learning on point clouds for
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better semantic understanding? and (2) how can the tem-
poral information be effectively extracted and learned for
classifying the motion states of objects?

In this paper, we propose a simple plug-and-play
Motion-aware Segmentation module for 3D multi-scan
analysis (MarS3D), which can seamlessly integrate with
existing single-scan semantic segmentation models and en-
dow them with the ability to perform accurate multi-scan
3D point cloud semantic segmentation with negligible com-
putational costs. Specifically, our method incorporates two
core designs: First, to enrich representation learning of
multi-frame point clouds, we propose a Cross-Frame Fea-
ture Embedding (CFFE) module which embeds time-step
information into features to facilitate inter-frame fusion and
representation learning. Second, inspired by the observa-
tion that objects primarily move along the horizontal ground
plane (i.e., xy-plane) in large-scale outdoor scenes, i.e., min-
imal motion along the z-axis, we propose a Motion-Aware
Feature Learning (MAFL) module based on Bird’s Eye
View (BEV), which learns the motion patterns of objects
between frames to facilitate effectively discriminating the
motion states of objects.

We extensively evaluate our approach upon several
mainstream baseline frameworks on SemanticKITTI [1]
and nuScenes [3] dataset. It consistently improves the per-
formance of the baseline approaches, e.g., MinkUnet [5],
by 6.24% in mIoU on SemanticKITTI with a negligible in-
crease in model parameters, i.e., about 0.2%. The main con-
tributions are summarized as follows:

• We are the first to propose a plug-and-play mod-
ule for large-scale multi-scan 3D semantic segmenta-
tion, which can be flexibly integrated with mainstream
single-scan segmentation models without incurring too
much cost.

• We devise a Cross-Frame Feature Embedding module
to fuse multiple point clouds while preserving their
temporal information, thereby enriching representa-
tion learning for multi-scan point clouds.

• We introduce a BEV-based Motion-Aware Feature
Learning module to exploit temporal information and
enhance the model’s motion awareness, facilitating the
prediction of motion states.

• We conduct extensive experiments and comprehensive
analyses of our approach with different backbone mod-
els. The proposed model performs favorably compared
to the baseline methods while introducing negligible
extra parameters and inference time.

2. Related Work
Single-scan Outdoor 3D Semantic Segmentation: 3D
single-scan outdoor semantic segmentation is indispensable
for autonomous driving. In early work, PointNet [19] uses

Multi-Layer Perception (MLP) to extract features from in-
put point clouds directly, and PointNet++ [20] tries to incor-
porate multi-scale designs for dense prediction tasks. Later,
various literature [19, 20, 26, 29, 30, 32] works on design-
ing point-based convolution on either geometric or seman-
tic neighborhoods. To handle the large-scale dataset, some
works [4, 5, 10, 12, 25, 31, 36] focus on volumetric features
and use 3D convolution to achieve a balance between accu-
racy and efficiency. SparseConv [10] and MinkUNet [5] are
representative works and demonstrate good performance.
Later, SPVNAS [25] combines voxel and point representa-
tions and designs a neural architecture search method to find
the optimal model structure. Recently, Cylinder3D [36] in-
troduces a cylindrical partition to leverage the properties of
LiDAR point clouds for enriching the feature information.

The remarkable feature extraction capability enables the
above methods to achieve high performance on single-scan
tasks. To solve the multi-scan task, most of these meth-
ods [4, 12, 31, 34, 36] first fuse multiple point clouds into
one and treat the fused point cloud as a single point cloud
for processing. Albeit simple, this fusion strategy overlooks
important temporal information and entangles moving and
non-moving objects, leading to performance degradation.

