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Abstract

The goal of correspondence pruning is to recognize cor-
rect correspondences (inliers) from initial ones, with appli-
cations to various feature matching based tasks. Seeking
neighbors in the coordinate and feature spaces is a com-
mon strategy in many previous methods. However, it is
difficult to ensure that these neighbors are always consis-
tent, since the distribution of false correspondences is ex-
tremely irregular. For addressing this problem, we propose
a novel global-graph space to search for consistent neigh-
bors based on a weighted global graph that can explicitly
explore long-range dependencies among correspondences.
On top of that, we progressively construct three neighbor
embeddings according to different neighbor search spaces,
and design a Neighbor Consistency block to extract neigh-
bor context and explore their interactions sequentially. In
the end, we develop a Neighbor Consistency Mining Net-
work (NCMNet) for accurately recovering camera poses
and identifying inliers. Experimental results indicate that
our NCMNet achieves a significant performance advantage
over state-of-the-art competitors on challenging outdoor
and indoor matching scenes. The source code can be found
at https://github.com/xinliu29/NCMNet.

1. Introduction
Estimating high-quality feature correspondences be-

tween two images is of crucial significance to numerous
computer vision tasks, such as visual simultaneous local-
ization and mapping (SLAM) [33], structure from mo-
tion (SfM) [41, 49], image fusion [31], and image reg-
istration [48, 51]. Off-the-shelf feature extraction meth-
ods [4, 29, 52] can be employed to establish initial corre-
spondences. Due to complex matching situations (e.g., se-
vere viewpoint variations, illumination changes, occlusions,
blurs, and repetitive structures), a great number of false cor-
respondences, called outliers, are inevitable [19, 30]. To
mitigate the negative impact of outliers for downstream
tasks, correspondence pruning [5, 24, 53] can be imple-
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Figure 1. The acquisition process and visual comparison of (a)
spatial neighbors, (b) feature-space neighbors, and (c) global-
graph neighbors. SGC: the spectral graph convolution operation.

mented to further identify correct correspondences, also
known as inliers, from initial ones. However, unlike images
that contain sufficient information, e.g., texture and RGB
information, correspondence pruning is extremely challeng-
ing since the spatial positions of initial correspondences are
discrete and irregular [55].

Intuitively, inliers commonly conform to consistent con-
straints (e.g., lengths, angles, and motion) under the
2D rigid transformation, while outliers are randomly dis-
tributed, see the top left of Fig. 1. Therefore, the con-
sistency of correspondences as a vital priori knowledge
has been studied extensively to distinguish inliers and out-
liers [9, 13, 14], in which the neighbor consistency has re-
ceived widespread attention [25, 26, 57]. For well-defined
neighbors, previous approaches [5, 8, 27] employ k-nearest
neighbor (knn) search in the coordinate space of raw corre-
spondences to seek spatially consistent neighbors, denoted
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as spatial neighbors. Subsequently, several works, such
as CLNet [57] and MS2DG-Net [11], search for feature-
consistent neighbors (i.e., feature-space neighbors) by per-
forming knn search in the feature space learned from the
neural network. They devise various strategies to exploit
the neighbor consistency of correspondences, and show sat-
isfactory progress. Nevertheless, there may exist numerous
outliers in the vicinity of an inlier due to the random dis-
tribution of outliers, especially for the challenging match-
ing scenes. As shown in Fig. 1, in the coordinate and fea-
ture spaces, the searched neighbors of a sampled inlier (blue
line) always contain some unexpected outliers (red line).

To tackle this issue, we propose a new global-graph
space to seek consistent neighbors for each correspondence.
Inspired by the fact that inliers have strong consistency at
a global level [13, 22, 23], we first construct a weighted
global graph, in which nodes denote all correspondences
and edges represent their pairwise affinities calculated by
the preliminary inlier scores. The dependence between two
correspondences is determined to be tight if they have high
scores simultaneously. Next, we use a spectral graph con-
volution operation [21,57] to further explore long-range de-
pendencies among correspondences and increase the dis-
crimination between inliers and outliers. We finally adopt
knn search in the global-graph space to search for globally
consistent neighbors, called global-graph neighbors as il-
lustrated in Fig. 1(c). Noteworthily, the positions of global-
graph neighbors are not required to be spatially close to the
sampled inlier. In other words, this kind of neighbor has a
large search region (see the ablation for quantitative results)
due to our global operation.

