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Abstract

Neural-network-based single image depth prediction
(SIDP) is a challenging task where the goal is to predict
the scene’s per-pixel depth at test time. Since the prob-
lem, by definition, is ill-posed, the fundamental goal is to
come up with an approach that can reliably model the scene
depth from a set of training examples. In the pursuit of per-
fect depth estimation, most existing state-of-the-art learn-
ing techniques predict a single scalar depth value per-pixel.
Yet, it is well-known that the trained model has accuracy
limits and can predict imprecise depth. Therefore, an SIDP
approach must be mindful of the expected depth variations
in the model’s prediction at test time. Accordingly, we in-
troduce an approach that performs continuous modeling of
per-pixel depth, where we can predict and reason about the
per-pixel depth and its distribution. To this end, we model
per-pixel scene depth using a multivariate Gaussian distri-
bution. Moreover, contrary to the existing uncertainty mod-
eling methods—in the same spirit, where per-pixel depth is
assumed to be independent, we introduce per-pixel covari-
ance modeling that encodes its depth dependency w.r.t. all
the scene points. Unfortunately, per-pixel depth covariance
modeling leads to a computationally expensive continuous
loss function, which we solve efficiently using the learned
low-rank approximation of the overall covariance matrix.
Notably, when tested on benchmark datasets such as KITTI,
NYU, and SUN-RGB-D, the SIDP model obtained by opti-
mizing our loss function shows state-of-the-art results. Our
method’s accuracy (named MG) is among the top on the
KITTI depth-prediction benchmark leaderboard1.

1. Introduction
Recovering the depth of a scene using images is critical

to several applications in computer vision [2,15,25,29,30].
It is well founded that precise estimation of scene depth
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1http://www.cvlibs.net/datasets/kitti/eval_

depth.php?benchmark=depth_prediction

(a) Test Image (b) DPT [51] (c) AdaBins [7]

(d) NeWCRFs [75] (e) Ours (f) Ground Truth

Figure 1. Qualitative Comparison. By modeling scene depth
as multivariate Gaussian and enforcing the parametric low-rank
covariance constraints in the loss function, we observe that our
model can reliably predict depth for both high-frequency and low-
frequency scene details. In the above example, we can notice bet-
ter qualitative results than the state-of-the-art methods.

from images is likely only under multi-view settings [65]—
which is indeed a correct statement and hard to contend2.
But what if we could effectively learn scene depth using im-
ages and their ground-truth depth values, and be able to pre-
dict the scene depth using just a single image at test time?
With the current advancements in deep learning techniques,
this seems quite possible empirically and has also led to ex-
cellent results for the single image depth prediction (SIDP)
task [40, 51]. Despite critical geometric arguments against
SIDP, practitioners still pursue this problem not only for a
scientific thrill but mainly because there are several real-
world applications in which SIDP can be extremely benefi-
cial. For instance, in medical [42], augmented and virtual
reality [21, 55], gaming [19], novel view synthesis [56, 57],
robotics [64], and related vision applications [24, 51].

Regardless of remarkable progress in SIDP [1,36,37,39,
40, 50, 75], the recent state-of-the-art deep-learning meth-
ods, for the time being, just predict a single depth value per
pixel at test time [37]. Yet, as is known, trained models have
accuracy limits. As a result, for broader adoption of SIDP in

2As many 3D scene configurations can have the same image projection.
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applications, such as robot vision and control, it is essential
to have information about the reliability of predicted depth.
Consequently, we model the SIDP task using a continuous
distribution function. Unfortunately, it is challenging, if not
impossible, to precisely model the continuous 3D scene. In
this regard, existing methods generally resort to increasing
the size and quality of the dataset for better scene modeling
and improve SIDP accuracy. On the contrary, little progress
is made in finding novel mathematical modeling strategies
and exploiting the prevalent scene priors. To this end, we
propose a multivariate Gaussian distribution to model scene
depth. In practice, our assumption of the Gaussian model-
ing of data is in consonance with real-world depth data (see
Fig. 2) and generalizes well across different scenes. Fur-
thermore, many computer and robot vision problems have
successfully used it and benefited from Gaussian distribu-
tion modeling in the past [9, 20, 45, 53, 63, 72, 77].