Multi-scan Outdoor 3D Semantic Segmentation: Com-
pared to single-scan semantic segmentation, the multi-scan
task needs to discriminate the moving and stationary states
of the objects based on temporal information. In addition to
the simple fusion strategy discussed above, another stream
of approaches [7, 23, 24, 28] attempts to process each point
cloud in a sequence separately and fuse the feature rep-
resentations for temporal modeling. For instance, SpSe-
quenceNet [24] proposes a U-Net-based architecture to ex-
tract per-frame features and combine features of two con-
secutive frames to gather temporal information. The fused
feature is further fed into the prediction head to produce re-
sults. Duerr et al. [7] design a recurrent architecture with
a temporal memory alignment module for sequential pro-
cessing of multiple point clouds. TemporalLatticeNet [23]
proposes to match similar feature patterns between adja-
cent frames and fuse them temporally. However, these ap-
proaches cannot fully leverage multiple point clouds to en-
rich temporal representation learning as the feature extrac-
tion is still conducted on each frame separately.

BEV-based 3D Point Cloud Perception: Recently, BEV-
based representation [11, 14, 16, 35, 37, 38] has emerged as
an effective way to process 3D point cloud due to its effi-
ciency and ease of deployment using 2D convolution oper-
ations. By projecting a 3D point cloud into the bird’s eye
view (BEV), BEV-based representation converts 3D rep-
resentations into 2D to avoid heavy processing in 3D and
improve computation and memory efficiency. Some repre-
sentative works include PointPillars [14] for 3D object de-
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Figure 2. The proposed framework of MarS3D. We take three scan point clouds inputs as illustration. MarS3D contains two branches.
One is the BEV branch with 2D BEV representations as input, and it employs a Motion-Aware Feature Learning (MAFL) module to
enhance the motion-aware feature learning. The other is the 3D branch that takes multi-scan 3D point clouds as input, enriching the feature
representations with our Cross-Frame Feature Embedding (CFFE) module. The fused features of the above two modules are fed into the
prediction head and make final predictions on semantic categories and motion states.

tection, BEVfusion [16] for multi-sensor fusion, BEV pro-
jection [38] for 3D segmentation. The above work demon-
strates the potential of BEV representations in outdoor 3D
scene analysis. Here, we explore utilizing BEV-based repre-
sentation to extract temporal information for analyzing the
motion states of objects.

2D Video Semantic Segmentation: In video segmentation,
many efforts [2,6,13,15,17,18,21] have been made to con-
duct temporal feature extraction. Oh et al. [18] introduce a
space-time memory network to integrate features from ad-
jacent frames for video object segmentation and attains sig-
nificant performance gains. TDNet [13] exploits temporal
redundancy for fast video segmentation by developing an
attention propagation method to propagate features to ad-
jacent frames. Although they achieve promising results on
video segmentation, we experimentally demonstrate these
designs are not optimal for multi-scan point cloud segmen-
tation. We focus on designing new methods tailored to point
clouds for better performance and efficiency.

3. Problem Statement

Given a sequence of LiDAR point clouds as inputs, the
multi-scan 3D point cloud semantic segmentation task aims
to assign a semantic category to each point and predict their
motion states (i.e., moving or static). Specifically, a LiDAR
point cloud frame contains a set of unordered points that are
annotated with labels for training. We denote a pair of train-
ing data as (Pi,Li) = {pj , lj}Nj=1 with pj ∈ RDin , where
N denotes the number of points. Each point pj contains in-

put descriptors with Din dimensions, including point coor-
dinates (x, y, z) and other features such as intensities (bm).
The corresponding label lj incorporates both semantic cate-
gories and motion states of pj . Therefore, points belonging
to the same semantic category but possessing distinct mo-
tion states are allocated distinct labels. For a sequence of
point clouds {Pi,Li}Mi=1 that contains M frames, all frames
are scanned sequentially in time order, and scanning poses
and timestamps are used to align different frames into the
same world-coordinate system. In the following, we omit
the alignment process for simplicity, where the point clouds
in a sequence are calibrated to the same coordinate system
by default.

