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Abstract

Self-supervised facial representation has recently at-
tracted increasing attention due to its ability to perform
face understanding without relying on large-scale anno-
tated datasets heavily. However, analytically, current
contrastive-based self-supervised learning (SSL) still per-
forms unsatisfactorily for learning facial representation.
More specifically, existing contrastive learning (CL) tends
to learn pose-invariant features that cannot depict the pose
details of faces, compromising the learning performance.
To conquer the above limitation of CL, we propose a novel
Pose-disentangled Contrastive Learning (PCL) method for
general self-supervised facial representation. Our PCL first
devises a pose-disentangled decoder (PDD) with a deli-
cately designed orthogonalizing regulation, which disen-
tangles the pose-related features from the face-aware fea-
tures; therefore, pose-related and other pose-unrelated fa-
cial information could be performed in individual subnet-
works and do not affect each other’s training. Furthermore,
we introduce a pose-related contrastive learning scheme
that learns pose-related information based on data augmen-
tation of the same image, which would deliver more effective
face-aware representation for various downstream tasks.
We conducted linear evaluation on four challenging down-
stream facial understanding tasks, i.e., facial expression
recognition, face recognition, AU detection and head pose
estimation. Experimental results demonstrate that PCL sig-
nificantly outperforms cutting-edge SSL methods. Our Code
is available at https://github.com/DreamMr/PCL.

1. Introduction
Human face perception and understanding is an impor-

tant and long-lasting topic in computer vision. By analyzing
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Figure 1. The motivation of our method. Affected by differ-
ent poses, the popular CL method, e.g., SimCLR, treats pose and
other face information uniformly, resulting in sub-optimal results.
To alleviate this limitation for CL, our PCL attempts to disentan-
gle the learning on pose-related features and pose-unrelated facial
features, thus achieving more effective self-supervised facial rep-
resentation learning for downstream facial tasks.

faces, we can obtain various kinds of information, including
identities, emotions, and gestures. Recently, deep convolu-
tional neural networks (DCNNs) [20, 30, 62] have achieved
promising facial understanding results, but they require a
large amount of annotated data for model training. Since
labeling face data is generally a labor- and time-costly pro-
cess [61], it becomes important to enable DCNN models to
learn from unlabelled face images, which are much easier
to collect. Accordingly, researchers have introduced self-
supervised learning (SSL) schemes to achieve better learn-
ing performance on unlabeled facial data.

To achieve effective SSL performance, contrastive learn-
ing (CL) based strategy is widely applied in the community
[6,26,43]. In general, a CL-based method pulls two features
representing similar samples closer to each other and pushes
those of diverse samples far away from each other [56],
thus facilitating the DCNNs to learn various visual patterns
without annotations. Generally, without supervision, simi-
lar/positive samples of CL are obtained by augmenting the
same image, and the diverse/negative samples can refer to
different images. To learn from unlabelled face images, ex-
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isting CL-based methods [48,53,65] have achieved effective
self-supervised facial representation learning.

However, despite progress, we found that directly uti-
lizing CL-based methods still obtained sub-optimal perfor-
mance due to the facial poses. In particular, CL-based meth-
ods treat the augmented images from the same image as
positive samples. In such a manner, the learned features
are pose-invariant, which cannot recognize the variances of
facial poses. Nevertheless, poses are one significant con-
sideration for facial understanding [1, 51]; for example, a
person tends low their head when they feel sad.

To tackle the above limitation of CL, we propose a Pose-
disentangled Contrastive Learning (PCL) method, which
disentangles the learning on pose-related features and pose-
unrelated facial features for CL-based self-supervised facial
representation learning. Fig. 1 has shown an intuitive exam-
ple of contrastive learning results. Specifically, Our method
introduces two novel modules, i.e., a pose-disentangled de-
coder (PDD) and a pose-related contrastive learning scheme
(see Fig. 2). In the PDD, we first obtain the face-aware
features from a backbone, such as ResNet [10, 27], Trans-
former [11, 16–18, 40], and then disentangle pose-related
features and pose-unrelated facial features from the face-
aware features using two different subnets through facial
reconstruction. In facial reconstruction, the combination of
one pose-unrelated facial feature and one pose-related fea-
ture can reconstruct an image with the same content as the
pose-unrelated facial feature and the same pose as the pose-
related feature. Furthermore, an orthogonalizing regulation
is designed to make the pose-related and pose-unrelated fea-
tures more independent.