Let’s clarify this out way upfront that this is not for the
first time an approach with a motivation of continuous mod-
eling for SIDP is proposed [4,22,26,28,31,47]. Yet, existing
methods in this direction model depth per pixel indepen-
dently. It is clearly unreasonable, in SIDP modeling, to as-
sume absolute democracy among each pixel, especially for
very closeby scene points. Therefore, it is natural to think
of modeling this problem in a way where depth at a particu-
lar pixel can help infer, refine, and constrain the distribution
of depth value for other image pixels. Nevertheless, it has
yet to be known a priori the neighboring relation among
pixels in the scene space to define the depth covariance
among them. We do that here by defining a very general
covariance matrix of dimension number of pixels ×
number of pixels, i.e., depth prediction at a given
pixel is assumed to be dependent on all other pixels’ depth.

Overall, we aim to advocate multivariate Gaussian mod-
eling with a notion of depth dependency among pixels as a
useful scene prior. Now, add a fully dependent covariance
modeling proposal to it—as suitable relations among pixels
are not known. This makes the overall loss function com-
putationally expensive. To efficiently optimize the proposed
formulation, we parameterize the covariance matrix, assum-
ing that it lies in a rather low-dimensional manifold so that
it can be learned using a simple neural network. For train-
ing our deep network, we utilize the negative log likelihood
as the loss function (cf. Sec. 3.1). The trained model when
tested on standard benchmark datasets gives state-of-the-art
results for SIDP task (see Fig. 1 for qualitative comparison).

Contributions. To summarize, our key contributions are:
• A novel formulation to perform multivariate Gaussian co-

variance modeling for solving the SIDP task in a deep
neural network framework is introduced.

• The introduced multivariate Gaussian covariance model-
ing for SIDP is computationally expensive. To solve it
efficiently, the paper proposes to learn the low-rank co-

(a) First scene (b) Second scene

Figure 2. The marginal ground-truth depth distribution for a pixel
pair Za, Zb for two scenes. The depth values for the pixel pair
are taken from the fixed image location in the dataset, but the se-
lected images are visually similar for the suitability of the feature
and its corresponding depth values. The statistics show that the
Gaussian distribution assumption with covariance modeling is a
sensible choice for SIDP problem and not an unorthodox belief
arranged or staged for an intricate formulation.

variance matrix approximation by deep neural networks.
• Contrary to the popular SIDP methods, the proposed ap-

proach provides better depth as well as a measure of the
suitability of the predicted depth value at test time.

2. Related Work
Predicting the scene depth from a single image is a popu-

lar problem in computer vision with long-list of approaches.
To keep our review of the existing literature succinct and on-
point, we discuss work of direct relevance to the proposed
method. Roughly, we divide well-known methods into two
sub-category based on their depth prediction modeling.
(i) General SIDP. By general SIDP, we mean methods that
predict one scalar depth value per image pixel at inference
time. Earlier works include Markov Random Field (MRF)
or Conditional Random Fields (CRF) modeling [58–60,67].
With the advancement in neural network-based approaches,
such classical modeling ideas are further improved using
advanced deep-network design [35, 41, 70, 71, 75]. A few
other stretches along this line use piece-wise planar scene
assumption [33]. Other variations in deep neural network-
based SIDP methods use ranking, ordinal relation con-
straint, or structured-guided sampling strategy [10, 14, 38,
69, 78]. The main drawback with the above deep-leaning
methods is that they provide an over-smoothed depth solu-
tion, and most of them rely on some heuristic formulation
for depth-map refinement as a post-refinement step.

Recently, transformer networks have been used for bet-
ter feature aggregation via an increase in the network re-
ceptive field [7, 8, 73, 75] or with the use of attention super-
vision [8] leading to better SIDP accuracy. Another mind-
ful attempt is to exploit the surface normal and depth re-
lation. To this end, [23] introduces both normal and depth
loss for SIDP, whereas [74] proposes using virtual normal
loss for imposing explicit 3D scene constraint and utilizing
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(a) Test Image (b) Scale Ambiguity (c) Independent Modeling (d) Our Modeling

Figure 3. (a) Test image of an indoor bathroom scene. (b) The problem of scale ambiguity: showing several possible 3D point-cloud
configurations of the towel with same imaging region. (c) If the depth values from the towel region are back-projected in the scene space
under the independent Gaussian distribution assumption of the depth map. Clearly, the 3D point cloud results are not encouraging. (d)
Samples due to our multivariate Gaussian distribution modeling that constrain the pixel depth with learned covariance. We observe the
samples drawn from our modeling provide better 3D point clouds. Note: depth map is transformed to point cloud for visualization.

long-range scene dependencies. Long et al. [44] improved
over [74] by introducing an adaptive strategy to compute
local patch surface normal by randomly sampling for can-
didate triplets. A short time ago, [6] showed commendable
results using normal-guided depth propagation [49] with a
depth-to-normal and learnable normal-to-depth module.

