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Figure 1. Visualization of samples in MVTec AD. The produced
anomaly maps superimposed on the images. Anomaly region of
high anomaly score is colored with orange. The red boundary de-
notes contours of actual segmentation maps for anomalies.

Abstract

We propose a simple and application-friendly network
(called SimpleNet) for detecting and localizing anoma-
lies. SimpleNet consists of four components: (1) a pre-
trained Feature Extractor that generates local features, (2)
a shallow Feature Adapter that transfers local features to-
wards target domain, (3) a simple Anomaly Feature Gener-
ator that counterfeits anomaly features by adding Gaussian
noise to normal features, and (4) a binary Anomaly Dis-
criminator that distinguishes anomaly features from normal
features. During inference, the Anomaly Feature Generator
would be discarded. Our approach is based on three in-
tuitions. First, transforming pre-trained features to target-
oriented features helps avoid domain bias. Second, gen-
erating synthetic anomalies in feature space is more ef-
fective, as defects may not have much commonality in the
image space. Third, a simple discriminator is much effi-
cient and practical. In spite of simplicity, SimpleNet outper-
forms previous methods quantitatively and qualitatively. On
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Figure 2. Inference speed (FPS) versus I-AUROC on MVTec AD
benchmark. SimpleNet outperforms all previous methods on both
accuracy and efficiency by a large margin.

the MVTec AD benchmark, SimpleNet achieves an anomaly
detection AUROC of 99.6%, reducing the error by 55.5%
compared to the next best performing model. Further-
more, SimpleNet is faster than existing methods, with a
high frame rate of 77 FPS on a 3080ti GPU. Additionally,
SimpleNet demonstrates significant improvements in per-
formance on the One-Class Novelty Detection task. Code:
https://github.com/DonaldRR/SimpleNet.

1. Introduction

Image anomaly detection and localization task aims to
identify abnormal images and locate abnormal subregions.
The technique to detect the various anomalies of interest has
a broad set of applications in industrial inspection [3, 6]. In
industrial scenarios, anomaly detection and localization is
especially hard, as abnormal samples are scarce and anoma-
lies can vary from subtle changes such as thin scratches to
large structural defects, e.g. missing parts. Some examples
from the MVTec AD benchmark [3] along with results from
our proposed method are shown in Figure 1. This situation
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prohibits the supervised methods from approaching.
Current approaches address this problem in an unsuper-

vised manner, where only normal samples are used dur-
ing the training process. The reconstruction-based meth-
ods [10, 21, 31], synthesizing-based methods [17, 30], and
embedding-based methods [6, 22, 24] are three main trends
for tackling this problem. The reconstruction-based meth-
ods such as [21,31] assume that a deep network trained with
only normal data cannot accurately reconstruct anomalous
regions. The pixel-wise reconstruction errors are taken as
anomaly scores for anomaly localization. However, this as-
sumption may not always hold, and sometimes a network
can ”generalize” so well that it can also reconstruct the ab-
normal inputs well, leading to misdetection [10, 19]. The
synthesizing-based methods [17, 30] estimate the decision
boundary between the normal and anomalous by training
on synthetic anomalies generated on anomaly-free images.
However, the synthesized images are not realistic enough.
Features from synthetic data might stray far from the normal
features, training with such negative samples could result in
a loosely bounded normal feature space, meaning indistinct
defects could be included in in-distribution feature space.

Recently, the embedding-based methods [6, 7, 22, 24]
achieve state-of-the-art performance. These methods use
ImageNet pre-trained convolutional neural networks (CNN)
to extract generalized normal features. Then a statistical al-
gorithm such as multivariate Gaussian distribution [6], nor-
malizing flow [24], and memory bank [22] is adopted to em-
bed normal feature distribution. Anomalies are detected by
comparing the input features with the learned distribution or
the memorized features. However, industrial images gener-
ally have a different distribution from ImageNet. Directly
using these biased features may cause mismatch problems.
Moreover, the statistical algorithms always suffer from high
computational complexity or high memory consumption.