Moreover, a single type of neighbor is inadequate for
all complex matching situations. Therefore, we present a
new Neighbor Consistency (NC) block to take full advan-
tage of three types of neighbors and improve the robust-
ness. Specifically, we progressively construct three neigh-
bor embeddings according to the spatial, feature-space, and
global-graph neighbors. To extract corresponding neigh-
bor context and explore their interactions, we design two
successive layers, i.e., Self-Context Extraction (SCE) layer
and Cross-Context Interaction(CCI) layer. The SCE layer
is responsible for dynamically capturing intra-neighbor re-
lations and aggregating their context, while the CCI layer
fuses and modulates inter-neighbor interactive information.
Finally, an effective Neighbor Consistency Mining Network
(NCMNet) is developed to achieve correspondence pruning.

Our contributions are three-fold: (1) Based on the fact
that inliers have strong consistency at a global level, we pro-
pose a novel global-graph space to seek consistent neigh-
bors for each correspondence. (2) We present a new NC
block to progressively mine the consistency of three types of
neighbors by extracting intra-neighbor context and explor-
ing inter-neighbor interactions in a sequential manner. (3)

We develop an effective NCMNet for correspondence prun-
ing, obtaining considerable performance gains when com-
pared to state-of-the-art works.

2. Related Work

RANSAC-Related Methods. RANSAC [13] is one
of the most renowned handcrafted techniques over the
past decades, which adopts a hypothesize-and-verify frame-
work. To be specific, RANSAC iteratively samples a min-
imal subset of data to hypothesize a parametric model, and
then verifies the model’s reliability by counting the number
of supported inliers. Based on this framework, its variants,
such as MLESAC [44], USAC [37], and MAGSAC [2], uti-
lize different strategies to improve the efficiency and effec-
tiveness. These methods are still viewed as standard so-
lutions for getting accurate inliers and estimating reliable
parametric models. However, they are sensitive to out-
liers [18, 30, 56], therefore, their performance will be lim-
ited when initial correspondences are heavily contaminated
by outliers.

Learning-Based Methods. With the booming of deep
learning [15, 17, 46, 58], some pioneer works, such as
DSAC [6], LFGC [53], and DFE [38], adopt neural net-
works to remove outliers, and obtain competitive results.
Particularly, inspired by PointNet [35,36], LFGC [53] casts
the correspondence pruning as a labeling outlier/inlier task
and a regressing essential matrix task, which designs a
permutation-equivariant network structure based on Multi-
Layer Perceptrons (MLPs) to effectively process irregular
and unordered data. By taking initial correspondences as
inputs, this network is able to predict the inlier weights
and corresponding essential matrix. Follow-up works using
this de facto standard improves the network performance
by designing different network structures. For example,
OANet [54] clusters input correspondences based on a dif-
ferentiable pooling operator to exploit local context. The
original order of correspondences is then recovered by a
differentiable unpooling operation. To obtain both local
and global contexts, ACNe [42] presents a simple atten-
tive context normalization. T-Net [60] devises a T-shaped
structure for adequately integrating the output features of
all sub-networks. The above-mentioned methods implic-
itly capture contextual information through well-designed
network structures. However, they rarely explore geometric
properties of correspondences, and remain vulnerable to the
negative effect of numerous outliers.