(ii) Probabilistic SIDP. In comparison, there are limited
pieces of literature that directly target to solve SIDP in
a probabilistic way, where the methods could predict the
scene depth and simultaneously can reason about its predic-
tion quality. Generally, popular methods from uncertainty
modeling in deep-network are used as it is for such pur-
poses. For instance, Kendall et al. [26] Bayesian uncer-
tainty in deep-networks, Lakshminarayanan et al. [31] deep
ensemble-based uncertainty modeling, Amini et al. [4] deep
evidential regression approach, is shown to work also for
the depth prediction task. Yet, these methods are very gen-
eral and can be used for most, if not all, computer vision
problems [16]. Moreover, these methods treat each pixel
independently, which may lead to inferior SIDP modeling.

This brings us to the point that application-specific pri-
ors, constraints, and settings could be exploited to enhance
the solution, and we must not wholly depend on general
frameworks to tackle the problem with similar motivation
[4, 26, 31]. Therefore, this paper advocate using per-pixel
multivariate Gaussian covariance modeling with efficient
low-rank covariance parametric representation to improve
SIDP for its broader application. Furthermore, we show that
the depth likelihood due to multivariate Gaussian distribu-
tion modeling can help define better loss function and allow
depth covariance learning based on scene feature regularity.
With our modeling formulation, the derived loss function
naturally unifies the essence of L2 loss, scale-invariant loss,
and gradient loss. These three losses can be derived as a
special case of our proposed loss (cf. Sec. 3.2).

3. Proposed Method
To begin with, let’s introduce problem setting and some

general notations, which we shall be using in the rest of the
paper. That will help concisely present our formulation, its
useful mathematical insights, discussion, and application to
Bayesian uncertainty estimation in deep networks.
Problem Setting. Given an image I ∈ Rm×n at test
time, our goal is to predict the reliable per-pixel depth map
Z ∈ Rm×n, where m,n symbolize the number of image
rows and cols, respectively. For this problem, we reshape
the image and corresponding ground-truth depth map as a
column vector represented as I ∈ RN×1 and Zgt ∈ RN×1,
respectively. Here, N = m×n is the total number of pixels
in the image and D denotes the train set.

3.1. Multivariate Gaussian Modeling
Let’s assume the depth map Z corresponding to image

I follows a N -dimensional Gaussian distribution. Accord-
ingly, we can write the distribution Φ given I as

Φ(Z|θ, I) = N
(
µθ(I),Σθ(I, I)

)
. (1)

Where, µθ(I) ∈ RN×1 and Σθ(I, I) ∈ RN×N symbolize
the mean and covariance of multivariate Gaussian distribu-
tion N of predicted depth, respectively. The θ represents
the parametric description of mean and covariance, which
the neural network can learn at train time. It is important to
note that with such network modeling, it is easy for the net-
work to reliably reason about the scene depth distribution of
similar-looking images at test time. Using the general form
of multivariate Gaussian density function, the log probabil-
ity density of Eq.(1) could be elaborated as

log Φ(Z|θ, I) = −N

2
log 2π − 1

2
log det(Σθ(I, I))−

1

2
(Z − µθ)

T (Σθ(I, I))
−1(Z − µθ).