In the pose-related contrastive learning, instead of learn-
ing pose-invariant features by normal CL, we introduce
two types of data augmentation for one face image, one
containing pose augmentation and another only containing
pose-unrelated augmentation. Therefore, image pairs gen-
erated by using pose augmentation contain different poses
and serve as negative pairs, whereas image pairs generated
from pose-unrelated augmentation contain the same pose as
the original image and are treated as positive pairs. The
pose-related CL is conducted to learn pose-related features,
and face CL is used to learn pose-unrelated facial features.
Therefore, our proposed pose-related CL can learn detailed
pose information without disturbing the learning of pose-
unrelated facial features in the images.

In general, the major contributions of this paper are sum-
marized as follows:

1. We propose a novel pose-disentangled contrastive
learning framework, termed PCL, for learning unla-
beled facial data. Our method introduces an effec-
tive mechanism that could disentangle pose features
from facial features and enhance contrastive learning
for pose-related facial representation learning.

2. We introduce a PDD using facial image reconstruction
with a delicately designed orthogonalizing regulation
to help effectively identify and separate the face-aware
features obtained from the backbone into pose-related
and pose-unrelated facial features. The PDD is easy-
to-implement and efficient for head pose extraction.

3. We further propose a pose-related contrastive learn-
ing scheme for pose-related feature learning. Together
with face contrastive learning on pose-unrelated facial
features, we make both learning schemes cooperate
with each other adaptively and obtain more effective
learning performance on the face-aware features.

4. Our PCL can be well generalized to several down-
stream tasks, e.g., facial expression recognition (FER),
facial AU detection, facial recognition, and head pose
estimation. Extensive experiments show the superior-
ity of our PCL over existing SSL methods, accessing
state-of-the-art performance on self-supervised facial
representation learning.

2. Related Work
Contrastive Learning Contrastive learning (CL) has
been widely used in self-supervised learning and has
yielded significant results in many vision tasks [6–9, 25,
26, 46, 57, 66]. CL aims to map features of samples onto a
unit hypersphere such that the feature distances of the posi-
tive sample pairs on the sphere are similar. In contrast, the
feature distances of the randomly sampled negative sample
pairs are pushed apart [56]. Recent breakthroughs in CL,
such as MoCo [26] and SimCLR [6], shed light on the po-
tential of discriminative models for visual representation.
Thanks to a large number of negative samples, MoCo main-
tained a queue of negative samples to improve the capacity
of CL [26]. Chen et al. [6] proposed a new self-supervised
framework SimCLR to model the similarity of two images
for learning visual representations without human supervi-
sion. SimSiam is proposed for exploring simple siamese
representation learning by maximizing the similarity be-
tween two augmentations of one image, subject to certain
conditions for avoiding collapsing solutions [8].

Self-supervised Facial Representation Learning Self-
supervised facial representation learning is important for
many face-related applications, such as FER, face recog-
nition, AU detection, etc. [3–5, 28, 31, 35, 58]. Due to its
capacity of learning on unlabelled data, an increasing num-
ber of research efforts are focusing on self-supervised face
representation learning. FAb-Net used the motion changes
between different frames of a video to learn facial mo-
tion features, and has achieved good results in FER [31].
Li et al. [34, 35] proposed a Twin-Cycle Autoencoder that
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Figure 2. The overview of PCL for self-supervised facial representation learning. We first use a pose-disentangled decoder with an
orthogonalizing regulation Lorth to help extract pose-related features (e.g., F⃗pi) and pose-unrelated facial features (e.g., F⃗fi) from input
augmented images (e.g., si), and then introduce pose-related contrastive learning and face contrastive learning schemes to further learn on
the extracted features adaptively, resulting in more effective face-aware representation learning.

can disentangle the facial action-related movements and the
head motion-related ones, obtaining good facial emotion
representation for self-supervised AU detection [35]. Face-
Cycle decoupled facial expression and identity information
via cyclic consistency learning to extract robust unsuper-
vised facial representation, thus achieving good results in
both FER and facial recognition [3]. Zheng et al. pre-
sented an study about the transferable visual models learned
in a visual-linguistic manner on general facial representa-
tions [65]. Roy et al. [48] proposed a CL-MEx for pose-
invariant expression representation by exploiting facial im-
ages captured from different angles. Shu et al. [53] used
three sample mining strategies in CL to learn expression-
related features. Overall, most of the existing work is craft-
ing facial representation learning for a single task, and gen-
eral self-supervised facial representation learning remains
an open research problem.