4. Method

4.1. Overview

An overview of our motion-aware model for multi-scan
semantic segmentation, namely MarS3D, is shown in Fig-
ure 2. MarS3D contains a 3D branch for multi-scan spa-
tial representation learning and a BEV branch for motion-
aware feature learning. First, the BEV branch takes as in-
puts k BEV representations Bin =

{
Bin
i

}k

i=1
that are derived

by point cloud polarization (see Section 4.2) and outputs
motion-aware feature map Zm. The core is a Motion-Aware
Feature Learning (MAFL) module (see Section 4.2) that
extracts and leverages BEV features through a dedicated
design to produce a motion-aware feature map Zm. Sec-
ond, the 3D branch takes as inputs the fused k point clouds
P in =

{
P in
i

}k

i=1
and outputs enriched 3D enhanced spa-
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tial features Ps. The 3D branch incorporates a cross-frame
feature embedding (CFFE) module (see Section 4.3) to in-
ject temporal information. It outputs embedded features,
denoted as Pebd =

{
Pebd
i

}k

i=1
. These features are further

processed by a single-scan backbone fs to yield multi-scan
enhanced 3D spatial representations Ps as:

Ps = fs(Pebd), (1)

where Ps ∈ RDz and Dz is the dimension of the output
feature of the single-scan backbone.

Finally, the motion-aware feature map Zm and enhanced
spatial features Ps are combined to produce the fused fea-
tures Pf by aligning the coordinates of the features with
the pixels of the motion-aware feature map. The fused fea-
tures are then fed to the prediction head to produce the final
outputs (see Section 4.4).

4.2. BEV Branch

In the following, we elaborate on the BEV branch, which
targets extracting motion-friendly features for motion pre-
diction (see Figure 2). Before delving into the details, we
first introduce BEV mapping, which maps a 3D point cloud
into a 2D BEV image. Then, we introduce our key Motion-
Aware Feature Learning (MAFL) module for motion extrac-
tion.

BEV Mapping: Each point cloud P for the BEV branch is
pillarized into a three-channel BEV map B of size H ×W .
Inspired by [14, 16], for a pillar located at (x∗, y∗) with a
pixel grid size of lB , its three-channel feature b(x∗,y∗) con-
sists of the average translation along x and y axis regard-
ing the grid center, and total intensity features (taking Se-
manticKITTI as an example) among all points inside the
pillar, which is formulated as:

b(x∗,y∗) =

[
1

N∗

N∗∑
i

2∆xi

lB
,

1

N∗

N∗∑
i

2∆yi
lB

,

N∗∑
i

bmi

]
,

(2)
where N∗ denotes the number of points in current pillar,
while ∆xi and ∆yi denote the translation of the ith point
along x-axis and y-axis respectively.

Motion-Aware Feature Learning Module: Our Motion-
Aware Feature Learning (MAFL) module is illustrated in
the BEV branch in Figure 2 which is designed to ex-
tract motion-aware features for better distinguishing mov-
ing/static objects. The input to this module consists of k

multi-scan BEV representations Bin =
{
Bin
i

}k

i=1
, where

Bin
k represents the target frame. A lightweight 2D CNN fu

with a UNet-like architecture [22] is used to extract features
U = {Ui}ki=1 from multi-scan inputs as:

{Ui}ki=1 =
{
fu(Bin

i )
}k

i=1
. (3)

Furthermore, to identify moving objects, we take the differ-
ence between the target frame k and the remaining k − 1

reference frames which outputs D = {Di}k−1
i=1 as:

{Di}k−1
i=1 = {Uk − Ui}k−1

i=1 . (4)

By doing so, the static objects can be erased, and the dy-
namic objects are highlighted with a large feature mag-
nitude. Then, {Di}k−1

i=1 are channel-wise concatenated to
form a new 2D map. Note that objects may have dif-
ferent moving patterns and velocities. Therefore, we de-
sign a multi-kernel convolutional network fm with multiple
branches of various kernel sizes to capture objects with var-
ious movement patterns. Finally, the outputs from fm are
concatenated to output a motion-aware feature map Zm.

4.3. 3D Branch

The 3D branch uses temporal information to enhance
spatial representation learning on 3D point clouds. The core
component is the Cross-Frame Feature Embedding (CFFE)
module, whose output is fed into the single-scan backbone
network to produce enhanced spatial features Ps (see Fig-
ure 2). In the following, we elaborate on the CFFE mod-
ule to improve spatial representation learning on multi-scan
point clouds.

