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Abstract

Domain Generalization (DG) has achieved great success
in generalizing knowledge from source domains to unseen
target domains. However, current DG methods rely heav-
ily on labeled source data, which are usually costly and
unavailable. Since unlabeled data are far more accessible,
we study a more practical unsupervised domain generaliza-
tion (UDG) problem. Learning invariant visual representa-
tion from different views, i.e., contrastive learning, promises
well semantic features for in-domain unsupervised learning.
However, it fails in cross-domain scenarios. In this paper,
we first delve into the failure of vanilla contrastive learn-
ing and point out that semantic connectivity is the key to
UDG. Specifically, suppressing the intra-domain connectiv-
ity and encouraging the intra-class connectivity help to learn
the domain-invariant semantic information. Then, we pro-
pose a novel unsupervised domain generalization approach,
namely Dual Nearest Neighbors contrastive learning with
strong Augmentation (DN2A). Our DN2A leverages strong
augmentations to suppress the intra-domain connectivity
and proposes a novel dual nearest neighbors search strategy
to find trustworthy cross domain neighbors along with in-
domain neighbors to encourage the intra-class connectivity.
Experimental results demonstrate that our DN2A outper-
forms the state-of-the-art by a large margin, e.g., 12.01%
and 13.11% accuracy gain with only 1% labels for linear
evaluation on PACS and DomainNet, respectively.

1. Introduction
Deep learning methods have yielded prolific results in

various tasks in recent years. However, they are tailored for
experimental cases, where training and testing data share the
same distribution. When transferred to practical applications,
these methods perform poorly on out-of-distribution data
due to domain shifts [27, 30]. To tackle this issue, domain
generalization (DG) methods [25, 35] are proposed to learn
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Figure 1. (a) t-SNE visualization of unsupervised features learned
by SimCLR and our DN2A on PACS. (b) Grad-cam visualization
of linear probing for SimCLR and ours with 10% labeled data.

transferable knowledge from multiple source domains to
generalize on unseen target domains. Despite the promising
results of DG, they are restricted to supervised training with
large amounts of labeled source data. However, large-scale
labeled source data are often unavailable due to the laborious
and expensive annotation capture, while unlabeled data are
far more accessible. Thus, we study the more practical
unsupervised domain generalization (UDG) [34] problem to
learn domain-invariant features in an unsupervised fashion.

Recent advances in unsupervised learning prefer con-
trastive learning (CL) [2, 14, 28, 32], which learns semantic
representation by enforcing similarity over different augmen-
tations of the same image. However, most CL methods are
designed for i.i.d. datasets and can hardly accommodate the
cross-domain scenario in UDG. As depicted in Fig. 1, vanilla
SimCLR fails to learn domain-invariant semantic features
but learns domain-biased features. For further understand-
ing, we dive into this phenomenon and propose the semantic
connectivity for UDG to measure the intra-domain and intra-
class similarity. From augmentation graph view [12, 31],
semantic connectivity is the support overlap of augmented
samples within the same semantic class. We further find
that the degraded semantic connectivity is responsible for

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3510



the failure of vanilla CL in UDG, which is reflected in two
folds, i.e., large intra-domain connectivity and small intra-
class connectivity. Positive samples generated by standard
augmentations under the i.i.d. hypothesis share too much
domain-relevant information, which induces the model to
learn domain-related features for alignment, resulting in
large intra-domain connectivity. Moreover, it is hard to cap-
ture domain invariance via handcrafted transformations due
to significant distribution shifts across domains. For example,
one can hardly transform a cat from sketch to photo. Small
intra-class connectivity occurs in cross-domain scenarios.

To address these issues, we propose to suppress the intra-
domain connectivity and enhance intra-class connectivity.
First, we leverage strong augmentations to generate positive
samples with a small amount of shared information, where
the domain nuisance information is suppressed. The sup-
pressed domain-related information decreases intra-domain
connectivity, and the learned unsupervised representation
can achieve a higher degree of invariance against domain
shifts. Besides, we employ cross domain nearest neighbors
(NN) as positive samples to impose the domain invariance by
enforcing the similarity between cross domain samples po-
tentially belonging to the same category, which can increase
the cross-domain intra-class connectivity. In addition, we
improve cross domain NN by a dual NN strategy that further
introduces in-domain NN as positives to overcome the intra-
domain variances and increase the intra-domain intra-class
connectivity. For cross-domain NNs, a direct search may
result in many false matches, due to distribution shifts across
domains. Since searching NN within a domain without dis-
tribution shift is more accurate than across domains, we
propose a novel Cross Domain Double-lock NN (CD2NN)
search strategy that employs more accurate in-domain NN as
a mediator to find more trustworthy cross domain neighbors
for boosting the performance. For in-domain NN, since di-
rect searching may fail to find sufficiently diverse samples to
overcome intra-domain variances, we resort to more distinct
cross domain NN as a mediator to find more diverse neigh-
bors, namely In-domain Cycle NN (ICNN). Totally, our dual
nearest neighbors, i.e., CD2NN and ICNN, can increase the
intra-class connectivity for UDG. In a nutshell, contributions
of this paper are summarized as:

• We propose a novel semantic connectivity metric to
indicate the inherent problem of contrastive learning in
UDG, and propose a novel method DN2A to increase
the semantic connectivity with theoretical guarantees.