To mitigate the aforementioned issues, we propose a
novel anomaly detection and localization network, called
SimpleNet. SimpleNet takes advantage of the synthesizing-
based and the embedding-based manners, and makes sev-
eral improvements. First, instead of directly using pre-
trained features, we propose to use a feature adaptor to
produce target-oriented features which reduce domain bias.
Second, instead of directly synthesizing anomalies on the
images, we propose to generate anomalous features by pos-
ing noise to normal features in feature space. We argue
that with a properly calibrated scale of the noise, a closely
bounded normal feature space can be obtained. Third, we
simplify the anomalous detection procedure by training a
simple discriminator, which is much more computational
efficient than the complex statistical algorithms adopted by
the aforementioned embedding-based methods. Specifi-
cally, SimpleNet makes use of a pre-trained backbone for
normal feature extraction followed by a feature adapter to

transfer the feature into the target domain. Then, anomaly
features are simply generated by adding Gaussian noise to
the adapted normal features. A simple discriminator con-
sisting of a few layers of MLP is trained on these features
to discriminate anomalies.

SimpleNet is easy to train and apply, with outstand-
ing performance and inference speed. The proposed Sim-
pleNet, based on a widely used WideResnet50 backbone,
achieves 99.6 % AUROC on MVTec AD while running at
77 fps, surpassing the previous best-published anomaly de-
tection methods on both accuracy and efficiency, see Fig-
ure 2. We further introduce SimpleNet to the task of One-
Class Novelty Detection to show its generality. These ad-
vantages make SimpleNet bridge the gap between academic
research and industrial application. Code will be publicly
available.

2. Related Work
Anomaly detection and localization methods can be

mainly categorized into three types, i.e., the reconstruction-
based methods, the synthesizing-based methods, and the
embedding-based methods.

Reconstruction-based methods hold the insight that
anomalous image regions should not be able to be prop-
erly reconstructed since they do not exist in the train-
ing samples. Some methods [10] utilize generative mod-
els such as auto-encoders and generative adversarial net-
works [11] to encode and reconstruct normal data. Other
methods [13,21,31] frame anomaly detection as an inpaint-
ing problem, where patches from images are masked ran-
domly. Then, neural networks are utilized to predict the
erased information. Integrating structural similarity index
(SSIM) [29] loss function is widely used in training. An
anomaly map is generated as pixel-wise difference between
the input image and its reconstructed image. However, if
anomalies share common compositional patterns (e.g. local
edges) with the normal training data or the decoder is ”too
strong” for decoding some abnormal encodings well, the
anomalies in images are likely to be reconstructed well [31].

Synthesizing-based methods typically synthesize
anomalies on anomaly-free images. DRÆM [30] proposes
a network that is discriminatively trained in an end-to-end
manner on synthetically generated just-out-of-distribution
patterns. CutPaste [17] proposes a simple strategy to
generate synthetic anomalies for anomaly detection that
cuts an image patch and pastes at a random location of a
large image. A CNN is trained to distinguish images from
normal and augmented data distributions. However, the ap-
pearance of the synthetic anomalies does not closely match
the real anomalies’. In practice, as defects are various and
unpredictable, generating an anomaly set that includes all
outliers is impossible. Instead of synthesizing anomalies
on images, with the proposed SimpleNet, negative samples
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Figure 3. Overview of the proposed SimpleNet. In the training phase, nominal samples are fed into a pre-trained Feature Extractor to get
local features. Then, a Feature Adaptor is utilized to adapt pre-trained features into the target domain. Anomalous features are synthesized
by adding Gaussian noise to the adapted features. The adapted features and the anomalous features and used as positive and negative
samples respectively to train the final Discriminator. The Anomalous Feature Generator is removed at inference.