Consistency of Correspondences. Inliers of two match-
ing images tend to be consistent while outliers are disorga-
nized [14] under the 2D rigid transformation. Exploring
the consistency of correspondences to remove outliers has
gained extensive attention in past decades [28, 30, 34]. For
example, BF [23] and CODE [22] leverage the global con-
sistency to discern the difference between inliers and out-
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Figure 2. Pipeline of our NCMNet. It takes N × 4 initial correspondences as inputs and outputs N × 1 inlier probabilities by an iterative
pruning strategy, which distills more reliable candidates to estimate the parametric model. Each pruning module contains several off-the-
shelf network structures and the newly proposed Neighbor Consistency block (CS: the coordinate space, FS: the feature space, GS: the
global-graph space).

liers. GMS [5] and LPM [32] exploit the local consistency
by finding consistent spatial neighbors. Although these tra-
ditional methods have demonstrated decent performance,
they still have difficulty in facing challenging matching
scenes and require elaborate parameter tuning. Recently,
several correspondence pruning works explore the consis-
tency and aggregate context in a learning-based manner.
They seek consistent neighbors for each correspondence,
such as spatial neighbors in LMCNet [27], compatibility-
specific neighbors in NM-Net [55], as well as feature-space
neighbors in CLNet [57] and MS2DG-Net [11]. They then
design different network modules or learning paradigms to
aggregate neighbor information. However, these neighbors
are inadequate due to the extremely irregular distribution
of plentiful outliers. Therefore, we develop a new global-
graph space with a large neighbor search region by explor-
ing long-range dependencies between correspondences. We
further design a Neighbor Consistency block to accomplish
the context extraction and interaction of the neighbors in
different spaces.

3. Methodology

3.1. Problem Formulation

Given a matching image pair, we can utilize any ex-
isting feature extraction methods [12, 29] to detect fea-
ture keypoints and construct descriptors. Then, a set S =
{s1, s2, ..., sN} ∈ RN×4 containing N initial correspon-
dence can be set up by the brute-force matching of descrip-
tor similarities. si denotes the i-th initial correspondence
that contains two normalized coordinates in two matching
images by camera intrinsics. In practice, the set S usually
has a high proportion of outliers, therefore, our aim is to
identify inliers and eliminate outliers as much as possible.

To achieve this goal, we develop an effective Neighbor
Consistency Mining Network (NCMNet) as illustrated in
Fig. 2. The iterative pruning strategy [57] is utilized as
our main framework, which has the ability to explicitly re-
duce the adverse impact caused by numerous outliers. To
be specific, our NCMNet first uses two sequential pruning
modules to process the input set S, and outputs correspond-
ing results (S1, o1) = fθ1(S) and (S2, o2) = fθ2(S1), in
which S1 ∈ RN1×4 and S2 ∈ RN2×4 are two pruned cor-
respondence sets, where N > N1 > N2. fθ1(·) and fθ2(·)
with relevant parameters θ1 and θ2 denote two sequential
pruning modules, where o1 and o2 represent their final logit
values. o2 is additionally processed by a ResNet block and
an MLP layer to compute the inlier weight set w2 as an aux-
iliary input of model estimation. Next, we estimate a para-
metric model (i.e., essential matrix Ê) according to the set
S2 and w2. Finally, we utilize Ê to do a full-size verification
on the set S, which can avoid some inliers to be removed in-
correctly in the pruning process. Our whole framework can
be expressed as:

Ê = g(S2, w2), (1)

w = v(Ê, S), (2)

where weighted eight-point algorithm g(·) is used for model
estimation [53, 57]. v(·) represents a full-size verification
operation using the epipolar constraint [14]. w denotes the
inlier probabilities of all input correspondences.

3.2. Global-Graph Space

Leveraging the priori knowledge that inliers usually have
strong consistency to each other while outliers scatter ran-
domly, we explore the neighbor consistency for better dis-
tinguishing both inliers and outliers. In this paper, we uti-
lize three different neighbor search spaces to seek consis-
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tent neighbors. The coordinate space is the network input
S ∈ RN×4, where the last dimension is omitted for simplic-
ity. The feature space is the middle feature map F ∈ RN×d

processed by several ResNet blocks, where d is the channel
dimension. We perform knn search in the S and F to search
for spatial k-nearest neighbors and feature-space k-nearest
neighbors, respectively, for each correspondence si. Mean-
while, we propose a global-graph space for complementing
the two spaces.