• We propose to leverage strong augmentations to sup-
press the intra-domain connectivity and use cross do-
main neighbors as positive samples to increase intra-
class connectivity by enforcing the similarity over cross
domain samples potentially from the same category.

• We propose a novel cross domain double-lock near-
est neighbors search strategy to find more trustwor-

thy cross domain neighbors and improve it by a novel
in-domain cycle nearest neighbors search strategy to
further boost the semantic connectivity.

Experiments show our DN2A outperforms state-of-the-
art methods by a large margin, e.g., 12.01% and 13.11%
accuracy gains with only 1% labels for linear evaluation on
PACS and DomainNet, respectively. Besides, with less than
4% samples compared to ImageNet for training, our method
outperforms ImageNet pretraining, showing a promising way
to initialize models for the DG problem.

2. Related Work
Domain Generalization. Most domain generalization

(DG) methods assume an adequate amount of labeled data for
training. A common approach is domain invariant learning
via kernel methods [9, 25] or adversarial learning [21, 22].
Many works adopt data augmentation [29, 35] to generate
samples from fictitious domains. Several methods employ
optimization-based methods, e.g., meta-learning [19] and
Invariant Risk Minimization [1]. Despite promising results,
the assumption of sufficient labeled data hinders DG from
real applications. Similar to [34], we focus on a new task of
Unsupervised DG that trains with unlabeled source data.

Unsupervised Learning. Recent progress in unsuper-
vised learning focuses on contrastive learning, which maxi-
mizes the mutual information across different augmentations
of the same image [2, 14, 32]. This augmentation invariance
is achieved by enforcing similarity over different views of
the same image while avoiding model collapse by introduc-
ing other images as negative samples. Besides augmented
views, nearest neighbors in the learned embedding space are
used as positive samples to achieve promising results [8, 18].

Unsupervised Domain Adaptation (UDA). UDA [7, 16,
23, 24] transfers knowledge from labeled source domain to
unlabeled target domain. [11] enforces the association loss
between the source and target data for domain alignment.
CDS [17] performs self-supervised learning (SSL) within
a single domain and across two domains. PCS [33] further
extends the instance-wise SSL in CDS to prototypical SSL.

Unsupervised Learning for DG. Recently, Zhang et
al. [34] present the UDG task and focus on negative selection
by reweighting contrastive loss based on domain similarity.
However, negative samples mainly serve as noise to avoid
the model collapse in contrastive learning. Excessive focus
on negative selection suffers from the limited performance
gain. BrAD [13] intentionally generates edge-like images as
positives, which is a strong human prior and the model fails
to learn non-edge features like color and texture. Besides, an
additional module is required to be trained for edge mapping.
Comparably, we employ strong augmentations to suppress
domain information, and find cross domain double-lock near-
est neighbors as positives (not imaginary or pre-defined, i.e.,
representative of actual semantic samples in the dataset) to
impose the domain invariance for boosting performance.
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(a) Augmentation graph of vanilla method and our method. (b) Acc. vs. Connectivity
Figure 2. (a) Vanilla augmentations generate positive samples with large intra-domain connectivity Cα and small intra-class connectivity Cβ .
Our method decreases Cα by strong augmentations and increases Cβ by using dual nearest neighbors as the positives. (b) Larger semantic
connectivity Cs, i.e., larger intra-class and smaller intra-domain connectivity, leads to better generalization accuracy.

3. Methodology
3.1. Problem Formulation

Notations. For a dataset S of NS samples {Xi, yi, di}NS

i=1

from a joint distribution PS on X ×Y ×D. X , Y , D are the
input, category and domain label space respectively. X,Y,D
denotes the corresponding random variables. Let PS

X , PS
Y

and PS
D denote the marginal distribution of PS on X,Y,D

respectively. Supp(·) denotes the support of a distribution.
Unsupervised Domain Generalization (UDG). Let

SUL = {Xi, di}NUL

i=1 be the unlabeled dataset from PSUL

and SL = {Xi, yi}NL

i=1 be the labeled dataset from PSL . The
unknown testing distribution PStest has no domain overlap
with all training data, i.e., Supp(PStest

D ) ∩ (Supp(PSUL

D ) ∪
Supp(PSL

D )) = ∅. UDG aims to learn a model with pa-
rameters θ that achieves a minimum error on unseen PStest :