3. The Proposed Approach

The overview of our proposed pose-disentangled con-
trastive learning is presented in Fig. 2. Our PCL mainly
consists of two novel modules, i.e., a pose-disentangled
decoder (PDD) and a pose-related contrastive learning
scheme. Tacking a face image as input, the PDD of PCL
first employs a backbone network like ResNet [10,27] to ex-
tract general facial features and then attaches two subnets to
produce separate pose-related features and pose-unrelated
facial features. To train the PDD properly, we reconstruct

the face through the combination of the two types of fea-
tures with an orthogonalizing regulation posed on the sep-
arated features for better disentanglement. Then, we in-
troduce pose-related contrastive learning to train the pose-
related features and use face contrastive learning scheme to
learn pose-unrelated facial features. We make the two learn-
ing objectives cooperate with each other adaptively, obtain-
ing more promising self-supervised facial representations.
Our PCL method can fulfill the training of neural networks
in an end-to-end manner. In the following sections, we will
describe the details of PCL.

3.1. Pose-disentangled Decoder

Previous CL-based methods [6, 26] treat pose and other
facial information uniformly, resulting in pose-invariant
features that cannot recognize the details of poses. One pos-
sible solution is not using pose augmentation for training.
However, such a manner would reduce the training data di-
versity and further reduce the performance. To conquer the
above limitation of CL, we design a PDD to disentangle
the pose-related and pose-unrelated facial representations
from the face-aware features. Therefore, through the indi-
vidual learning information from the pose-related and pose-
unrelated facial features, the face-aware features could be
used as a well facial representation that properly depicts the
face, including the pose and other useful information.

Nevertheless, identifying and separating the pose-related
and pose-unrelated facial features is nontrivial. To tackle
this problem, the PDD assists the training of the two types
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Figure 3. The training pipeline of PDD. Given the face image s
and its pose-varied image ŝ as input, we first use a backbone to en-
code facial features of input images, and then use two separating
subnets, i.e., gf (·) and gp(·), to extract pose-unrelated and pose-
related facial features, respectively. Finally, we employ a face re-
construction network D to translate the extracted two types of fea-
tures into reconstructed faces. Moreover, an orthogonalizing reg-
ulation Lorth is used for training the PDD to make the separated
features independent of each other.

of features through reconstructing faces: one image with a
specific pose could be reconstructed through the combina-
tion of the pose-unrelated facial feature of the correspond-
ing image and the pose-related feature of the given pose.

The overall pipeline of PDD is presented in Fig. 3. PDD
consists of a shared backbone network, two separating sub-
net branches, and a shared reconstruction network. In this
paper, the backbone network is a shallow 16-layer resid-
ual network for learning facial features from input face im-
age. Note that our PCL can marry with any other back-
bones, such as VGG [55] and Transformer. Then, two extra
separating subnets attach to the backbone are used to sepa-
rate the obtained features into the pose-related features and
the pose-unrelated facial features (both features are 2048-
dimensional features in practice), respectively. Finally, we
employ a 6-layer blocks with each of an upsampling layer
and convolutional layer as the reconstruction network to
translate the combination of the pose-related features and
pose-unrelated facial features into a reconstructed face.

Formally, given an input face image s, we represent its
pose as p. We represent the same face with a different
pose as ŝ with its pose p̂. In PDD, we use the backbone
B to encode face data into a facial feature F⃗s with the pose.
We would like to mention again that the final learned F⃗s is
the self-supervised face-aware representation for the down-
stream task evaluation. Then, two separating branches, de-
noted as gp(·) and gf (·), are employed to extract the pose-
related feature F⃗p and the pose-unrelated facial feature F⃗f ,
respectively. Meanwhile, using the same backbone and sep-
arating branches, we have corresponding features F⃗f̂ and

F⃗p̂ for the pose-varied face ŝ. According to the goal of
PDD, the F⃗f and F⃗f̂ are supposed to represent the same fa-

cial features, while the F⃗p and F⃗p̂ are supposed to describe
different pose-related features. To achieve this, we intro-

duce a reconstruction network D to translate pose-related
and pose-unrelated facial features into reconstructed faces
that can be defined explicitly. As a result, we suppose the
PDD should satisfy the following transformations:

D(F⃗f , F⃗p) = s, D(F⃗f , F⃗p̂) = ŝ,

D(F⃗f̂ , F⃗p) = s, D(F⃗f̂ , F⃗p̂) = ŝ.
. (1)

The above goals indicate that the PDD should reconstruct
the same face but different poses according to varied pose-
related features. When the above transformations can be
satisfied, we can then consider that the PDD tends to have
the ability to separate the pose-related feature Fp from pose-
unrelated facial feature Ff properly. Otherwise, for ex-
ample, if F⃗f still contains redundant feature about p, the
D(F⃗f , F⃗p̂) would not generate the ŝ image appropriately
and would tend to produce the s instead.