Specifically, we first compute the preliminary inlier
weights wp according to the F:

wp = ReLU(tanh(MLP(F ))), (3)

where MLP(·) is an MLP layer for reducing the channel di-
mension to 1. Activation functions tanh(·) and ReLU(·)
are used for computing weights. Then, we construct a
weighted global graph Gg = {Vg, Eg}, in which nodes
Vg represent all correspondences, and undirected edges Eg

link each correspondence pair by the associated weights
wp

ij = wp
i · wp

j , 1 ≤ i, j ≤ N . A high association can be
established only when two correspondences have high in-
lier weights simultaneously, otherwise there will be weak or
no link. Therefore, we can construct a weighted adjacency
matrix A = wp

ij ∈ RN×N , which explicitly describes long-
range dependencies between correspondences. Finally, we
use the spectral graph convolution operation [21, 57] to ob-
tain our global-graph space:

F g = σ(LFW g), (4)

where L = D̃− 1
2 ÃD̃− 1

2 is the graph Laplacian matrix that
modulates the F into the spectral domain. Ã = A + IN is
the adjacency matrix with an added self-connection, and IN
represents a diagonal identity matrix to avoid the degener-
acy of this formulation. D̃ii = diag(

∑
j Ãij) denotes the

diagonal degree matrix of Ã. W g is the trainable weight.
σ(·) represents an activation function (e.g., ReLU(·) in this
paper). F g ∈ RN×d is our global-graph space, which
reflects the consistency of correspondences well from the
global aspect, especially for inliers since they have high as-
sociations with each other. We can acquire global-graph
k-nearest neighbors of each correspondence si by perform-
ing knn search in the F g . Noteworthily, our global-graph
neighbors have a large neighbor search region due to the
gains of long-range dependencies.

3.3. Neighbor Consistency Block

To cope with complex matching situations, we propose a
Neighbor Consistency (NC) block to progressively mine the
consistency of different types of neighbors. Our NC block
has three key parts: neighbor embedding construction, Self-
Context Extraction (SCE) layer, and Cross-Context Interac-
tion(CCI) layer.
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Figure 3. (a) The grouped convolution manner in the SCE layer.
(b) The details of the CCI layer.

Neighbor embedding construction. We construct three
individual neighbor embeddings GS

i =
{
VS
i , ES

i

}
, GF

i ={
VF
i , EF

i

}
and GG

i =
{
VG
i , EG

i

}
for each correspondence

si according to its spatial, feature-space and global-graph
neighbors. For a GS

i , nodes VS
i =

{
sSi1, ..., s

S
ik

}
denote the

spatial k-nearest neighbors of si, and directed edges ES
i ={

eSi1, ..., e
S
ik

}
link si and its spatial neighbors in VS

i . We
use the same edge construction as [47, 57]:

eSij = [fi, fi − fS
ij ], j = 1, 2, ..., k (5)

where fi, fS
ij are feature maps of the correspondence si and

its j-th spatial neighbor sSij in the F = {f1, f2, ..., fN}.
fi − fS

ij denotes the residual feature map. [·, ·] represents
the concatenation operation along the channel dimension.
GS ∈ RN×k×2d is the spatial neighbor embedding of all
correspondences. Similarly, we can obtain the feature-space
neighbor embedding GF ∈ RN×k×2d and the global-graph
neighbor embedding GG ∈ RN×k×2d.

SCE layer. Once the three neighbor embeddings are
constructed, we need to consider how to effectively mine
intra-neighbor consistency information. A straightforward
way is to employ popular pooling operations, e.g., average-
pooling and max-pooling. However, these operations may
discard the underlying relationships among graph nodes.
Therefore, to take full advantage of the graph structure of
neighbor embeddings, we propose an SCE layer. Consid-
ering the fact that graph nodes are sorted by the similarity
principle of knn search within different spaces, the SCE
layer utilizes a grouped convolution manner [57] to dynam-
ically capture the relationships of neighbors and aggregate
the neighbor context along graph edges.

Concretely, as illustrated in Fig. 3(a), for the graph
Gi ∈ Rk×2d of correspondence si, its nodes are divided
into g groups depending on the affinities to the anchor node,
where each group has k/g nodes. We utilize two succes-
sive convolution layers followed by one Batch Normaliza-
tion (BN) [16] layer with ReLU to process the graph. This
operation can be written as:

Ci = (Conv2(Conv1(Gi)), (6)

where Conv1(·) and Conv2(·) represent the convolution
layers with 1 × k

g kernels and 1 × g kernels, respectively.