θ∗ = argmin
θ

E(X,Y,D)∼PStest [ℓ(X,Y ; θ)] (1)

3.2. Preliminary: Vanilla Contrastive Learning
Contrastive learning aims at mapping positive pairs to

similar representations while pushing away negative pairs in
the embedding space. For any embedded sample zi, we have
the positive embedding z+i (often a random augmentation),
many negative embeddings z− ∈ Ni, and the InfoNCE loss:

Li
Info = − log

exp
(
zi · z+i /τ

)
exp

(
zi · z+i /τ

)
+
∑

z−∈Ni
exp (zi · z−/τ)

(2)
where τ is the temperature. In specific, SimCLR [2] uses
random augmentations to generate two views of the image,
which are fed into encoder ϕ to obtain zi = ϕ(aug(xi)) and
z+i = ϕ(aug(xi)). Negative embeddings z− are formed as
all the other embeddings in the mini-batch. Following [34],
encoder ϕ is a ResNet-18 with a non-linear projection head.

Vanilla contrastive learning (CL) fails in UDG. We
empirically train the model with Eq. (2) on three domains
(Art., Cartoon and Sketch) of PACS [20]. As shown in
Fig. 1, the t-sne exhibits vanilla CL fails to learn domain-
invariant semantic features but learns domain-biased features.
Samples from different domains are clustered and separable,
while samples from different classes are indistinguishable.

Thus, the learned representation is not domain-invariant,
which fails to generalize well on unseen target domains.

Definition 1. (Semantic Connectivity) For any input x ∈
X , let A(·|x) be the distribution of its augmentations A. Let
C be the joint distribution on X ×X of augmented views of
images xi, xj as C(x+

i , x
+
j ) = A(x+

i |xi)A(x+
j |xj). Then

we have intra-domain Cα and intra-class Cβ connectivity as

Cα := Ed∼PS
D
E
xi,xj∼P

SUL
d

C(x+
i , x

+
j ),

Cβ := Ey∼PS
Y
E
xi,xj∼P

SUL
y

C(x+
i , x

+
j )

(3)

Then, semantic connectivity is defined as Cs := Cβ/Cα.
Degraded semantic connectivity is responsible for the

failure. The key to the success of CL is the assumption that
intra-class samples could form a connected graph with proper
augmentations [12,31], which we point out as good semantic
connectivity. However, this assumption is not satisfied in
UDG, with the degraded semantic connectivity in two ways:

• Intra-domain connectivity Cα is too large since pre-
defined transformations under the i.i.d hypothesis re-
serve too much domain-related information.

• Intra-class connectivity Cβ is too small since pre-
defined transformations cannot overcome significant
distribution shifts across domains.

Specifically, as shown in Fig. 2 (a), generated by pre-defined
transformations in the i.i.d hypothesis, positive pairs share
much domain-relevant information, which induces the model
to learn domain-biased features for alignment and results in
large intra-domain connectivity. Besides, pre-defined trans-
formations cannot overcome significant distribution shifts
across domains (e.g., one can hardly transform a cat from
sketch to photo), which leads to small intra-class connectivity
in cross domain scenarios. Consequently, a connected graph
is more likely formed among intra-domain instead of intra-
class samples, which leads to learning domain-clustered
features rather than class-clustered (Fig. 1). We empirically
evaluate the connectivity on PACS to verify our statements.
Fig. 2 (b) shows that smaller Cα and larger Cβ (i.e., larger
Cs) lead to better generalization accuracy of the unsuper-
vised model. To address the degraded semantic connectivity
in UDG, we propose to destroy intra-domain connectivity
Cα and construct intra-class connectivity Cβ , respectively.
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3.3. Destroying Cα via Strong Data Augmentation
As explored in previous works [5, 6], strong augmen-

tations have two common types, i.e., geometric and non-
geometric. Specifically, we consider 14 types of augmenta-
tions with significant magnitude to produce as strong aug-
mentations as possible, detailed in supplementary material.

Proposition 1. For stronger augmentations Â, i.e., A ⊆ Â,
augmented views have smaller intra-domain connectivity as
Ĉα := Ed∼PS

D
E
xi,xj∼P

SUL
d

[Â(x+
i |xi)Â(x+

j |xj)].

Proof. Please refer to the supplementary material.

3.4. Constructing Cβ by Dual Nearest Neighbors
Transformations cannot overcome significant distribution

shifts across different domains, e.g., one can hardly trans-
form a cat from sketch to photo. Thus, we search for cross
domain nearest neighbors (NN) in the embedding space as
positive samples. In this way, we can link multiple cross
domain samples potentially belonging to the same semantic
class to increase the cross domain intra-class connectivity. In
addition, the intra-domain gap also exists due to some degree
of semantic variation, e.g., different shapes and backgrounds.
Thus, we further improve it by employing in-domain NN as
positive samples to increase intra-domain intra-class connec-
tivity. Totally, our dual nearest neighbors, i.e., cross domain
and in-domain NN, increase intra-class connectivity in UDG.