Cross-Frame Feature Embedding Module: When the
multi-frame point clouds are fused as discussed in the pre-
vious sections, points from different time steps are mixed,
making it challenging for the final recognition. Inspired by
positional embedding [27], we propose a Cross-Frame Fea-
ture Embedding (CFFE) module to generate a time-aware
embedding and produce consistent features for each point
across different timestamps. Given k point cloud frames,{
P in
i

}k

i=1
, we design an embedding neural network layer

fe that maps point clouds into intermediate latent features
and k learnable temporal embeddings E = {ei}ki=1 corre-
sponding to k frames respectively. The dimension of ei is
the same as the output dimension of the fe. The point-level
embedded features Pebd are obtained by:

{
Pebd
i

}k

i=1
=

{
ei + fe(P in

i )
}k

i=1
, (5)

where element-wise summation is conducted on ei and each
point of the corresponding fe(P in

i ). The obtained features
with different temporal embeddings are represented in a
point cloud {Pebd

i }ki=1 and subsequently fed into the single-
scan backbone network fs, following Eq. (1), to produce a
set of enhanced spatial features Ps.
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B. Method mIoU #param latency car bic. mot. tru. ove. per. bil. mol. roa. par. sid. ogr. bui. fen. veg. trn. ter. pol. tra. mca. mbi. mpe. mmo.mov. mtr.

SP
V

C
N

N
[2

5] Baseline 49.70 21.8M 206ms 93.9 34.4 64.7 68.0 33.0 19.7 0.0 0.0 93.6 45.2 80.1 0.2 90.3 59.7 88.4 63.5 75.6 64.1 51.9 74.3 86.7 55.0 0.0 0.0 0.0

Ours 54.66 21.9M 225ms 95.6 52.7 77.8 79.4 51.5 27.9 0.0 0.0 94.2 51.3 82.0 0.1 91.6 65.1 89.0 68.4 76.2 65.2 51.5 80.6 94.9 68.0 0.0 3.6 0.0

∆ +4.96 +0.1M +19ms 1.7 18.3 13.1 11.4 18.5 8.2 0.0 0.0 0.6 6.1 1.9 0.1 1.3 5.4 0.6 4.9 0.6 1.1 0.4 6.3 8.2 13.0 0.0 3.6 0.0

Sp
ar

se
C

on
v

[9
]

Baseline 48.99 39.2M 239ms 94.7 24.1 54.1 69.6 43.4 17.3 0.2 0.0 93.2 45.1 79.8 0.2 89.5 61.7 87.7 62.9 74.6 63.8 50.0 73.9 85.4 53.6 0.0 0.0 0.0

Ours 54.64 39.3M 253ms 96.6 35.2 69.0 83.3 64.8 26.9 0.0 0.0 94.0 61.2 82.5 0.1 90.9 65.8 88.1 67.8 75.2 66.2 51.4 83.5 94.4 68.9 0.0 0.0 0.0

∆ +5.65 +0.1M +14ms 1.9 11.1 14.9 13.7 21.4 9.6 0.2 0.0 0.8 16.1 2.7 0.1 1.4 4.1 0.4 4.9 0.6 2.4 1.4 9.6 9.0 15.3 0.0 0.0 0.0

M
in

kU
N

et
[5

]

Baseline 48.47 37.9M 295ms 93.8 23.7 48.9 90.3 41.3 18.0 0.0 0.0 92.2 32.2 78.4 0.0 89.8 55.5 88.8 63.7 77.0 63.6 50.0 69.2 83.1 52.5 0.0 0.0 0.0

Ours 54.71 38.0M 323ms 96.4 28.4 70.0 93.9 62.7 31.6 0.0 0.0 93.8 58.5 81.7 0.1 92.6 67.6 89.0 66.7 76.4 66.5 51.6 82.6 93.1 64.4 0.0 0.1 0.0

∆ +6.24 +0.1M +28ms 2.6 4.7 21.1 3.6 21.4 13.6 0.0 0.0 1.6 26.3 3.3 0.1 2.8 12.1 0.2 3.0 0.6 2.9 1.6 13.4 10.0 11.9 0.0 0.1 0.0

Table 1. Quantitative results of the proposed method, MarS3D, on SemanticKITTI [1] multi-scan public validation set. Combined with
different mainstream single-scan 3D point cloud semantic segmentation backbones, MarS3D has a large performance improvement over
the corresponding baseline methods without introducing excessive parameters and each-frame inference time. (B. indicates Backbone, full
names of the categories are in the supplementary material, blue indicates degradation.)