are synthesized in the feature space.
Embedding-based methods achieve state-of-the-art

performance recently. These methods embed normal fea-
tures into a compressed space. The anomalous features are
far from the normal clusters in the embedding space. Typi-
cal methods [6,7,22,24] utilize networks that are pre-trained
on ImageNet for feature extraction. With a pre-trained
model, PaDiM [6] embeds the extracted anomaly patch fea-
tures by multivariate Gaussian distribution. PatchCore [22]
uses a maximally representative memory bank of nominal
patch features. Mahalanobis distance or maximum feature
distance is adopted to score the input features in testing.
However, industrial images generally have a different distri-
bution from ImageNet. Directly using pre-trained features
may cause a mismatch problem. Moreover, either comput-
ing the inverse of covariance [6] or searching through the
nearest neighbor in the memory bank [22] limits the real-
time performance, especially for edge devices.

CS-Flow [24], CFLOW-AD [12], and DifferNet [23]
propose to transform the normal feature distribution into
Gaussian distribution via normalizing flow (NF) [20]. As
normalizing flow can only process full-sized feature maps,
i.e., down sample is not allowed and the coupling layer [9]
consumes a few times of memory than the normal convo-
lutional layer, these methods are memory consuming. Dis-
tillation methods [4, 7] train a student network to match the
outputs of a fixed pre-trained teacher network with only nor-
mal samples. A discrepancy between student and teacher
output should be detected given an anomalous query. The
computational complexity is doubled as an input image
should pass through both the teacher and the student.

SimpleNet overcomes the aforementioned problems.
SimpleNet uses a feature adaptor that performs transfer
learning on the target dataset to alleviate the bias of pre-
trained CNNs. SimpleNet proposes to synthesize anoma-

lous in the feature space rather than directly on the images.
SimpleNet follows a single-stream manner at inference and
is totally constructed by conventional CNN blocks which
facilitate fast training, inference, and industrial application.

3. Method
The proposed SimpleNet is elaborately introduced in this

section. As illustrated in Figure 3, SimpleNet consist of a
Feature Extractor, a Feature Adaptor, an Anomalous Fea-
ture Generator and a Discriminator. The Anomalous Fea-
ture Generator is only used during training, thus SimpleNet
follows a single stream manner at inference. These modules
will be described below in sequence.

3.1. Feature Extractor

Feature Extractor acquires local feature as in [22]. We
reformulate the process as follows. We denote the train-
ing set and test set as Xtrain and Xtest. For any image
xi ∈ RH×W×3 in Xtrain

⋃
Xtest , the pre-trained network

ϕ extracts features from different hierarchies, as normally
done with ResNet-like backbone. Since pre-trained net-
work is biased towards the dataset in which it is trained,
it is reasonable to choose only a subset of levels for the tar-
get dataset. Formally, we define L the subset including the
indexes of hierarchies for use. The feature map from level
l ∈ L is denoted as ϕl,i ∼ ϕl(xi) ∈ RHl×Wl×Cl , where
Hl, Wl and Cl are the height, width and channel size of the
feature map. For an entry ϕl,ih,w ∈ RCl at location (h,w), its
neighborhood with patchsize p is defined as

N (h,w)
p = {(h′, y′)|h′ ∈ [h− ⌊p/2⌋ , ..., h+ ⌊p/2⌋] ,

y′ ∈ [w − ⌊p/2⌋ , ..., w + ⌊p/2⌋]}
(1)

Aggregating the features within the neighborhood N h,w
p

with aggregation function fagg (use adaptive average pool-
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Figure 4. Histogram of standard deviation along each dimension
of local feature and adapted feature. The adapted feature space
becomes more compact when training with anomalous features.

ing here) results in the local feature zl,ih,w, as

zl,ih,w = fagg({ϕl,ih′,y′ |(h
′, y′) ∈ N h,w

p }) (2)

To combine features zl,ih,w from different hierarchies, all fea-
ture maps are linearly resized to the same size (H0,W0), i.e.
the size of the largest one. Simply concatenating the feature
maps channel-wise gives the feature map oi ∈ RH0×H0×C .
The process is defined as

oi = fcat(resize(z
l′,i, (H0,W0))|l′ ∈ L (3)

we define oih,w ∈ RC as the entry of oi at location (h,w).
We simplify the above expressions as

oi = Fϕ(x
i) (4)

where Fϕ is the Feature Extractor.