Proposition 2. Dual nearest neighbors can increase the
intra-class connectivity as Ĉβ := Ey∼PS

Y
E
xi,xj∼P

SUL
y

[A(x+
i |xi)A(NN (xj)

+|NN (xj))], where Ĉβ > Cβ .
More accurate cross domain NN and more diverse in-domain
NN can further increase the intra-class connectivity.

Proof. Please refer to the supplementary material.

Specifically, for a given sample xj and its embedding zj ,
we have a cross domain support set of embeddings belong-
ing to different domains Qz = {zq1 , ..., z

q
k, ..., z

q
|Qz|}, where

dj ̸= dqk. We propose to search zj’s NN in the support set
Qz as the positive sample.

znnj = N(zj , Qz) = argmin
zq
k∈Qz

∥zj − zqk∥2 (4)

Cross Domain Double-lock Nearest Neighbors (CD2NN).
Due to huge distribution shifts, directly searching the nearest
neighbor (NN) in the cross domain support set may lead
to false matches, i.e., query and its NN have different cate-
gory labels. As a result, directly using cross domain NN as
positives may introduce noise in unsupervised learning and
compromise the final result. Since searching NN within a do-
main (w/o distribution shift) is more accurate than searching
across domains, we propose a novel cross domain double-
lock NN search strategy to leverage more accurate in-domain
NN as a mediator to find more trustworthy cross domain NN.

Figure 3. An illustrative example for our proposed CD2NN.

Specifically, given the query embedding z, in-domain
support set of embeddings within a mini-batch from the
same domain Qin

z (for each zqink ∈ Qin
z , dqink = di), and

cross domain support set from different domains Qcr
z (for

each zqcrk ∈ Qcr
z , dqcrk ̸= di ), we define N(z,Q, k) as the

k-nearest neighbors (k-NN) of z in Q. We have in-domain
NN of z as N(z,Qin

z , 1) = zqinnn and cross domain NN as
N(z,Qcr

z , 1) = zqcrnn . Our CD2NN R(z,Qcr
z , k) is defined

R1(z,Q
cr
z , k) = {zcri | (zcri ∈ N(z,Qcr

z , k))∧
(zcri ∈ N(zqinnn , Qcr

z , k))} (5)

R2(z,Q
cr
z , k) = {zcrj |

(
zcrj ∈ N(z,Qcr

z \zqcrnn , k)
)
∧(

zcrj ∈ N(zqcrnn , Q
cr
z \zqcrnn , k)

)
} (6)

R(z,Qcr
z , k) =

{
R1(z,Q

cr
z , k), R1(z,Q

cr
z , k) ̸= ∅

R2(z,Q
cr
z , k), R1(z,Q

cr
z , k) = ∅

(7)
where R1 and R2 leverage the in-domain neighbor in Qin

z

and Qcr
z to improve the accuracy of cross domain neigh-

bors, respectively. As an illustrative example shown in
Fig. 3, for the given query z, directly searching NN results
in {2}, which is a wrong match with the different class label.
By CD2NN based on in-domain neighbor {1}, an accurate
neighbor {3} is found (left part in Fig. 3). When there are no
matches meeting the rule, i.e., R1 = ∅, we further leverage
CD2NN based on in-domain neighbor {6, 7} to recall the
accurate neighbor {6} (right part in Fig. 3). Notice that if
R = ∅, the cross domain neighbor of current query is not
trustworthy enough to be used as the positive sample. When
|R| ≥ 1, we just select the top-1 ranked neighbor as the
positive sample, denoted as R(z,Qcr

z ) in short.
Proposition 3. Our proposed CD2NN is more accurate than
cross domain NN in the UDG setting.
Proof. Please refer to the supplementary material.

In-domain Cycle Nearest Neighbors (ICNN). Directly
searching NN in the in-domain support set may fail to find
sufficiently diverse samples to overcome intra-domain se-
mantic variances. Thus, we resort to more distinct cross do-
main NN as a mediator to find more diverse in-domain NN.
To ensure the reliability, we employ our proposed CD2NN
as the cross domain NN R(z,Qcr

z ). Then, we search for the
cross domain NN of R(z,Qcr

z ) as in-domain cycle NN of z
as N(R(z,Qcr

z ), Qin
z , 1), denoted as C(z,Qin

z ) in short.
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Target domain Photo Art. Cartoon Sketch Avg.