9530



We omit the BN and ReLU for simplicity. Ci ∈ R1×d is the
output result of graph Gi. In our NC block, we utilize three
parallel SCE layers to individually process three neighbor
embeddings and get three corresponding neighbor context
features

{
CS , CF , CG

}
∈ RN×d.

CCI layer. When three neighbor context features are
obtained, we want to fuse and modulate inter-neighbor in-
formation in a collaborative manner. Therefore, we de-
velop a CCI layer based on a cross-attention operation as
shown in Fig. 3(b). In detail, our CCI layer has three
parallel cross-attention branches, and each of them takes
one neighbor context feature as values V, while the other
two features are treated as queries Q and keys K. Sim-
ilar to self-attention [45], we first generate V ∈ RN×d

and {Q,K} ∈ RN× d
r according to corresponding neigh-

bor context features via an individual MLP layer followed
by one BN layer with ReLU, where r is the channel reduc-
tion ratio for reducing parameters. Then, we use a matrix
multiplication between Q and the transpose of K followed
by a softmax function to calculate an attention weight ma-
trix Aw ∈ RN×N . In the end, we utilize the Aw, which
measures the correlation between correspondences obtained
from two neighbor context features, to enhance the V. The
example of the first cross-attention branch can be formu-
lated as:

IS = α(MLPs(AwV)) + CS , (7)

where MLPs(·) contains one MLP layer, one BN layer,
and one ReLU. α is a learned weight for controlling the in-
fluence, which is initialized to 0. IS is the final output of the
first cross-attention branch, where the response of each po-
sition is a weighted sum calculated from the other two fea-
tures at all positions. Therefore, the inliers in three neighbor
context features can achieve mutual gains, thus further im-
proving the difference between correspondences. Similarly,
we can obtain the outputs IF and IG. Three neighbor inter-
action features

{
IS , IF , IG

}
∈ RN×d are final outputs of

our NC block.

3.4. Neighbor Consistency Mining Network
As illustrated in Fig. 2, NCMNet comprises two core

pruning modules to distill reliable candidates for estimat-
ing accurate essential matrix and inlier probabilities. Each
pruning module consists of some existing network struc-
tures (i.e., ResNet block [53], Order-Aware block [54], and
Global Consensus block [57]) and our proposed NC block.
ResNet block is a basic correspondence processing struc-
ture containing two MLP layers and some normalization
operations. Order-Aware block is designed for implicitly
capturing local and global contexts by a clustering manner,
in which the number of clusters is set to 250. Global Con-
sensus block encodes global context based on Graph Con-
volutional Network [21] to estimate final logit values for

pruning correspondences. It is worth noting that the feature-
space and global-graph neighbors found by learnable spaces
are dynamic. Therefore, we propose a progressive neighbor
refinement processing (i.e., using two NC blocks in each
pruning module) to increase the reliability of neighbors and
extract rich neighbor context.

3.5. Loss Function
The proposed NCMNet is optimized by a hybrid loss as

benchmarks [53, 54]:

L = Lc(om, ym) + βLe(E, Ê), (8)

where β is a weighting parameter. The classification loss
Lc(·) is formulated as:

Lc(om, ym) =

M∑
m=1

H(τm ⊙ om, ym), (9)

where H(·) is a binary cross entropy loss. ⊙ represents the
Hadamard product. om denotes the logit value of the m-
th pruning module. ym is the ground-truth correspondence
label determined by epipolar distances with a threshold of
10−4. τm is an adaptive temperature vector [57] for allevi-
ating the influence of label ambiguity. M is the number of
pruning modules. The regression loss Le(·) is a geometry
loss [38], which is formulated as follows:

Le(E, Ê) =
(p

′T Êp)2

∥Ep∥2[1] + ∥Ep∥2[2] + ∥ET p′∥2[1] + ∥ET p′∥2[2]
,

(10)
where c[i] is the i-th element of vector c. Virtual correspon-
dence coordinates p and p′ are generated by the ground truth
essential matrix E.