4.4. Feature Fusion and Prediction

As illustrated in Figure 2, equipped with the motion-
aware feature map (Zm) and enhanced spatial features
(Ps), the next step is to fully integrate the representation
information from both branches and make predictions.

Feature Fusion: The motion-aware feature map Zm ∈
RH×W×Dz (H: height; W : width; Dz: number of chan-
nels) is obtained from the BEV branch, while the enhanced
spatial features Ps ∈ RN×Dp (N : number of points; Dp:
number of channels) are the outputs of the 3D branch.
The feature fusion module aggregates information from
the above two representations to make subsequent predic-
tions. For each point feature in Ps with Dp dimension,
a corresponding pixel from Zm can be queried based on
the point’s 3D location (x and y coordinates). This pixel
serves as an index to extract a Dz-dimensional motion-
aware feature along the channel dimension from Zm. Sub-
sequently, the motion-aware feature is concatenated with
the point feature, resulting in the fused features denoted as
Pf ∈ RN×(Dz+Dp).

Prediction: Based on the correspondence between 2D and
3D, Pf is then fed into an MLP classifier fcls to obtain the
output spred:

spred = fcls(Pf ), (6)

where spred is the logits for the prediction result of the se-
mantic segmentation task of the input point cloud.

4.5. Model Training and Inference

During training, the obtained fused features Pf are fed
into two classification heads: the category-aware classifi-
cation head and the motion-aware classification head (a bi-
nary classifier), which outputs the predicted logits scpred and
smpred (more details are included in the supplementary mate-

rial). First, with the ground truth labels of semantic cate-
gories Lc

GT, back-propagation is performed for parameters
optimization using Cross Entropy (CE) loss Lc for semantic
categories classification:

Lc = CE(scpred,Lc
GT), (7)

where CE(·, ·) is the cross-entropy loss, and scpred is the pre-
diction probability for each point. Then, the Binary Cross
Entropy (BCE) loss Lm is used for motion states classifica-
tion with motion states ground truth Lm

GT:

Lm = BCE(smpred,Lm
GT), (8)

where BCE(·, ·) indicates the binary cross-entropy loss.
The final objective function L of the optimization is:

L = ωc · Lc + ωm · Lm, (9)

where ωc and ωm are the weights of the two losses (Lc and
Lm) respectively.

During inference, the final prediction result is deter-
mined using the logits produced by both classification
heads. When presented with an input sample, the motion-
aware classification head will identify the motion state of
the input point only if the category-aware classification head
recognizes the point as belonging to a class with the poten-
tial to move.

5. Experiments
Datasets and Evaluation Metric: We evaluate our
method on SemanticKITTI [1] and nuScenes [3]. For Se-
manticKITTI, the multi-scan setting is fully supervised and
contains 25-category (6 moving categories and 19 static cat-
egories) with high-quality semantic annotations. The anno-
tations are based on the KITTI dataset [8]. It comprises 22
point cloud sequences. For nuScenes, we propose a new
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Figure 3. Qualitative results on SemanticKITTI [1] public validation dataset. With SPVCNN [25] as the backbone, the segmentation results
on the SemanticKITTI multi-scan task of the baseline model and our model are shown together with ground truth. At the same time, a
specific area containing moving points is magnified and displayed at the top right of each sub-figure.
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Figure 4. Evaluation errors (shown in red) by the baseline meth-
ods and MarS3D (using SPVCNN [25] as the backbone) on Se-
manticKITTI [1] public validation dataset. MarS3D significantly
outperforms the baseline. Contrasting regions in the evaluation
errors are highlighted with boxes and corresponding categories.

multi-scan setting based on the ’lidar-seg’ task (16 seman-
tic categories) without reference frame supervision. We use
its object-level velocity to construct a multi-scan segmenta-
tion dataset with 24 categories (8 moving and 16 static cate-
gories). More details are provided in the supplementary ma-
terial. To assess the effectiveness of our proposed method
and make comparisons with baselines and other methods,
we use the mean Intersection over Union (mIoU) as the
evaluation metric.