Label Fraction 1%

ERM 10.90 11.21 14.33 18.83 13.82
MoCo V2 [4, 14] 22.97 15.58 23.65 25.27 21.87
AdCo [15] 26.13 17.11 22.96 23.37 22.39
SimCLR V2 [3] 30.94 17.43 30.16 25.20 25.93
DIUL [34] 27.78 19.82 27.51 29.54 26.16
BrAD [13] (KNN) 55.00 35.54 38.12 34.14 40.70
BrAD [13] (linear cls.) 61.81 33.57 43.47 36.37 43.81

Ours (KNN) 66.37 42.68 49.85 54.37 53.32
Ours (linear cls.) 69.15 46.04 51.19 56.88 55.82

Label Fraction 5%

ERM 14.15 18.67 13.37 18.34 16.13
MoCo V2 [4, 14] 37.39 25.57 28.11 31.16 30.56
AdCo [15] 37.65 28.21 28.52 30.35 31.18
SimCLR V2 [3] 54.67 35.92 35.31 36.84 40.68
DIUL [34] 44.61 39.25 36.41 36.53 39.20
BrAD [13] (KNN) 58.66 39.11 45.37 46.11 47.31
BrAD [13] (linear cls.) 65.22 41.35 50.88 50.68 52.03

Ours (KNN) 68.93 46.83 54.40 59.92 57.52
Ours (linear cls.) 73.16 52.20 59.75 66.43 62.89

Label Fraction 10%

ERM 16.27 16.62 18.40 12.01 15.82
MoCo V2 [4, 14] 44.19 25.85 33.53 24.97 32.14
AdCo [15] 46.51 30.21 31.45 22.96 32.78
SimCLR V2 [3] 54.65 37.65 46.00 28.25 41.64
DIUL [34] 53.37 39.91 46.41 30.17 42.47
BrAD [13] (KNN) 67.20 41.99 45.32 50.04 51.14
BrAD [13] (linear cls.) 72.17 44.20 50.01 55.66 55.51

Ours (KNN) 69.73 50.29 59.22 64.95 61.05
Ours (linear cls.) 75.41 53.14 63.69 68.57 65.20

Epoch 50

Epoch 200

Epoch 1000

Epoch 0

Epoch 400

Epoch 600

Table 1. Left: Accuracy (%) results of the all correlated setting on PACS. For each target domain, all other 3 are used as source domains
for training. All methods use ResNet18 as the backbone and are pretrained for 1000 epochs before training on few labeled (source only) data.
All baselines use a linear classifier (we also include a KNN result w/o any supervised training). ERM indicates the randomly initialized
model. Avg. indicates the mean of per-domain accuracies. The reported results are averaged over 3 runs. All baseline results are taken
from [34]. The best results are in bold. Right: Epochwise t-SNE for our method. T-SNE of ℓ2-normalized features for all classes.

In summary, with positive samples generated by strong
augmentation, cross domain double-lock NN and in-domain
cycle NN, we have the total loss as below.

Li
ours = Li

Info − λ · |R| log
exp

(
R(zi, Q

cr
zi ) · z

+
i /τ

)∑n
j=1 exp

(
R(zi, Qcr

zi ) · z
+
j /τ

)
− λ · |C| log

exp
(
C(zi, Qin

zi ) · z
+
i /τ

)∑n
j=1 exp

(
C(zi, Qin

zi ) · z
+
j /τ

) (8)

At the beginning of training, the discovered neighbors are
unreliable due to random initialization. As the training pro-
ceeds, the searched neighbors are more and more reliable.
Thus, λ is set as time-dependent. In practice, a simple binary
ramp-up function works well sufficiently, i.e., λ(t) = 0 in
the first T epochs, and λ(t) = 1 when t > T .

4. Experiments
4.1. Experimental Settings
Settings and Datasets. Following [34], we conduct two real-
world UDG settings on benchmark datasets DomainNet [26]
and PACS [20], namely all correlated and domain corre-

lated. All correlated indicates the unlabeled and labeled
data are homologous in the category and domain spaces,
i.e., Supp(PSUL

D ) = Supp(PSL

D ) and Supp(PSUL

Y ) =

Supp(PSL

Y ). Domain correlated indicates the unlabeled
and labeled data share the same domain space but dif-
ferent categories, i.e., Supp(PSUL

D ) = Supp(PSL

D ) and
Supp(PSUL

Y ) ∩ Supp(PSL

Y ) = ∅. Extensive experiments
on open-set domain generalization and few-shot domain
adaptation are in the supplementary material.
Implementation Details. For unsupervised training, based
on SimCLR [2], we adopt ResNet-18 as the backbone, and
use the projection head with two MLP layers mapping the
features to 128-d and with ℓ2-norm on top. We strictly follow
the protocol of existing UDG methods [13, 34], including
same backbone, same number of epochs, and same subset
of classes used for training and testing. We use batches
of size 128, Adam optimizer with lr 3e−4 and cosine LR-
schedule for 1000 epochs training. For all correlated, we
evaluate with linear probing and KNN accuracy. For domain
correlated, due to category shift, we evaluate the model af-
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Source domains {Paint. ∪ Real ∪ Sketch} {Clipart ∪ Info. ∪ Quick.}
Target domain Clipart Info. Quick. Painting Real Sketch Overall Avg.