3.2. Feature Adaptor

As industrial images generally have a different distri-
bution from the dataset used in backbone pre-training, we
adopt a Feature Adaptor Gθ to transfer the training features
to the target domain. The Feature Adaptor Gθ projects local
feature oh,w to adapted feature qh,w as

qih,w = Gθ(o
i
h,w) (5)

The Feature Adaptor can be made up of simple neural
blocks such as a fully-connected layer or multi-layer per-
ceptron (MLP). We experimentally find that a single fully-
connected layer yields good performance.

3.3. Anomalous Feature Generator

To train the Discriminator to estimate the likelihood of
samples being normal, the easiest way is sampling negative
samples, i.e. defect features, and optimizing it together with
normal samples. The lack of defects makes the sampling

distribution estimation intractable. While [17, 18, 30] rely-
ing on extra data to synthesize defect images, we add simple
noise on normal samples in the feature space, claiming that
it outperforms those manipulated methods.

The anomalous features are generated by adding Gaus-
sian noise on the normal features qih,w ∈ RC . Formally, a
noise vector ϵ ∈ RC is sampled, with each entry following
an i.i.d. Gaussian distribution N (µ, σ2). The anomalous
feature qi−h,w is fused as

qi−h,w = qih,w + ϵ (6)

Figure 4 illustrates the influence of anomalous features
on four classes of MVTec AD. We can see that the stan-
dard deviation along each dimension of the adapted features
tends to be consistent. Thus, the feature space tends to be
compact when distinguishing anomalous features from nor-
mal features.

3.4. Discriminator

The Discriminator Dψ works as a normality scorer, esti-
mating the normality at each location (h,w) directly. Since
negative samples are generated along with normal features
{qi|xi ∈ Xtrain}, they are both fed to the Discrimina-
tor during training. The Discriminator expects positive
output for normal features while negative for anomalous
features. We simply use a 2-layer multi-layer perceptron
(MLP) structure as common classifiers do, estimating nor-
mality as Dψ(qh,w) ∈ R.

3.5. Loss function and Training

A simple truncated l1 loss is derived as

lih,w = max(0, th+ −Dψ(q
i
h,w)) +max(0,−th− +Dψ(q

i−
h,w))

(7)
th+ and th− are truncation terms preventing overfitting.
They are set to 0.5 and -0.5 by default. The training ob-
jective is

L = min
θ,ψ

∑
xi∈Xtrain

∑
h,w

lih,w
H0 ∗W0

(8)

We will experimentally evaluate the proposed truncated l1
loss function with the widely used cross-entropy loss in the
experiments section. The pseudo-code of the training pro-
cedure is shown in Algorithm 1.

3.6. Inference and Scoring function

The Anomalous Feature Generator is discarded at infer-
ence. Note that the remaining modules can be stacked into
an end-to-end network. We feed each xi ∈ Xtest into the
aforementioned Feature Extractor Fϕ and the Feature Adap-
tor Gθ sequentially to get adapted features qih,w as in Equa-
tion 5. The anomaly score is provided by the Discriminator
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Dψ as
sih,w = −Dψ(q

i
h,w) (9)

The anomaly map for anomaly localization during infer-
ence is defined as

SAL(xi) := {sih,w|(h,w) ∈ W0 ×H0} (10)

Then SAL(xi) is interpolated to have the spatial resolu-
tion of the input sample and Gaussian filtered with σ = 4
for smooth boundaries. As the most responsive point exists
for any size of the anomalous region, the maximum score
of the anomaly map is taken as the anomaly detection score
of each image

SAD(xi) := max
(h,w)∈W0×H0

sih,w (11)