(2)
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Eq.(2) is precisely the formulation we strive to implement.
Yet, computing the determinant and inverse of a N × N
covariance matrix can be computationally expensive, i.e.,
O(N3), for a reasonable image resolution. Previous meth-
ods in this direction usually restrict covariance to be di-
agonal [26, 31], i.e., Σθ(I, I) = diag(σ2

θ(I)) with σθ as
the standard deviation learned by the network with param-
eter θ. Even though such a simplification leads to compu-
tationally tractable algorithm O(N), it leads to question-
able depth prediction at test time. The reason for that is
in SIDP, each pixel’s depth could vary by a single scale
value which must be the same for all the pixels under the
rigid scene assumption (see Fig.3b). By assuming covari-
ance to be zero, each pixel is modeled independently; hence
the coherence among scene points is lost completely. It can
also be observed from Fig.(3c) when the covariance matrix
is restricted to a diagonal matrix, the sampled depth from
Φ(Z|θ, I) is incoherently scattered. Therefore, it is pretty
clear that multivariate covariance modeling is essential (see
Fig. 3d) despite being computationally expensive.

To overcome the computational bottleneck in covariance
modeling, we propose to exploit Σθ parametric form with
low-rank assumption. It is widely studied in statistics that
multivariate data relation generally has low-dimensional
structure [32,66,76]. Since, covariance matrix is symmetric
and positive definite, we write Σθ in parametric form i.e.,

Σθ(I, I) = Ψθ(I)Ψθ(I)
T + σ2eye(N), (3)

where, Ψθ(I) ∈ RN×M is learned by deep networks with
parameter θ with M ≪ N . eye(N) ∈ RN×N is a slang for
identity matrix. Ψθ(I)Ψθ(I)

T is symmetric and σ2eye(N)
guarantees positive definite matrix with σ > 0 as some pos-
itive constant. By using the popular matrix inversion lemma
[48] and Eq.(3) parametric form, log probability density de-
fined in Eq.(2) can be re-written as

log Φ(Z|θ, I) = −N

2
log 2πσ2 − 1

2
log det(A)−

σ−2

2
rT r+

σ−4

2
rTΨθ(I)A

−1Ψθ(I)
T r,

(4)

with r = Z−µθ(I), and A = σ−2Ψθ(I)
TΨθ(I)+eye(M).

It can be shown that the above form for modeling covariance
is computationally tractable with complexity O(NM+M3)
[53] as compared to O(N3) since M ≪ N (refer to sup-
plementary material for details). We use Eq.(4) as neg-
ative log likelihood (NLL) loss function, i.e., LNLL =
− log Φ(Zgt|θ, I) to train the network for learning per-pixel
depth, and covariance w.r.t. all the pixels, hence overcoming
the shortcomings with prior works in SIDP.

3.2. Deeper Insights into the Formulation
A detailed analysis of Eq.(4) and how it naturally encap-

sulates the notion of popular loss functions are presented for

(a) Ours (LNLL) (b) L2 Loss (c) SI Loss (d) G-Loss

Figure 4. The covariance matrix of loss function. (a) Ours Σθ .
(b)-(d) shows the equivalent covariance matrix for the (b) L2 loss,
(c) scale invariant loss, and (d) gradient loss. It can be observed
that our covariance already contains most, if not all, information
that could be recovered by employing different loss functions,
hence showing the generality of our formulation.

better understanding. Concretely, we show that “L2 Loss”,
“Scale Invariant Loss (SI Loss)”, and “Gradient Loss (G-
Loss)” as a special case of Eq.(4); thus, our formulation is
more general. Later, in the subsection, we apply Eq.(4) to
well-known Bayesian uncertainty modeling in deep neural
networks showing improved uncertainty estimation than in-
dependent Gaussian assumption.

3.2.1 Relation to Popular Loss Function

By taking Eq.(4) NLL form as the training loss, i.e.,
− log Φ(Zgt|θ, I), we show that using the special values
for Ψθ(I), the NLL loss can be reduced to some widely-
used losses (see Fig. 4). Here, symbolizes Zgt ∈ RN×1.
Denoting r = Zgt − µθ(I), we derive the relation.

(i) Case I. Substituting Ψθ(I) = 0N in Eq.(4) will give

− log Φ(Zgt|θ, I) ∝ rT r, (5)

which is equivalent to the “L2 loss” function. Here, 0N is a
column vector with N elements, all set to 0.

(ii) Case II. Substituting Ψθ(I) = 1N in Eq.(4) will give

− log Φ(Zgt|θ, I) ∝ rT r− α

N
(rT1N )2, (6)

where, α = (σ−2N)/(σ−2N + 1) and 1N is a column
vector with N elements set to 1. Assuming σ−2N ≫ 1,
which is mostly the experimental setting in SIDP, then α ≈
1 and Eq.(6) becomes equivalent to “Scale Invariant Loss”.