Label Fraction 1%

ERM 6.54 2.96 5.00 6.68 6.97 7.25 5.88 5.89
MoCo V2 [4, 14] 18.85 10.57 6.32 11.38 14.97 15.28 12.12 12.90
AdCo [15] 16.16 12.26 5.65 11.13 16.53 17.19 12.47 13.15
SimCLR V2 [3] 23.51 15.42 5.29 20.25 17.84 18.85 15.46 16.55
DIUL [34] 18.53 10.62 12.65 14.45 21.68 21.30 16.56 16.53
BrAD [13] (KNN) 40.65 14.00 21.28 16.80 22.29 25.72 22.35 23.46
BrAD [13] (linear cls.) 47.26 16.89 23.74 20.03 25.08 31.67 25.85 27.45

Ours (KNN) 62.31 23.84 27.50 29.71 37.07 45.48 35.21 37.65
Ours (linear cls.) 68.02 24.45 29.20 31.16 37.91 52.62 37.43 40.56

Label Fraction 5%

ERM 10.21 7.08 5.34 7.45 6.08 5.00 6.50 6.86
MoCo V2 [4, 14] 28.13 13.79 9.67 20.80 24.91 21.44 18.99 19.79
AdCo [15] 30.77 18.65 7.75 19.97 24.31 24.19 19.42 20.94
SimCLR V2 [3] 34.03 17.17 10.88 21.35 24.34 27.46 20.89 22.54
DIUL [34] 39.32 19.09 10.50 21.09 30.51 28.49 23.31 24.83
BrAD [13] (KNN) 55.75 18.15 26.93 24.29 33.33 37.54 31.12 32.66
BrAD [13] (linear cls.) 64.01 25.02 29.64 29.32 34.95 44.09 35.37 37.84
Ours (KNN) 66.54 23.98 34.47 37.89 44.65 54.57 41.64 43.68
Ours (linear cls.) 70.10 27.31 36.77 40.93 47.20 60.05 44.98 47.06

Label Fraction 10%

ERM 15.10 9.39 7.11 9.90 9.19 5.12 8.94 9.30
MoCo V2 [4, 14] 32.46 18.54 8.05 25.35 29.91 23.71 21.87 23.05
AdCo [15] 32.25 17.96 11.56 23.35 29.98 27.57 22.79 23.78
SimCLR V2 [3] 37.11 19.87 12.33 24.01 30.17 31.58 24.28 25.84
DIUL [34] 35.15 20.88 15.69 25.90 33.29 30.77 26.09 26.95
BrAD [13] (KNN) 60.78 19.76 31.56 26.06 37.43 41.38 34.77 36.16
BrAD [13] (linear cls.) 68.27 26.60 34.03 31.08 38.48 48.17 38.74 41.10
Ours (KNN) 66.73 22.15 35.93 36.42 46.12 57.14 42.21 44.08
Ours (linear cls.) 73.04 28.23 37.80 41.77 50.94 61.69 46.72 48.91

Table 2. Accuracy (%) of all correlated setting on DomainNet. Overall and Avg. indicate the overall test accuracy and mean of per-domain
accuracy respectively. They are different since the test sets of different domains are not of the same size. See Table 1 caption for other details.

ter finetuning 30 epochs with lr 1e−3. Please refer to the
supplementary material for other implementation details.

4.2. Experimental Results
All correlated UDG. Following [34], we evaluate the

generalization ability under all correlated setting, where
the proportion of labeled data varies from 1% to 10%. As
shown in Table 1 (PACS) and 2 (DomainNet), our method
achieves SOTA result. Compared with vanilla CL meth-
ods, our DN2A achieves a significant improvement, i.e.,
23.56% and 23.07% better than SimCLR V2 on PACS and
DomainNet with 10% labeled data, respectively. Vanilla
methods learn domain-biased features and fail to generalize
well. While our method learns domain-invariant semantic
features and forms semantic clusters in the feature space as
shown with t-SNE in Table 1. Besides, compared with the
UDG method DIUL [34], we achieve 23.69% and 22.23%
performance gain on PACS and DomainNet with 5% la-
beled data, respectively. DIUL focuses on negative sample
selection with domain-specific images, but suffers limited
performance gain, since negative samples mainly serve as
noise to avoid the trivial solution in CL. We argue the key
lies in positive samples and achieve better results with the
proposed positive selection strategy. Moreover, our method
outperforms SOTA UDG method BrAD [13] by 12.01% and

13.11% on PACS and DomainNet with label fractions of 1%,
respectively. BrAD generates edge-like images as positive
samples with strong human prior, and fails to learn non-edge
features (e.g., color, texture), which could also contain se-
mantic information (e.g., yellow spot patterns for giraffe in
photo). In contrast, we use cross domain neighbors in the
embedding space as positive samples, which are not imagi-
nary and pre-defined, i.e., representative of actual semantic
samples in the given dataset.