4. Experiments
4.1. Datasets.

We conduct most of the experiments on the MVTec
Anomaly Detection benchmark [3], that is, a famous dataset
in the anomaly detection and localization field. MVTec AD
contains 5 texture and 10 object categories stemming from
manufacturing with a total of 5354 images. The dataset
is composed of normal images for training and both nor-
mal and anomaly images with various types of defect for
test. It also provides pixel-level annotations for defective
test images. Typical images are illustrated in Figure 1.
As in [6, 22], images are resized and center cropped to
256× 256 and 224× 224, respectively. No data augmenta-
tion is applied. We follow the one-class classification proto-
col, also known as cold-start anomaly detection, where we
train a one-class classifier for each category on its respective
normal training samples.

We conduct one-class novelty detection on CI-
FAR10 [16], which contains 50K training images and 10K
test images with scale of 32 × 32 in 10 categories. Under
the setting of one-class novelty detection, one category is
regarded as normal data and other categories are used as
novelty.

4.2. Evaluation Metrics.

Image-level anomaly detection performance is measured
via the standard Area Under the Receiver Operator Curve,
which we denote as I-AUROC, using produced anomaly de-
tection scores SAD (Equation 11). For anomaly localiza-
tion, the anomaly map SAL (Equation 10) is used for an
evaluation of pixel-wise AUROC (denoted as P-AUROC).
In accordance with prior works [6, 22], we compute on
MVTec AD the class-average AUROC and mean AU-
ROC overall categories for detection and localization. The
comparison baselines includes AE-SSIM [3], RIAD [31],
DRÆM [30], CutPaste [17], CS-Flow [24], PaDiM [6],
RevDist [7] and PatchCore [22].

Algorithm 1 SimpleNet training pseudo-code, Pytorch-like

# F: Feature Extractor
# G: Feature Adaptor
# N: i.i.d Gaussian noise
# D: Discriminator
pretrain_init(F)
random_init(G, D)
for x in data_loader:

o = F(x) # normal features
q = G(o) # adapted features
q_ = q + random(N) # anomalous features

loss = loss_func(D(q), D(q_)).mean()
loss.backward() # back-propagate

F = F.detach() # stop gradient
update(G, D) # Adam

# loss function
def loss_func(s, s_):

th_ = -th = 0.5
return max(0, th-s) + max(0, th_+s_)

4.3. Implementation Details

This section describes the configuration implementation
details of the experiments in this paper. All backbones
used in the experiments were pre-trained with ImageNet [8].
The 2nd and 3rd intermediate layers of the backbone e.g.
l′ ∈ [2, 3] in Equation 3 are used in the feature extrac-
tor as in [22] when the backbone is ResNet-like architec-
ture. By default, our implementation uses WideResnet50 as
backbone, and the feature dimension from the feature ex-
tractor is set to 1536. The later feature adaptor is essentially
a fully connected layer without bias. The dimensions of
the input and output features for the FC layer in the adap-
tor are the same. The anomaly feature generator adds i.i.d.
Gaussian noise N (0, σ2) to each entry of normal features.
σ is set to 0.015 by default. The subsequent discriminator
composes of a linear layer, a batch normalization layer, a
leaky relu(0.2 slope), and a linear layer. th+ and th− are
both set to 0.5 in Equation 7. The Adam optimizer is used,
setting the learning rate for the feature adaptor and discrim-
inator to 0.0001 and 0.0002 respectively, and weight decay
to 0.00001. Training epochs is set to 160 for each dataset
and batchsize is 4.