To make PDD satisfy the above transformations, the dis-
entangled objective Ldis of the PDD is:

Ldis = ||s−D(F⃗f , F⃗p)||1 + ||ŝ−D(F⃗f , F⃗p̂)||1
+ ||s−D(F⃗f̂ , F⃗p)||1 + ||ŝ−D(F⃗f̂ , F⃗p̂)||1,

(2)

where || · ||1 represents l1-norm. Additionally, we also try
to use GAN [21] instead of the l1-norm; however, GAN can
only make generated images approximate the real images
but cannot guarantee the poses of the generated images. For
more discussion, see our supplemental material.

Moreover, to disentangle the extracted features more
properly, an orthogonalizing regulation is further introduced
to make the extracted features uncorrelated. Therefore, we
constrain that the F⃗f and F⃗p should be orthogonal to each
other. To achieve this, inspired by [2,24,36,49], the orthog-
onalizing regulation Lorth is defined as follows:

Lorth =
1

N
(

N∑
i=1

||F⃗f · F⃗p||22 +
N∑
i=1

||F⃗f̂ · F⃗p̂||22). (3)

During learning, minimizing the Lorth can help force the
dot-products of pose-related and pose-unrelated facial fea-
tures to reach near zero, thus making them orthogonal to
each other. Finally, we define the total optimization objec-
tive LPDD of the PDD, including the disentangled loss and
orthogonalizing regulation as:

LPDD = Lorth + Ldis. (4)

3.2. Pose-related Contrastive Learning

Normal CL tends to learn pose-invariant features. There-
fore, we further devise a Pose-related Contrastive Learning
to enable effective self-supervised learning on pose infor-
mation, suppressing the side effects of pose-invariant fea-
tures. Since it is unknown whether different faces have the
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same pose or not, it is difficult to construct pose positive
and negative sample pairs well by directly using data aug-
mentation in contrastive learning. To address this problem,
unlike the normal CL that treats different face individuals
as negative pairs, we propose a pose augmentation method
for pose-related contrastive learning, i.e., for the same face
image, we apply pose transformation and image transforma-
tion to it separately, then consider the same image pairs con-
taining different (augmented) poses as negative pairs and
the same image with containing the same (unaugmented)
pose as positive pairs for contrastive learning on the pose.
Through this way, pose-related contrastive learning can fo-
cus on learning pose information without being influenced
by images with the same pose as the negative samples.

Formally, for the input face image s, we use the specific
pose augmentation (such as flipping and rotation) to gener-
ate M negative samples ŝM , i.e., ŝM = {ŝm}Mm=1, resulting
in a negative pair (ŝi and ŝm), while using a stochastic data
augmentation (such as, random crop, color jitter, Gaussian
blur, and Sobel filtering) to obtain a positive pair (si and sj),
as shown in Fig. 2. Both the positive and negative pairs are
passed through the PDD to extract the pose-related features
as F⃗pi

, F⃗pj
and F⃗p̂m

, respectively. Overall, the pose-related
contrastive loss is written as:

Lpose(F⃗pi
, F⃗pj

, F⃗p̂m
) = lp(F⃗pi

, F⃗pj
) + lp(F⃗pj

, F⃗pi
),

lp(F⃗pi
, F⃗pj

) = −log
exp(

sim(F⃗pi
,F⃗pj

)

τ )∑M
m=1 exp(

sim(F⃗pi
,F⃗p̂m )

τ )
,

(5)

where sim(·) is the pairwise cosine similarity. τ denotes
a temperature parameter. Through the pose-related con-
trastive learning, our PCL can learn more detailed pose in-
formation from facial images without disturbing the learn-
ing of pose-unrelated facial features.