Implementation Details: Our model is designed as a plug-
and-play module that provides motion-aware features to en-
hance the backbone learned features. For the backbone

model, we consider SPVCNN [25]*, SparseConv [9]†, and
MinkUNet [5]‡. Following previous works [12, 23, 36], we
use the current and its previous two frames as input. The
size of the BEV representation is set to 501 × 301, and the
multiple kernel sizes in the MAFL module are set as 1, 3,
and 5, respectively. We set the embedded feature dimension
in the CFFE module to 18, and the data augmentations are
the same as the standard settings. All the models are trained
on GeForce RTX 3090 GPUs, and the inference latency is
recorded using a single GeForce RTX 3090 GPU.

5.1. Main Results

Comparison with Baseline Methods: We evaluate the per-
formance of our proposed method on multi-scan bench-
marks of SemanticKITTI [1] and nuScenes [3]. The base-
line method uses the same backbone to process multi-
scan point clouds. We then compare this baseline ap-
proach to the same backbone augmented with MarS3D for
a fair evaluation. As shown in Table 1, MarS3D signif-
icantly improves the performance over baseline methods
on the public validation set of SemanticKITTI. With the
most lightweight network, SPVCNN [25], MarS3D brings
a 4.96% improvement while introducing less than 0.5% ad-
ditional parameters. Particularly, consistent performance
gains are observed on the dynamic object classes with non-
moving/moving properties (i.e., car & moving car, person
& moving person). This shows that the proposed BEV
branch is both lightweight and powerful. Further, to ver-
ify the generalizability of the model, we offer a multi-
scan task based on nuScenes ’lidar-seg’ dataset [3]. Our
method outperforms the baseline (using MinkUNet [5] as
the backbone) by a significant margin, achieving 64.83%

*https://github.com/mit-han-lab/spvnas
†https://github.com/traveller59/spconv
‡https://github.com/NVIDIA/MinkowskiEngine
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Method mIoU car bic. mot. tru. ove. per. bil. mol. roa. par. sid. ogr. bui. fen. veg. trn. ter. pol. tra. mca. mbi. mpe. mmo.mov. mtr.

SpSequenceNet [24] 43.1 88.5 24.0 26.2 29.2 22.7 6.3 0.0 0.0 90.1 57.9 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1

TemporalLidarSeg [7] 47.0 92.1 47.7 40.9 39.2 35.0 14.4 0.0 0.0 91.8 59.6 75.8 23.2 89.8 63.8 82.3 62.5 64.7 52.6 60.4 68.2 42.8 40.4 12.9 12.4 2.1

TemporalLatticeNet [23] 47.1 91.6 35.4 36.1 26.9 23.0 9.4 0.0 0.0 91.5 59.3 75.3 27.5 89.6 65.3 84.6 66.7 70.4 57.2 60.4 59.7 41.7 51.0 48.8 5.9 0.0

Meta-RangeSeg [28] 49.5 90.1 52.7 43.9 30.3 35.4 14.3 0.0 0.0 90.7 63.3 74.7 26.9 90.5 63.5 83.0 67.0 67.7 56.4 64.4 64.5 56.1 55.0 24.4 20.3 3.4

KPConv [26] 51.2 93.7 44.9 47.2 43.5 38.6 21.6 0.0 0.0 86.5 58.4 70.5 26.7 90.8 64.5 84.6 70.3 66.0 57.0 53.9 69.4 67.4 67.5 47.2 4.7 5.8

Baseline 49.2 89.8 39.4 34.0 39.4 21.0 8.9 1.8 0.0 89.1 62.0 72.4 12.9 90.5 63.9 84.6 68.4 68.7 58.9 60.1 69.3 63.5 58.7 56.5 9.5 3.6