4.4. Anomaly detection on MVTec AD

Anomaly detection results on MVTec AD are shown in
Table 1. Image-level anomaly score is given by the max-
imum score of the anomaly map as in Equation 11. Sim-
pleNet achieves the highest score for 9 out of 15 classes.
For textures and objects, SimpleNet reaches new SOTA of
99.8% and 99.5% of I-AUROC, respectively. SimpleNet
achieves significantly higher mean image anomaly detec-
tion performance i.e. I-AUROC score of 99.6%. Please note
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Table 1. Comparison of SimpleNet with state-of-the-arts works on MVTec AD. Image-wise AUROC (I-AUROC) and pixel-wise AUROC
(P-AUROC) are displayed in each entry as I-AUROC%/P-AUROC%. P-AUROC for CS-Flow is not recorded in [24]

Type Reconstruction-based Synthesizing-based Embedding-based Ours
Model AE-SSIM RIAD DRÆM CutPaste CS-Flow PaDiM RevDist PatchCore SimpleNet
Carpet 87/64.7 84.2/96.3 97.0/95.5 93.9/98.3 100/- 99.8/99.1 98.9/98.9 98.7/99.0 99.7/98.2
Grid 94/84.9 99.6/98.8 99.9/99.7 100/97.5 99.0/- 96.7/97.3 100/99.3 98.2/98.7 99.7/98.8
Leather 78/56.1 100/99.4 100/98.6 100/99.5 100/- 100/99.2 100/99.4 100/99.3 100/99.2
Tile 59/17.5 98.7/89.1 99.6/99.2 94.6/90.5 100/- 98.1/94.1 99.3/95.6 98.7/95.6 99.8/97.0
Wood 73/60.3 93.0/85.8 99.1/96.4 99.1/95.5 100/- 99.2/94.9 99.2/95.3 99.2/95.0 100/94.5
Avg. Text. 78/56.7 95.1/93.9 99.1/97.9 97.5/96.3 99.8/- 95.5/96.9 99.5/97.7 99.0/97.5 99.8/97.5
Bottle 93/83.4 99.9/98.4 99.2/99.1 98.2/97.6 99.8/- 99.1/98.3 100/98.7 100/98.6 100/98.0
Cable 82/47.8 81.9/84.2 91.8/94.7 81.2/90.0 99.1/- 97.1/96.7 95.0/97.4 99.5/98.4 99.9/97.6
Capsule 94/86.0 88.4/92.8 98.5/94.3 98.2/97.4 97.1/- 87.5/98.5 96.3/98.7 98.1/98.8 97.7/98.9
Hazelhut 97/91.6 83.3/96.1 100/99.7 98.3/97.3 99.6/- 99.4/98.2 99.9/98.9 100/98.7 100/97.9
Metal Nut 89/60.3 88.5/92.5 98.7/99.5 99.9/93.1 99.1/- 96.2/97.2 100/97.3 100/98.4 100/98.8
Pill 91/83.0 83.8/95.7 98.9/97.6 94.9/95.7 98.6/- 90.1/95.7 96.6/98.2 96.6/97.4 99.0/98.6
Screw 96/88.7 84.5/98.8 93.9/97.6 88.7/96.7 97.6/- 97.5/98.5 97.0/99.6 98.1/99.4 98.2/99.3
Toothbrush 92/78.4 100/98.9 100/98.1 99.4/98.1 91.9/- 100/98.8 99.5/99.1 100/98.7 99.7/98.5
Transistor 90/72.5 90.9/87.7 93.1/90.9 96.1/93.0 99.3/- 94.4/97.5 96.7/92.5 100/96.3 100/97.6
Zipper 88/66.5 98.1/97.8 100/98.8 99.9/99.3 99.7/- 98.6/98.5 98.5/98.2 99.4/98.8 99.9/98.9
Avg. Obj. 91/75.8 89.9/94.3 97.4/97.0 95.5/95.8 98.2/- 96.0/97.8 98/97.9 99.2/98.4 99.5/98.4
Average 87/69.4 91.7/94.2 98.0/97.3 96.1/96.0 98.7/- 95.8/97.5 98.5/97.8 99.1/98.1 99.6/98.1

Table 2. Performance on MVTec AD under different combinations
of hierarchy levels of WideResNet50 to use.

level1 level2 level3 I-AUROC% P-AUROC%
✓ 93.0 94.2

✓ 98.4 96.7
✓ 99.2 97.5

✓ ✓ 96.7 96.7
✓ ✓ 99.6 98.1

✓ ✓ ✓ 99.1 98.1

that, a reduction from an error of 0.9% for PatchCore [22]
(next best competitor, under the same WideResnet50 back-
bone) to 0.4% for SimpleNet means a reduction of the error
by 55.5%. In industrial inspection settings, this is a relevant
and significant reduction.