3.3. Overall Optimization Objectives

Together with pose-related contrastive learning on the
pose-related features, we employ face contrastive learning
on the pose-unrelated facial features, thus using two dif-
ferent subnetworks with different CL strategies to alleviate
the side effects of pose information for learning face pat-
terns. More specifically, we randomly sample a minibatch
of N face images, and use a stochastic data augmentation
to transform any given input face image s, resulting in two
correlated views of the same face as a positive pair si and
sj . Secondly, each positive pair, e.g., si and sj in Fig. 2, are
passed through the PDD to extract the pose-unrelated facial
features F⃗fi and F⃗fj , respectively. The contrastive loss on
the face branch is written as:

Lface(F⃗fi , F⃗fj ) = lf (F⃗fi , F⃗fj ) + lf (F⃗fj , F⃗fi),

lf (F⃗fi , F⃗fj ) = −log
exp(

sim(F⃗fi
,F⃗fj

)

τ )∑2N
z=1 1[i ̸=z]exp(

sim(F⃗fi
,F⃗fz )

τ )
,

(6)

where F⃗fz is from negative pairs.
Therefore, during training, our PCL has three major ob-

jectives: the disentangled lose LPDD of PDD, the pose-
related contrastive loss Lpose on the pose-related features,
and the face contrastive loss Lface on the pose-unrelated fa-
cial features. The overall objective function L of the PCL is
the weighted sum of LPDD, Lpose, and Lface. Mathemati-
cally, the total loss L can be written as:

L = LPDD + αpose · Lpose + αface · Lface, (7)

where αpose and αface are two dynamic weights to adap-
tively balance the pose and face learning objectives in the
multi-task learning manner according to their contributions
to facial representations. We employ the Dynamic Weight
Average (DWA) [37] to obtain the αpose and αface during
training. More details of dynamic weight learning can be
seen in the supplemental material. We also show in the
experiments that adding the dynamic weight learning im-
proves performance (see Table 5), demonstrating the use-
fulness of adaptive cooperation of two CL schemes.

4. Experiments
In this section, we verified the effectiveness of our pro-

posed PCL by answering two questions:
Q1: does our facial representation perform well and has

generalizability? (Refer to section 4.2)
Q2: whether the improvements come from the contribu-

tions we proposed in this paper? (Refer to section 4.3)
We further visualized the contents of learned features to

demonstrate the reasonability of PCL. (Refer to section 4.4)

4.1. Experimental Settings

Datasets The proposed PCL was trained on the combina-
tion of VoxCeleb1 [44] and VoxCeleb2 [12] datasets with-
out any annotations. The VoxCeleb1 and VoxCeleb2 have
299,085 video clips of around 7,000 speakers. We extracted
the video frames at 6 fps, cropped to faces shown in the cen-
ter of frames and then resized to the resolution of 64 × 64
for training [3].

For FER evaluation, we used two widely-used FER
datasets, i.e., FER-2013 [22] and RAF-DB [32]. The FER-
2013 consists of 28,709 training and 3,589 testing images.
We followed the experimental setup as [3] to particularly
use the basic emotion subset of RAF-DB with 12,271 train-
ing and 3,068 testing images.

For facial recognition evaluation, we adopt two in-
the-wild facial identity datasets, i.e., LFW [29] and
CPLFW [64]. The LFW consists of 13,233 face images
from 5,749 identities and has 6,000 face pairs for evalu-
ating identity verification. The CPLFW dataset includes
3,000 positive face pairs with pose differences to add pose
variation to intra-class variance. All reported results were
averaged across the 10 folds.
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For facial AU detection, we evaluated our method on the
DISFA [42] dataset with 26 participants. The AUs are la-
beled with intensities from 0 to 5. The frames with inten-
sities greater than 1 are considered positive, while others
are treated as negative. In total, we obtained about 130,000
AU-labelled frames and followed the experimental setup of
[35] to conduct a 3-fold cross-validation.

For head pose estimation, we adopt two widely-used
tasks, i.e., pose regression (trained on 300W-LP [50] and
evaluated on AFLW2000 [67]) and pose classification (on
BU-3DFE [59]). The 300W-LP contains 122,450 images
and AFLW2000 contains 2000 images. For pose classifi-
cation, following the experimental setup as [39], we used
BU-3DFE with 14,112 images for training and the rest of
6,264 images for validation.
Implementation Details Our proposed model was imple-
mented based on the PyTorch framework and trained with
the Adam optimizer (β1 = 0.9, and β2 = 0.999) for 1000
epochs. The batch size and initial learning rate are set to
256 and 0.0001, respectively. The learning rate is decreased
by cosine annealing. The temperature parameter τ is set to
0.07. The baseline SimCLR [6] used the data augmentation
(such as random crop, color jitter, Gaussian blur, and Sobel
filtering) and negative interpolation [66] for training.

Referring to [3] and [31], the backbone of our model
is a simple 16-layer CNN, and the reconstruction network
is a simple 6-layer block with each of an upsampling layer
and a convolutional layer. The gf (·) and gp(·) are convolu-
tional subnets with the same architecture. We will give the
detailed network structure in the supplementary material.