4. Experiments
4.1. Evaluation Protocols

Datasets. We construct experiments to showcase the
capability of NCMNet on outdoor and indoor scenes as
benchmark [54]. The YFCC100M [43] dataset from Ya-
hoo, which contains 100 million tourist images, has been
utilized as the outdoor scene. The SUN3D [50] dataset in-
cluding a large number of video frames has been selected as
the indoor scene. We test methods on known and unknown
scenes following the data division of [54].

Evaluation metrics. The error metrics are determined
by the angular differences between the estimated rota-
tion/translation vectors (recovered from the essential ma-
trix) and the ground truth ones. We utilize mAP with differ-
ent thresholds as the evaluation metric of methods.

4.2. Implementation Details

In our implementation, SIFT [29] has been adopted to
establish N = 2000 initial correspondences, and channel
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Table 1. Quantitative comparison results on YFCC100M [43]
and SUN3D [50]. mAP5◦ (%) on known and unknown scenes
is given. Bold indicates the best.

Methods
YFCC100M SUN3D

Known Unknown Known Unknown

RANSAC [13] 30.19 40.83 19.13 14.57
DEGENSAC [10] 21.00 27.65 16.01 11.01
GC-RANSAC [1] 30.43 41.58 18.86 14.14
MAGSAC [2] 32.80 41.61 20.35 16.24
MAGSAC++ [3] 30.48 40.95 18.90 14.19
LFGC [53] 16.87 25.95 11.55 09.30
DFE [38] 18.02 30.29 14.44 12.34
OANet++ [54] 33.96 38.95 20.86 16.18
ACNe [42] 29.17 33.06 18.86 14.12
SuperGlue [40] 35.00 48.12 22.50 17.11
LMCNet [27] 33.73 47.50 19.92 16.82
T-Net [60] 41.33 48.20 22.38 17.24
MS2DG-Net [11] 39.68 48.20 22.20 17.84
MSA-Net [59] 39.53 50.65 18.64 16.86
CLNet [57] 39.16 53.10 20.35 17.03
NCMNet 52.33 63.43 26.12 20.66

dimension d is 128. For the iterative pruning strategy [57],
we utilize two sequential pruning modules with a pruning
rate of 0.5. The neighbor number k is empirically set to
9 and 6 in two pruning modules, respectively. In the SCE
layer of two pruning modules, the number of groups g is set
as 3 and 2, respectively. The channel reduction ratio r in the
CCI layer is set to 4. Following [54], we adopt Adam [20]
optimizer with a batchsize of 32 and a fixed learning rate of
10−3 to train networks. The training period is set to 500k
iterations. The weight parameter β in Eq. 8 is initialized to
0, and subsequently fixed as 0.5 after the first 20k iterations.

4.3. Comparisons

We compare NCMNet with some advanced works, in-
cluding traditional methods [1–3,10,13] and learning-based
methods [11, 27, 38, 40, 42, 53, 54, 57, 59, 60]. For tradi-
tional works, we remove the poor initial correspondences
by adopting the ratio test [29] with a threshold of 0.8, since
their performance drops extremely with the high ratio out-
liers. We employ the released model of SuperGlue and re-
train the other network models.

The comparative results on YFCC100M and SUN3D
are provided in Table 1. It is apparent that the proposed
NCMNet achieves the most exceptional performance in all
settings. For example, our method obtains outstanding
performance improvements over the second-best works by
11.00% and 10.33% on both known and unknown outdoor
scenes, respectively. Our NCMNet also has significant per-
formance gains on indoor scenes compared with all base-

Table 2. Performance comparisons when using SIFT [29] and
SuperPoint [12] on unknown YFCC100M [43]. mAP5◦ with-
out/with RANSAC [13] as a post-processing step is reported.