Domain correlated UDG. Domain correlated is a more
challenging setting to evaluate the generalization ability of
UDG methods in the real world under both domain and cate-
gory shifts. Following [34], we adopt DomainNet with 20
categories for labeled training and testing and the other 40
categories for unlabeled training. As shown in Table 3, our
method achieves the best generalization accuracy on all the
domains. We outperform vanilla CL methods by a large
margin, i.e., 9.48% and 13.14% better than SimCLR V2 and
MoCo V2, respectively. Though categories for unlabeled
training are different from those for labeled training and
testing, where the learned representation is not directly help-
ful, our method can achieve promising results by excluding
domain-related features and maintaining domain-invariant
representation space. Compared to DIUL, we achieve 7.97%
performance gain, showing the effectiveness of our DN2A.
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Source domains {Paint. ∪ Real ∪ Sketch} {Clipart ∪ Info. ∪ Quick.}
Target domain Clipart Info. Quick. Painting Real Sketch Overall Avg.

ERM 55.78 22.40 25.75 31.92 41.58 24.10 33.23 33.59
BYOL [10] 58.39 23.99 28.56 33.73 45.63 25.48 35.89 35.96
MoCo V2 [4, 14] 72.84 33.40 34.20 45.83 60.75 43.98 47.78 48.50
AdCo [15] 76.61 31.55 33.42 43.77 64.58 47.76 48.85 49.62
SimCLR V2 [3] 75.58 35.52 37.08 47.94 62.40 54.47 50.91 52.16
DIUL [34] 78.40 33.98 39.87 47.82 65.07 56.90 52.64 53.67

Ours 84.13 41.61 48.12 58.61 69.09 68.28 60.23 61.64

Table 3. Accuracy (%) results of the domain correlated setting on DomainNet.

(a) Pretraining class. (b) Pretraining epoch.
Figure 4. Accuracy (%) results of our method with different pretraining (a) classes and (b) epochs.

Comparison with ImageNet Pretrained Models. Cur-
rent DG methods use the models pretrained on ImageNet as
initialization. While our method can outperform ImageNet
pretrained models by unsupervised training on significantly
less unlabeled data. Pretraining on i.i.d. ImageNet fails to
be invariant to large intra-class variances caused by strong
distribution shifts. Given data with strong heterogeneity, our
method can learn domain-invariant representations and gen-
eralize well. As shown in Fig. 4 (a), when unlabeled data for
pretraining are of 40 classes from DomainNet, our method
outperforms ImageNet pretrained initialization by 0.94%.
Note that the amount of data used for pretraining is less than
4% of ImageNet. Besides, DN2A outperforms DIUL by a
large margin. With only 40 pretraining classes, we achieve
comparable accuracy with DIUL using 100 classes.

4.3. Ablation Study
We conduct experiments on PACS for all correlated UDG.

Unless specified, all models are unsupervisedly pretrained
for 600 epochs. KNN accuracy with 5% label is reported.
Effects of Augmentation Strategies. As shown in Table 4,
strong augmentations (SA) can improve the baseline by
7.85% accuracy. As aforementioned, SA can generate posi-
tive samples with less domain-related information and make
the learned model exclude domain-biased features.
Effects of Cross Domain Double-lock Nearest Neighbor.
This experiment is conducted without the in-domain cycle
NN to evaluate the performance of CD2NN. Table 4 shows
that our proposed CD2NN achieves 10.46% accuracy gain by
overcoming distribution shifts and learning domain-invariant
features. Besides, we compare various neighbor selection

SA CD2NN ICNN Photo Art. Cartoon Sketch Avg.

% % % 38.80 30.17 33.61 43.08 36.42
! % % 53.77 34.08 40.64 48.58 44.27
! ! % 67.66 43.48 52.22 55.54 54.73
! ! ! 67.84 44.06 53.98 57.43 55.82

Table 4. Ablation on strong augmentation, cross domain double-
lock NN and in-domain cycle NN.

Photo Art. Cartoon Sketch Avg.

GT labels 69.94 51.45 57.38 62.97 60.43

In-domain 62.04 38.99 46.38 47.58 48.75
Vanilla 65.22 40.85 49.88 50.44 51.60
Ours 67.66 43.48 52.22 55.54 54.73

Table 5. Ablation on Cross Domain Neighbor Selection in CD2NN.

Photo Art. Cartoon Sketch Avg.