In addition, we explored different choices of varying the
pose p for training PDD like flipping and rotation. However,
the experimental results demonstrate that flipping p is the
most effective way to help PDD learn to identify and sep-
arate pose from facial representations (0.43% improvement
over adding rotation and translation). To trade off between
efficiency and accuracy, we used pose flipping for training
PDD in this study.
Evaluation Protocols We followed the widely used linear
evaluation protocol in SSL [3, 6, 8, 9, 14, 23, 25, 26, 35] to
verify our method. The linear classifier is a simple linear
fully-connected layer, and is trained with the frozen self-
supervised face-aware representation F⃗s from the backbone
B for 300 epochs.

Following [3, 14, 35], we resized the images to the size
100×100, 128×128, 256×256 and 256×256 respectively,
for FER, face recognition, AU detection and pose-related
downstream tasks.

4.2. Performance Comparison for Q1

4.2.1 Evaluation for Facial Expression Recognition

Given the trained model, we investigated the learned F⃗s

by evaluating the performance of its applications on FER.

The quantitative results shown in Table 1 demonstrate that
our proposed method is able to provide superior perfor-
mance with respect to other methods. Compared to the Sim-
CLR [6], the proposed PCL improves the accuracy by over
7.3% and 3.41%, respectively. These results suggest that
our PCL can be used as a pretext task to learn an effec-
tive self-supervised facial representation with rich expres-
sion information for the FER task.

Table 1. Evaluation of the FER task on the FER-2013 and RAF-
DB datasets. (Note: the highest results of self-supervised methods
are highlighted in bold, and * indicates the results reproduced by
authors.)

FER-2013 RAF-DB
Method Accuracy(%) Accuracy(%)
Fully supervised
FSN [63] 67.60 81.10
ALT [19] 69.85 84.50
Self-supervised (linear evaluation)
LBP [45] 37.89 52.17
HoG [13] 45.47 63.53
FAb-Net [31] 46.98 66.72
TCAE [35] 45.05 65.32
BMVC’20 [41] 47.61 58.86
MoCo [26] 47.24 68.32
FaceCycle [3] 48.76 71.01
SimCLR [6]* 49.51 71.06
Ours 56.81 74.47

4.2.2 Evaluation for Facial Recognition

For the facial recognition task, our learned self-supervised
face-aware features also outperform other self-supervised-
based facial representations. As shown in Table 2, our PCL
achieved the best accuracy of 79.72% and 64.61% on LFW
and CPLFW, respectively, which are 3.75% and 1.26% bet-
ter than the results of the state-of-the-art method. The im-
provements suggest that our PCL can be used as an effective
pretext task for facial identity recognition.

4.2.3 Evaluation for Facial AU Detection

Facial AU detection estimates whether each AU in the face
image or video is activated. We followed the [35] and used
a binary cross-entropy loss to train a linear classifier for
AU detection. Table 3 reports the comparison of our PCL
and the state-of-the-art self-supervised methods, as well as
the full supervised methods. We evaluated not only the
same backbone approaches as ours but also deeper back-
bone approaches. The results show that our method still has
a clear advantage. As shown in Table 3, our method out-
performs other self-supervised methods in the average F1
score. Thanks to disentangled facial features, the learned fa-
cial representation can better reflect facial actions. In addi-
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Table 2. Evaluation of facial recognition on the LFW and CPLFW
datasets. (Note: the highest results of self-supervised methods are
highlighted in bold, and * indicates the results reproduced by au-
thors.)

LFW CPLFW
Method Accuracy(%) Accuracy(%)
Fully supervised
VGG-Face [47] 98.95 84.00
SphereFace [38] 99.42 81.40
ArcFace [15] 99.53 92.08
Self-supervised (Linear evaluation)
LBP [45] 72.44 -
VGG [14] 72.20 -
MoCo [26]* 65.88 57.82
SimCLR [6]* 75.97 62.25
FaceCycle [3]* 74.12 63.35
Ours 79.72 64.61

tion, our PCL has reached the fully supervised level, and the
average F1 has exceeded the full supervised DRML [62] by
28.1 and the EAC-Net [33] by 6.3, respectively.

Table 3. Evaluation of facial AU detection on the DISFA dataset.
We use F1 score for the evaluation. (Note: the highest results of
self-supervised methods are highlighted in bold, and * indicates
the results reproduced by authors.)