Methods
SIFT [29] SuperPoint [12]

- RANSAC - RANSAC

RANSAC [13] - 40.83 - 34.38
LFGC [53] 25.95 50.00 24.25 42.57
OANet++ [54] 38.95 52.59 35.27 45.45
T-Net [60] 48.20 55.85 40.08 47.83
MS2DG-Net [11] 48.20 57.15 37.38 46.48
MSA-Net [59] 50.65 56.28 38.53 47.50
CLNet [57] 53.10 59.13 39.19 48.15
NCMNet 63.43 63.33 48.20 52.20

Table 3. Generalization ability of networks on YFCC100M [43]
and PhotoTourism [19] with different feature extraction methods,
including ORB, SuperPoint(SP), and SIFT. mAP5◦ is reported.

Methods
YFCC100M PhotoTourism

ORB [39] SP [12] SIFT [29] SP [12]

LFGC [53] 7.88 15.48 14.37 10.78
OANet++ [54] 11.58 21.50 32.11 23.26
T-Net [60] 13.70 23.13 41.87 28.87
MS2DG-Net [11] 13.00 22.85 38.20 27.64
CLNet [57] 14.70 26.78 39.47 20.30
NCMNet 19.95 33.20 54.73 30.60

lines.
We further take into account the case of using a learning-

based feature extraction method to establish the initial cor-
respondence set. We employ SuperPoint [12], which de-
signs a fully-convolutional model to detect pixel-level key-
points and construct corresponding descriptors by a self-
supervised framework. Meanwhile, a robust model esti-
mator RANSAC [13] with a threshold of 0.001 has been
adopted as a post-processing step of learning-based meth-
ods. The comparative results on unknown YFCC100M are
shown in Table 2. Our NCMNet still obtains the best re-
sults when initial correspondences are established by Super-
Point. In addition, RANSAC as post-processing is able to
further increase the performance, especially for those meth-
ods that perform poorly (e.g., LFGC and OANet++). How-
ever, the performance of NCMNet with RANSAC slightly
drops when using SIFT. This is because our method has ob-
tained sufficiently accurate correspondence results, there-
fore, RANSAC cannot further distill suitable inliers to im-
prove the accuracy of estimated camera poses.

Furthermore, we evaluate the generalization ability of
networks for various datasets with different combinations
of feature extraction methods. PhotoTourism is a photo-
tourism dataset derived from the image matching challenge
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Original image pair (a) OANet++ [54] (b) CLNet [57] (c) NCMNet

Figure 4. Visualization results of correspondence pruning. The top three examples derive from unknown YFCC100M and the rest examples
come from unknown SUN3D. Outliers (red lines) and inliers (green lines) are exhibited.

Table 4. Ablation studies regarding performance gains of the key
components in each pruning module. IPS: the iterative pruning
strategy. SCE: the Self-Context Extraction layer. CCI: the Cross-
Context Interaction layer. PNR: the progressive neighbor refine-
ment processing. OA: the Order-Aware block.

IPS SCE CCI PNR OA mAP5◦ mAP20◦

✓ 53.10 76.11
✓ ✓ 56.50 78.34
✓ ✓ ✓ 58.63 80.03
✓ ✓ ✓ ✓ 61.73 81.46
✓ ✓ ✓ ✓ ✓ 63.43 82.46

benchmark [19]. ORB [39] is a fast and accurate detector-
descriptor technique based on BRIEF [7]. All network mod-
els are trained on YFCC100M with SIFT, where the pruning
rate in CLNet and NCMNet is set as 1 when using Super-
Point. As shown in Table 3, our NCMNet produces superior
results in all settings, owing to the extraction and interac-
tion of different types of neighbors. This demonstrates the
robustness of our approach to different matching situations.

The visualized comparison results of NCMNet and the
other two baselines [54,57] for correspondence pruning are
shown in Fig. 4. For challenging outdoor and indoor match-
ing scenes, such as large viewpoint variations, illumination

changes, textureless objects, and repetitive structures, our
method obtains reliable pruning results.

4.4. Ablation Studies

We further construct ablation studies to examine the con-
tributions of different components in the proposed NCMNet
on the unknown YFCC100M [43] dataset. Here, we adopt
both mAP5◦ and mAP20◦ to evaluate methods.