4.5. Anomaly localization on MVTec AD

The anomaly localization performance is measured by
pixel-wise AUROC, which we note as P-AUROC. Com-
parisons with the state-of-the-art methods are shown in Ta-
ble 1. SimpleNet achieves the best anomaly detection per-
formance of 98.1% P-AUROC on MVTec AD as well as
the new SOTA of 98.4% P-AUROC for objects. SimpleNet
achieves the highest score for 4 out of 15 classes. We vi-
sualize representative samples for anomaly localization in
Figure 8.

4.6. Inference time

Alongside the detection and localization performance,
inference time is the most important concern for industrial
model deployment. The comparison with the state-of-the-
art methods on inference time is shown in Figure 2. All
the methods are measured on the same hardware contain-

ing a Nvidia GeForce GTX 3080ti GPU and an Intel(R)
Xeon(R) CPU E5-2680 v3@2.5GHZ. It clearly shows that
our method achieves the best performance as well as the
fastest speed at the same time. SimpleNet is nearly 8×
faster than PatchCore [22].

4.7. Ablation study

Neighborhood size and hierarchies. We investigate the
influence of neighborhood size p in Equation 1. Results in
Figure 6 show a clear optimum between locality and global
context for anomaly predictions, thus motivating the neigh-
borhood size p = 3. We design a group of experiments
to test the influence of hierarchies subset L on model per-
formance and the results are shown in Table 2. We index
the first three WideResNet50 blocks with 1 − 3. As can
be seen, features from hierarchy level 3 can already achieve
state-of-the-art performance but benefit from additional hi-
erarchy level 2. We chose 2 + 3 as the default setting.

Adaptor configuration. Adaptor provides a transfor-
mation (projection) on the pre-trained features. Our de-
fault feature adaptor is a single FC layer without bias, with
equal input and output channels. A comparison of different
feature adaptors is shown in Table 3, the first row ”Ours”
implementation follows the same configuration as in Ta-
ble 1. “Ours-complex-FA” replaces the simple feature adap-
tor with a nonlinear one (i.e. 1 layer MLPs with nonlin-
earity). The row ”Ours-w/o-FA” drops the feature adaptor.
The results indicate that a single FC layer yields the best
performance. Intuitively, the feature adaptor finds a pro-
jection such that the faked abnormal features and projected
pre-trained features are easily severed, meaning a simple so-
lution to the discriminator. This is also indicated by the phe-
nomenon that using a feature adaptor helps the network con-
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Figure 5. I-AUROC% and P-AUROC% for each class of MVTec AD dataset with varied σ. (Best viewed in color.)
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Figure 6. Performance with varied patch sizes on MVTec AD.
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Figure 7. Visualization of loss during training. The plotted lines
show the mean loss for all classes in the MVTec AD dataset. The
transparent color shows the range of loss fluctuation.

verge fast (Figure 7). We observe a significant performance
drop with a complex feature adaptor. One possible reason
is that a complex adaptor may lead to overfitting, reducing
the generalization ability for various defects in test. Fig-
ure 4 compares the histogram of standard deviation along
each dimension of the features before and after the feature
adaptor. We can see that, when training with anomalous
features, adapted feature space becomes compact.

Scale of noise. The scale of noise in the anomaly feature
generator controls how far away the synthesized abnormal
features are from the normal ones. To be specific, high σ
results in abnormal features keeping a high Euclidean dis-

Table 3. Comparison of different feature adaptors. ”Ours” imple-
mentation follows the same configuration as in Table 1. ”Ours-
complex-FA” replaces the simple feature adaptor with a nonlinear
one. ”Ours-w/o-FA” drops the feature adaptor, equivalent to using
an identity fully-connected layer. ”Ours-CE” uses cross-entropy
loss. I-AUROC% and P-AUROC% of MVTec AD are shown.