Ours 52.7 95.1 49.2 49.5 39.7 36.6 16.2 1.2 0.0 89.9 66.8 74.3 26.4 92.1 68.2 86.0 72.1 70.5 62.8 64.8 78.4 67.3 58.0 36.3 10.0 5.1

Table 2. Comparison with the state-of-the-art models on SemanticKITTI multi-scan benchmark (official test set). MarS3D (with
SPVCNN [25] as the backbone) significantly outperforms these models for multi-scan tasks. (full names of the categories are in the
supplementary material.)

mIoU compared to the baseline’s 61.90%. This improve-
ment is achieved with a negligible increase in each-frame
inference time from 53ms to 58ms.

Comparison with State-of-the-Art Methods: Compared
to various models applied to multi-scan tasks, MarS3D
(with SPVCNN as the backbone) is evaluated on the Se-
manticKITTI multi-scan benchmark§. As shown in Table 2,
the proposed approach has demonstrated superior perfor-
mance, with a 1.5% increase in mIoU compared to the cur-
rent state-of-the-art method, KPConv [26]. Furthermore,
our method performs similarly or better than other state-of-
the-art models across nearly all categories.

Qualitative Comparisons: Quantitative results are shown
in Figure 3. The baseline model suffers from mistaking the
status of static cars (Figure 3: Scan A) and moving persons
(Figure 3: Scan B). It even recognizes the moving bicyclist
as a moving person (Figure 3: Scan A). In contrast, MarS3D
can circumvent such category and motion state discrimina-
tion errors. In addition to achieving better qualitative results
in motion states, MarS3D also outperforms the baseline in
semantic categories. We visualize the error maps (errors are
shown in red) of the baseline and our method in Figure 4,
where bounding boxes indicating specific categories high-
light the differences between our method and the baseline.
These improvements indicate that MarS3D has stronger se-
mantic feature extraction capabilities compared to the base-
line model, resulting in better segmentation performance
even for immobile objects.

5.2. Ablation Studies

In this section, we conduct comprehensive ablation ex-
periments on the SemanticKITTI multi-scan validation set
to examine the effects of each component in our proposed
method. As shown in Table 3, we gradually add three com-
ponents to the baseline method, including the CFFE mod-
ule, vanilla BEV branch (introduce only BEV representa-

§http://www.semantic-kitti.org/tasks - Semantic Seg-
mentation - Multiple Scans
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Figure 5. Sampled discrepant feature maps demonstrate that the
region that contains moving points are represented higher activa-
tion values than other regions.

tions and 2D CNN without the MAFL module), and the
MAFL module to illustrate the effectiveness of our designs.

Effiectiveness of CFFE Module: As shown in Table 3, we
first employ only the CFFE module with the baseline model
and observe a significant performance improvement. For
instance, with SPVCNN [25] as the backbone, the introduc-
tion of the CFFE module led to a boost in performance by
1.1% in terms of mIoU. This confirms the efficacy of the
CFFE module for multi-frame representation learning.

Effiectiveness of BEV Representation: We also observe
a significant performance improvement when we add the
vanilla BEV branch alone to the baseline model. Using
SPVCNN [25] as the backbone, the BEV branch results in
a 3.7% increase in mIoU. This confirms the importance of
BEV representations in extracting motion-aware informa-
tion. Furthermore, when both the CFFE module and the
vanilla BEV branch are added to the baseline model, there
is a further increase in performance, demonstrating that the
two components complement each other.
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Method CFFE BEV MAFL mIoU(%)
baseline - - - 49.7 / 49.0 / 48.5

proposed

✓ - - 50.8 / 51.3 / 52.1
- ✓ - 53.4 / 53.9 / 53.1
✓ ✓ - 53.6 / 54.2 / 54.1
✓ ✓ ✓ 54.7 / 54.6 / 54.7

Table 3. Ablation studies on different backbones (SPVCNN /
SparseConv / MinkUNet) on SemanticKITTI [1] public valida-
tion dataset. The effectiveness of different designs is demonstrated
step-by-step and our method is marked with a gray box.