Main components. In our NCMNet, we utilize the iter-
ative pruning strategy [57] as the network framework. We
therefore evaluate performance gains of the main compo-
nents in each pruning module over the baseline [57]. The
SCE layer is used for extracting the intra-neighbor context,
meanwhile the CCI layer is designed to explore the inter-
neighbor interaction. We adopt the progressive neighbor re-
finement processing to improve the reliability of dynamic
neighbors, and the Order-Aware block to implicitly cap-
ture local and global contextual information. As reported
in Table 4, the performance gradually improves as the SCE
layer and CCI layer are incrementally added to the baseline.
When employing the progressive neighbor refinement pro-
cessing and combining the Order-Aware block, our method
achieves the best performance improvements.

Three types of neighbors. We give a visual compar-
ison of three types of neighbors as illustrated in Fig. 1.
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Table 5. The effectiveness of concurrently using three types of
neighbors. SN: the spatial neighbors. FN: the feature-space neigh-
bors. GN: the global-graph neighbors.

Three SN Three FN Three GN SN+FN+GN

mAP5◦ 61.40 62.60 61.73 63.43
mAP20◦ 81.26 81.74 81.31 82.46
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Figure 5. The illustration of mean neighbor search region (%) for
all inliers in terms of different neighbor numbers of k.

Here, we report quantitative results on the mean neighbor
search region of all inliers in Fig. 5. For different numbers
of k-nearest neighbors, the global-graph neighbors of in-
liers have larger neighbor search regions than the other two
due to the consideration of long-range dependencies among
correspondences. Moreover, to demonstrate that employing
three types of neighbors simultaneously is rational, we use
three same neighbor embeddings in the NC block for com-
parison. Table 5 reports the comparative results. When only
one type of neighbor is used, the network’s performance
degrades, which demonstrates the complementarity of the
three types of neighbors.

Neighbor context aggregation. We design a grouped
convolution manner to dynamically extract the neighbor
context of each neighbor embedding in the SCE layer. Here,
we compare it with some other aggregation manners, in-
cluding the average-pooling layer, max-pooling layer, and
convolution layer with 1 × k kernels. The comparative re-
sults are shown in Table 6, our grouped convolution manner
outperforms all competitors with a suitable model size, in-
dicating its efficacy.

Inlier ratio of inputs. The inlier ratio (ir) of inputs can
greatly affect the performance of traditional methods, such
as RANSAC [13] and its variants [1, 2, 10]. As a result, we
test the influence of the inlier ratio for our network as il-
lustrated in Fig. 6. To set up initial correspondences with
different inlier ratios as network inputs, we use Lowe’s ra-
tio test (rt) [29] with different thresholds during descriptor
matching, where network models are retrained under corre-

Table 6. Quantitative comparisons of different context aggregation
manners in the SCE layer. “Avg-pooling & MLPs” aggregates
neighbor context with an average-pooling layer and two successive
MLP layers with BN and ReLU. “Max-pooling” indicates a max-
pooling layer. In addition, the model size (MB) is reported.

mAP5◦ mAP20◦ Size

Avg-pooling & MLPs 61.48 81.53 3.68
Max-pooling & MLPs 62.75 81.86 3.68
1× k kernels Conv. 62.88 81.91 6.04

Grouped Conv. 63.43 82.46 4.77
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Figure 6. Influence of different inlier ratios of inputs. mAP with
different error thresholds is reported.

sponding training sets. As opposed to traditional methods,
our method with the low inlier ratios works well. While the
ratio test is useful for reducing outliers of inputs, it has the
unintended consequence of discarding many important in-
liers, hence diminishing overall accuracy. The results also
indicate that our network is more suitable for challenging
scenarios, i.e., there exist many outliers but sufficient in-
liers in initial correspondences.

5. Conclusion
In this paper, we develop an effective Neighbor Con-

sistency Mining Network (NCMNet) for challenging cor-
respondence pruning. We propose a novel global-graph
space, which explicitly captures long-range dependencies
among correspondences, to seek consistent neighbors. For
adapting various matching situations, we further design a
new Neighbor Consistency block that progressively mines
the consistency of different types of neighbors. We con-
struct extensive experiments on public benchmarks to verify
NCMNet’s effectiveness and generalization ability, show-
ing remarkable superiority over the state-of-the-arts.
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