Vanilla 67.43 43.54 52.99 56.72 55.17
Ours 67.84 44.06 53.98 57.43 55.82

Table 6. Ablation on our In-domain Cycle NN.

strategies. In-domain: use in-domain NN N(z,Qin
z , 1) as

the positive; Vanilla: directly search for cross domain NN
N(z,Qcr

z , 1) as the positive; Ours: use CD2NN R(z,Qcr
z )

as the positive; GT labels: use ground-truth labels to con-
struct cross-domain intra-class samples as the positive, which
is the upper bound performance. As shown in Table 5, In-
domain suffers limited performance, since in-domain NN
fails to overcome distribution shifts across domains. Though
Vanilla can achieve better performance by using cross do-
main NN, it is undermined by the noise of NN searched
across different distributions. Our method improves Vanilla
by 3.13% accuracy, showing the effectiveness of our CD2NN
to find more accurate NNs for boosting performance.
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Photo Art. Cartoon Sketch Avg.

k=1 67.84 44.06 53.98 57.43 55.82
k=2 66.62 43.37 54.21 56.80 55.25
k=4 65.57 40.79 54.13 54.93 53.86
k=8 63.91 39.04 53.27 54.81 52.76

Table 7. Ablation on k in our proposed dual nearest neighbors (i.e.,
in both CD2NN and ICNN).

Batch Temp. Photo Art. Cartoon Sketch Avg.

128 0.15 67.43 43.72 53.20 56.19 55.14
128 0.07 67.84 44.06 53.98 57.43 55.82
128 0.03 66.71 44.85 53.81 56.87 55.56

256 0.07 66.73 44.98 54.46 58.15 56.08
64 0.07 65.57 42.29 51.84 55.42 53.78

Table 8. Ablation on batch size and temperature.

(a) NN match accuracy. (b) NN searched by our method and vanilla SimCLR.
Figure 5. (a) NN match accuracy. (b) NN searched by vanilla SimCLR and our method.

Effects of In-domain Cycle Nearest Neighbor. Table 6
shows that our in-domain cycle nearest neighbor achieves
1.09% accuracy gain by overcoming the intra-domain gap.
Besides, compared with vanilla in-domain NN, our ICNN
can achieve 0.65% gain by exploring more diverse samples.
Effects of k in Nearest Neighbors. In experiments, we
select the top-1 ranked neighbor as the positive. Here we
investigate whether increasing the diversity of neighbors
(i.e., increasing k) results in improved performance. As
shown in Table 7, although our method is somewhat robust
to changing the value of k, increasing beyond k = 1 always
results in slight degradation due to the brought noise.
Effects of Epochs, Batch Size and Temperature. As shown
in Fig. 4 (b), with a small number of 200 epochs, our DN2A
outperforms DIUL by a large margin of 9.06% accuracy. As
the epoch increases, our method exceeds DIUL by 8.18% at
1000 epochs. Table 8 shows larger batch sizes improve per-
formance with the increased diversity of negative samples.
A relatively small temperature with stronger penalty for com-
pactness and separability is more effective for classification.

4.4. Discussion

Visualization of Feature Space. Fig. 1 (a) shows vanilla
method learns a feature space with domain-related informa-
tion where domains are separable. While in our feature space,
samples from different domains are closely entangled, indi-
cating the learning of domain-invariant features. As shown
in Fig. 1, vanilla method fails to learn semantic features and
samples from different classes are inseparable. By contrast,
semantic clusters are clearly formed in our feature space.
Nearest Neighbor Match Accuracy. Fig. 5 (a) shows how
the accuracy of searched NN (i.e. from the same class) for
three strategies (in-domain NN, vanilla cross domain NN

and our CD2NN) varies as training proceeds. In-domain NN
has high accuracy due to no distribution shifts. Vanilla cross
domain NN leads to many wrong matches due to domain
shifts. For our method that leverages in-domain NN to find
more trustworthy cross domain NN, though starting with the
low accuracy of rough 20%, the accuracy of picking the right
neighbor achieves about 74% at the end of training, which
approximates the highest in-domain NN accuracy. Besides,
we show a random batch of NN retrieved in Fig. 5 (b). The
NNs picked by our method are from the same semantic
class. For the vanilla method, the retrieval is mainly based
on domain-relevant information, e.g., style and texture.

5. Conclusion
In this paper, we first figure out the failure of vanilla con-

trastive learning in the UDG task is due to large intra-domain
and small intra-class connectivity of positive samples gener-
ated by pre-defined augmentations under the i.i.d hypothesis.
Thus, we leverage strong augmentations to suppress domain-
biased information and propose to use a novel cross domain
double-lock nearest neighbors as positives, which effectively
link different domain samples belonging to the same class.
Besides, in-domain cycle nearest neighbors are incorporated
to further overcome intra-domain variances. Experimentally,
our method achieves state-of-the-art results on the UDG task.
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