Methods/AU 1 2 4 6 9 12 25 26 ave

Supervised
DRML [62] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-Net [33] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA-Net [52] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

Self-superivised

SplitBrain [60] 13.1 10.6 35.7 40.2 30.2 57.5 77.4 40.3 38.1
DeformAE [54] 17.6 12.3 46.7 43.5 26.0 62.7 64.8 47.6 40.1
Fab-Net [31] 15.5 16.2 43.2 50.4 23.2 69.6 72.4 42.4 41.6
TCAE [35] 15.1 16.2 50.5 48.7 23.3 72.1 72.4 42.4 45.0
TCAE [35]* 10.5 13.3 20.9 18.8 7.5 44.7 57.8 9.9 22.9
FaceCycle [3]* 26.4 10.2 37.3 21.5 25.0 71.8 84.2 34.7 38.9
SimCLR [6]* 40.5 46.9 53.8 33.5 24.9 74.7 85.0 35.6 49.4
Ours 53.8 44.9 58.1 37.2 53.2 73.1 86.5 31.3 54.8

4.2.4 Evaluation for Head Pose Estimation

We evaluated our PCL on two pose-related tasks, includ-
ing pose regression (trained on 300W-LP and evaluated on
AFLW2000) and pose classification (on BU-3DFE). We
compared with different SSL methods in Table. 4. Our PCL
achieved the lowest mean absolute error (MAE) of 12.36 on
AFLW2000 and the best accuracy of 98.95% on BU-3DFE,
outperforming the other self-supervised methods.

Table 4. Evaluation on head pose estimation. (↓ represents the
smaller is better. ↑ represents the larger is better.)

AFLW2000 (pretrained on 300W-LP) BU-3DFE
Yaw↓ Pitch↓ Roll↓ MAE↓ Accuracy (%)↑

FaceCycle [3] 11.70 12.76 12.94 12.47 98.82
MoCo [26] 28.49 16.29 15.55 20.11 75.33

SimCLR [6] 11.20 19.86 12.08 14.38 98.85
Ours 9.86 16.59 10.62 12.36 98.95

Table 5. Ablation study of the proposed PCL. Impact of inte-
grating different components ( i.e., PDD and pose-related con-
trastive learning Lpose) into the baseline (SimCLR) on the RAF-
DB dataset.

Baseline (SimCLR) PDD Contrastive learning FER
Ldis Lorth Lpose Dynamic weighting

✓ 71.06
✓ ✓ 71.47
✓ ✓ ✓ 72.39
✓ ✓ ✓ ✓ 73.73
✓ ✓ ✓ ✓ ✓ 74.47

4.3. Ablation Study and Analysis for Q2

Effect of Different Modules To better understand the role
of each module in our PCL, Table 5 presents the ablation
results of the gradual addition of different components into
the baseline (SimCLR w/o pose augmentation) for FER
on the RAF-DB dataset. The baseline achieved a FER
accuracy of 71.06%. Compared with the baseline, sepa-
rating the pose-related features from face-aware features
slightly improved the performance by 0.41%. The further
addition of Lorth improved the FER accuracy to 72.39%.
We emphasized that this is the result of using two normal
contrastiveing learning schemes on the two features sepa-
rated by PDD. A significant improvement of 1.34% was ob-
tained after adding the pose-related contrast learning Lpose,
verifying that pose-related face information can help im-
prove CL-based self-supervised facial representation per-
formance. Additionally, the dynamic weighting achieved
the best accuracy of 74.47%.

Table 6. The effects of poses on SimCLR and our PCL (w/o Dy-
namic weighting).

Tasks SimCLR w/o pose SimCLR w/ pose PCL w/o pose PCL w/ pose
FER(RAF-DB) 71.06 73.17 73.24 73.73

Pose estimation(BU-3DFE) 98.93 98.85 98.40 98.95

Effect of Poses on Contrastive Learning In order to fur-
ther discuss the pose-invariant face features learned by Sim-
CLR [6] and the pose-related face-aware features learned
by our PCL, Table 6 shows the comparison of SimCLR
with and without pose augmentation, as well as our PCL
with and without pose-related contrastive loss Lpose, re-
spectively, on the RAF-DB dataset. SimCLR w/ pose
achieved a relative accuracy increase of 2.97% to SimCLR
w/o pose on FER, while a relative decrease in pose estima-
tion (about 0.09%). The result demonstrates that learning
pose-invariant features can help improve CL performance.