Model I-AUROC% P-AUROC%
Ours 99.6 98.1

Ours-complex-FA 98.3 97.2
Ours-w/o-FA 99.2 97.9

Ours-CE 99.4 97.8

Table 4. Performance under different backbones on MVTec AD.

Model I-AUROC% P-AUROC%
ResNet18 98.3 95.7
ResNet50 99.6 98.0

ResNet101 99.2 97.6
WideResNet50 99.6 98.1

Table 5. One-Class Novelty Detection I-AUROC(%) results on
CIFAR-10 dataset.

Method LSA DSVDD OCGAN HRN DAAD
AUROC 64.1 64.8 65.6 71.3 75.3
Method DisAug CLR IGD MKD RevDist SimpleNet
AUROC 80.0 83.68 84.5 86.5 86.5

tance towards normal features. Training on a large σ will
result in a loose decision bound, leading to a high false neg-
ative. Conversely, the training procedure will become un-
stable if σ is tiny, and the discriminator cannot generalize
to normal features well. Figure 5 details the effect of σ
for each class in MVTec AD. As can be seen, σ = 0.015
reaches the balance and yield the best performance.

Loss function. We compared the proposed loss function
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Figure 8. Qualitative results, where sampled image, ground truth, and anomaly map are shown for each class in MVTec AD.

in Section 3.5 with the widely used cross-entropy loss (as
show in row ”Ours-CE” in Table 3). We found the improve-
ments, 0.2% I-AUROC and 0.3% P-AUROC, over cross-
entropy loss.

Dependency on backbone. We test SimpleNet with dif-
ferent backbones, the results are shown in Table 4. We find
that results are mostly stable over the choice of different
backbones. The choice of WideResNet50 is made to be
comparable with PaDiM [6] and PatchCore [22].

Qualitative Results Figure 8 shows results of anomaly
localization that indicate the abnormal areas. The thresh-
old for segmentation results is obtained by calculating the
F1-score for all anomaly scores of each sub-class. Experi-
mental results prove that the proposed method can localize
abnormal areas well even in rather difficult cases. In addi-
tion, we can find that the proposed method has consistent
performance in both object and texture classes.

4.8. One-Class Novelty Detection

To evaluate the generality of the proposed SimpleNet,
we conduct a one-class novelty detection experiment on
CIFAR-10 [16]. Following [19], we train the model with
samples from a single class and detect novel samples from
other categories. We train the corresponding model for each
class respectively. Note that the novelty score is defined as
the max score in the similarity map. Table 5 reports the I-
AUROC scores of our method and other methods. For fair
comparison, all the methods are pre-trained on ImageNet.

The baselines include VAE [2], LSA [1], DSVDD [25],
OCGAN [19], HRN [15], AnoGAN [27], DAAD [14],
MKD [26], DisAug CLR [28], IGD [5] and RevDist [7].
Our method outperforms these comparison methods. Note
that, IGD [5] and DisAug CLR [28] achieve 91.25% and
92.4% respectively when boosted by self-supervised learn-
ing.

5. Conclusion
In this paper, we propose a simple but efficient approach

named SimpleNet for unsupervised anomaly detection and
localization. SimpleNet consists of several simple neural
network modules which are easy to train and apply in in-
dustrial scenarios. Though simple, SimpleNet achieves the
highest performance as well as the fastest inference speed
compared to the previous state-of-the-art methods on the
MVtec AD benchmark. SimpleNet provides a new perspec-
tive to bridge the gap between academic research and indus-
trial application in anomaly detection and localization.
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struction by inpainting for visual anomaly detection. Pattern
Recognition, 112:107706, 2021. 2, 5

20411