(iii) Case III. Here, we want to show the relation be-
tween Eq.(4) and gradient loss. But, unlike previous cases,
it’s a bit involved. So, for simplicity, consider the gra-
dient of the flattened depth map (i.e., a column vector)3.
The general squared gradient loss between the ground-
truth and predicted depth can be computed as (∇Zgt −
∇µθ(I))

T (∇Zgt − ∇µθ(I)), where ∇ ∈ RN×N is the
gradient operator for computing the first order difference of

3ignoring border pixels for simple 1D case
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(Refer to Eq.(  ))
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Figure 5. Overview of our framework. Given an image, first an encoder is employed to extract features. Then the U-Decoder will predict
and gradually refine the depth maps. And the K-Decoder is responsible for predicting the factor Ψθ(I) for modeling the covariance. In the
end, we compute the negative log likelihood of the N -dimensional Gaussian distribution as the loss function to supervise training.

Zgt and µθ(I) [54]. Taking out the common factor, we can
re-write the gradient loss as

(
∇(Zgt −µθ(I))

)T (∇(Zgt −
µθ(I)

)
. Simplifying using the matrix transpose property

and it can be written in compact form as rT (∇T∇)r, which
is equivalent to the Gaussian multivariate form in Eq.(2).
Let’s denote J ≜ (∇T∇)−1, where Ji,j = min{i, j} −
ij/(N + 1) [11]. However, J is difficult to parameter-
ize and decompose into low-dimensional form. Concretely,
we want to factorize J into Ψθ(I)Ψθ(I)

T + σ2eye(N)
that fits the notion developed in Eq.(2) and Eq.(3), with
Ψθ(I) ∈ RN×M and M ≪ N .

Fortunately, it is possible to approximate J as J ≈(
Ψθ(I)Ψθ(I)

T + σ2eye(N)
)

by using well-known Eigen
approximation [18]. To be precise, setting Ψθ(I) to

Ψθ(I)k,l =
√

λ(J)lU(J)k,l (7)

where λ(J) ∈ RN×1 and U(J) ∈ RN×N are the
sorted eigenvalues and corresponding eigenvectors of J ,
respectively that can be computed using λ(J)l = (2 −
2 cos lπ

N+1 )
−1 and U(J)k,l = (−1)k+1 sin klπ

N+1 [46].

3.2.2 Application in Uncertainty Estimation

We apply Eq.(4) to the popular Bayesian uncertainty model-
ing in neural networks. Given Φ(Z|θ, I) as aleatoric uncer-
tainty for depth map Z [26], we can compute the Bayesian
uncertainty by marginalising over the parameters’ posterior
distribution using the following well-known equation:

Φ(Z|I,D) =

∫
Φ(Z|θ, I)Φ(θ|D)dθ (8)

where D is the train set. The analytic integration of Eq.(8)
is difficult to compute in practice, and is usually approxi-
mated by Monte Carlo integration, such as ensemble [31]
and dropout [16]. Suppose we have sampled a set of pa-
rameters Θ ≜ {θs}Ss=1 from Φ(θ|D). The integration is
popularly approximated as

Φ(Z|I,D) =
1

S

∑
s

Φ(Z|θs, I). (9)

The Φ(Z|I,D) denotes the mixture of Gaussian distri-
butions [31]. The mean and covariance of the distribu-
tion is computed as µ̄(I) = 1

S

∑
s µ

s(I) and Σ̄(I, I) =
Ψ̄(I)Ψ̄(I)T + σ2eye(N), respectively [68], which in fact
has the same form as Eq.(3), where we compute Ψ̄ using
the following expression

Ψ̄ =
1√
S
concat(Ψ1, . . . ,ΨS ,µ1−µ̄, . . . ,µS−µ̄). (10)

So, from the derivations in Sec.(3.2.1) and Sec.(3.2.2), it is
quite clear that our proposed Eq.(4) is more general and en-
capsulates flavors of popular loss functions widely used in
deep networks. For the SIDP problem we need such a loss
function for deep neural network parameters learning. Next,
we discuss the implementation in our proposed pipeline and
usefulness of our introduced loss function.