In addition, PCL w/ pose achieved satisfied improvement
in both FER (relative increase of 3.76%) and pose estima-
tion (an increase of 0.02%), due to effectively exploring
pose-unrelated facial and pose-related features. However,
PCL w/o pose can not learn pose-related information, re-
sulting in a slight decrease in both FER (decrease 0.49%)
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Table 7. Linear evaluation with different face features. F⃗f + F⃗p

means to add the pose-related feature F⃗p with the pose-unrelated
facial feature F⃗f , and F⃗s represents the face-aware feature.

Different features RAF-DB LFW DISFA
F⃗f 73.04 78.55 54.30
F⃗p 65.71 62.55 34.17
F⃗s 74.47 79.72 54.78

F⃗f + F⃗p 73.53 79.10 56.26

(a) image s (b) �⃗�𝐹�̂�𝑓 + �⃗�𝐹𝑝𝑝 (d) �⃗�𝐹𝑓𝑓(c) �⃗�𝐹𝑓𝑓+ �⃗�𝐹�𝑝𝑝 (e) �⃗�𝐹𝑝𝑝 (f) �⃗�𝐹�𝑝𝑝

Figure 4. The reconstructed faces with disentangled pose-
unrelated facial and pose-related features. (a) Source image s,
(b)-(f) the reconstructed faces with different features. F⃗f : pose-
unrelated facial feature from s, F⃗p: pose-related feature from s,
F⃗f̂ : pose-unrelated facial feature from pose-flipped ŝ, F⃗p̂: pose-
related feature from pose-flipped ŝ.

and pose estimation (decrease 0.55%). The experiment re-
sult shows that poses are one significant consideration for
facial understanding.
Comparison of Different Learned Features Table 7
shows a linear evaluation with different facial features ex-
tracted from the backbone and the followed two subnets,
i.e., F⃗s extracted from the backbone B, F⃗f extracted from
gf (·), and F⃗p extracted from gp(·), in our PCL. For a fair
comparison, the facial images were rescaled to the same
size, and all the features were normalized to the same di-
mension in each case. The face-aware features F⃗s extracted
from the backbone B achieved the best performance for
FER and facial recognition tasks, respectively. Compared
with single F⃗f , We added the pose-related features F⃗p with
the pose-unrelated facial features F⃗f and gained improve-
ment on three tasks by 0.49%, 0.55%, and 1.96%, respec-
tively. The result demonstrates that pose-related informa-
tion can be complementary to face information for achiev-
ing more effective face-aware representation in CL.

4.4. Visualization

Fig. 4 visualizes the reconstructed faces with the pose-
related and pose-unrelated facial features disentangled by
our method. As shown in Fig. 4(b) and (c), our PCL suc-
cessfully reconstructed the same faces but different poses
according to varied pose-related features and the same pose-
unrelated facial features, i.e. F⃗f̂ + F⃗p and F⃗f + F⃗p̂, which
shows the capability in separating pose-related features.
Fig. 4(d) shows the reconstructed frontal faces with the
pose-unrelated facial features F⃗f from the image s, which
demonstrates that our PCL is able to effectively disentangle
the facial features without poses. Additionally, as shown
in Fig. 4(e) and (f), we just used pose-related features from
the image s and its pose-flipped image ŝ, i.e. F⃗p and F⃗p̂.
Obviously, the generated images only include varied pose
information with few face patterns.

5. Conclusions
In this paper, a novel pose-disentangled contrastive

learning (PCL) is proposed for general self-supervised fa-
cial representation learning. PCL introduces two novel
modules, i.e., a pose-disentangled decoder (PDD) and a
pose-related contrastive learning scheme. First, the PDD
with a designed orthogonalizing regulation learns to dis-
entangle pose-related features from face-aware features,
thus obtaining pose-related and other pose-unrelated fa-
cial features independent of each other. Then, together
with face contrastive learning on pose-unrelated facial fea-
tures, we further propose a pose-related contrastive learn-
ing scheme on pose-related features. Both two learning
schemes cooperate with each other adaptively for more ef-
fective self-supervised facial representation learning per-
formance. With the two components, the proposed PCL
achieved a vastly improved performance on four down-
stream face tasks, ( i.e., facial expression recognition, fa-
cial recognition, facial AU detection, and head pose estima-
tion). Extensive experiments demonstrate that PCL is su-
perior to other state-of-the-art self-supervised methods, ob-
taining strong robust self-supervised facial representation.
In the future, we will continue to discuss the effects of other
face-related attributions, such as ages, makeup and occlu-
sion. We believe the proposed approach can be well ex-
tended to decouple other relevant information for more ro-
bust self-supervised and unsupervised facial representation.
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