Method Vanilla BEV TDNet [13] STM [18] Ours

mIoU(%) 53.36 53.56 (+0.20) 53.64 (+0.28) 54.66 (+1.30)

Table 4. Comparing our method (using SPVCNN [25] as the
backbone) with different 2D temporal semantic segmentation ap-
proaches the public validation dataset of SemanticKITTI [1].

Effiectiveness of MAFL Module: In the final experiment
presented in Table 3, we study the impact of our proposed
MAFL module on the BEV representations, resulting in an
increase of around 5.0% from the baseline model (using
SPVCNN [25] as the backbone). By stacking all the pro-
posed components together, our final solution (marked with
a grey box in Table 3) reaches its pinnacle in performance.
The improvement in other backbones is also significant, and
more statistical results are provided in the supplementary
material. In addition, the multi-channel discrepant feature
map represents the differences between the extracted fea-
ture maps of BEV representations from two point clouds.
For a discrepant feature map generated during inference, we
randomly sample the channels pixel by pixel. The average
absolute activation values of pixels with the same motion
state in the sampled channels are re-scaled and aggregated
into a single-channel feature map as shown in Figure 5.
The sampled discrepant feature map has higher activation
on pixels containing moving points compared to other re-
gions. This clearly demonstrates that the MAFL module
clearly distinguishes between regions that contain moving
points and those that do not.

5.3. More Comparison on Temporal Segmentation

As for BEV representation learning, the proposed MAFL
module is utilized on extracted 2D feature maps for captur-
ing inter-frame temporal information of point clouds. We
further conduct comparative experiments by replacing the
MAFL module with its 2D counterparts, i.e., STM [18] and
TDNet [13]. These 2D modules have been widely utilized
for preserving temporal information in 2D tasks. The results
of the comparative experiments using SPVCNN [25] as the
backbone are presented in Table 4. According to the eval-
uation results, it can be concluded that the MAFL module

shows superior performance compared to the other mod-
els, thereby confirming its remarkable effectiveness. This
shows that the proposed MAFL module is better suited for
the specific task of handling motion-aware semantic seg-
mentation in 3D point clouds.

5.4. Limitations and Failure Cases Analysis

Although MarS3D demonstrates impressive overall per-
formance on the SemanticKITTI multi-scan benchmark,
some limitations can be identified from the quantitative re-
sults in Table 1 and Table 2. The SemanticKITTI train-
ing dataset has an imbalanced distribution of point cate-
gories (more details are included in the supplementary ma-
terial), which causes MarS3D to perform poorly on long-
tailed categories due to insufficient training data on these
categories. As shown in Table 2, MarS3D fails to show
effects on several long-tail categories (i.e., bicyclist, motor-
cyclist, moving-other-vehicle, and moving-truck). Explor-
ing solutions to address the long-tail problem is a promising
research direction for the work. Since our model assumes
planar motion, it may not perform well in scenarios where
objects move in non-planar ways, such as on steep terrains
or on non-planar surfaces.

6. Conclusion

In this paper, we propose MarS3D, a novel plug-and-
play motion-aware model for 3D multi-scan point cloud se-
mantic segmentation. The Motion-Aware Feature Learn-
ing (MAFL) module, based on BEV representations, is
designed to facilitate extracting motion-aware representa-
tions. Additionally, the Cross-Frame Feature Embedding
(CFFE) module is introduced to improve representation
learning by embedding time-step information into features,
thus preserving rich temporal information. Extensive ex-
periments and ablation studies demonstrate that MarS3D
significantly improves multiple 3D semantic segmentation
baselines while introducing minimal overheads. In com-
parison to state-of-the-art methods designed for multi-scan
tasks, MarS3D achieves superior performance and offers
significant improvements over baseline methods. The pro-
posed MarS3D model demonstrates the potential for effec-
tively incorporating motion-awareness into 3D point cloud
semantic segmentation tasks, providing a strong foundation
for further research and development in this area.
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