3.3. Overall Pipeline
To keep our pipeline description simple, let’s consider

the image and depth map in 2D form instead of a column
vector. For brevity, we slightly abuse the notation here-
after. Here, we use the same notation we defined for the 1D
Gaussian distribution case for simplicity. For a better un-
derstanding of our overall pipeline, we provide architectural
implementation details following Fig.(5) blueprint, i.e., (i)
Encoder details, (ii) Decoder details, followed by (iii) Train
and test time settings.
(i) Encoder Details. Our encoder takes the image I ∈
Rm×n as input and gives a hierarchical feature maps F =

{F1,F2,F3,F4} as output, where Fi ∈ RCi×mi×ni

de-
notes a feature map with channels Ci, and resolution mi ×
ni. We adopt the Swin-Large [43] as the encoder. Specif-
ically, it includes four stages of non-linear transformation
to extract features from the input image, where each stage
contains a series of transformer blocks to learn non-linear
transformation and a downsampling block to reduce the res-
olution of the feature map by 2. We collect the output fea-
ture map from the last block of the i-th stage as Fi.
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(a) Test (b) DPT [51] (c) AdaBins [7] (d) NeWCRFs [75] (e) Ours (f) Ground Truth

Figure 6. Qualitative Comparison. Our method recovers better depth even for complex scenes. Our depth results even qualitatively looks
closer to the ground truth than the prior art such as (b) DPT [51], (c) AdaBins [7], (d) NeWCRFs [75] on NYU Depth V2 test set [61].

(ii) Decoder Details. The U-decoder (see Fig.5) estimates
a set of depth maps {µi

θ(I)}4i=1. The U-decoder first es-
timates µ4

θ(I) only from F4 by a convolution layer, then
upsamples and refines the depth map in a hierarchical man-
ner. At the i-th stage, where i decreases from 3 to 1, we
first concatenate µi+1

θ (I) and Fi+1 from the previous stage,
and then feed into a stack of convolution layers to refine the
depth map and feature map. The refined depth map is up-
sampled via bi-linear interpolation to double the resolution,
and denoted as µi

θ(I). Similarly, the refined feature map is
upsampled and added to Fi. In the end, we upsample all the
depth maps {µi

θ(I)}4i=1 into m× n resolution via bi-linear
interpolation as the final output of the U-decoder.

The K-decoder (see Fig. 5) estimates Ψθ(I). It first up-
samples and refines the feature maps in F. Specifically, at
the i-th stage, where i decreases from 3 to 1, it upsamples
Fi+1 from the previous stage and adds to the Fi. We uti-
lize a stack of convolution layers to further refine the added
feature map. In the end, we upsample the refined feature
map F1 to m × n resolution by bi-linear interpolation, and
predict the Ψθ(I) by a convolution layer.
(iii) Train and Test Time Setting. At train time, we collect
{µi

θ(I)}4i=1, and Ψθ(I) and compute loss using our pro-
posed loss function (refer to Sec. 3.4). At test time, our
approach provides µ1

θ(I) as the final depth map prediction.
Furthermore, we can query Ψθ(I) to infer the distribution
of the depth map if necessary depending on the application.

3.4. Loss Function
As shown in Sec. 3.2.1, the negative log likelihood loss

can approximate the scale invariant loss and the gradient
loss when Ψθ(I) and σ take special values. Consequently,
we propose the following overall loss function:

Ltotal =

4∑
j=1

Lj
NLL +

1

N

∑
i

(µ1
θ(I)i − Zgt

i )2 (11)

where Lj
NLL is the negative log likelihood loss applying

to µj
θ(I) and Ψθ(I). Note, however, Eq.(11) second term is

optional. Yet, it is added to provide train time improvement.

4. Experiments and Results
Implementation Details. We implemented our frame-
work in PyTorch 1.7.1 and Python 3.8 with CUDA 11.0.
All the experiments and statistical results shown in the draft
are simulated on a computing machine with Quadro RTX
6000 (24GB Memory) GPU support. We use evaluation
metrics including SILog, Abs Rel, RMS, RMS log, δi, Sq
Rel, iRMS to report our results on the benchmark dataset.
For exact definition of the metrics we refer to [33].

Datasets. We performed experiments and statistical com-
parisons with the prior art on benchmark datasets such as
NYU Depth V2 [61], KITTI [17], and SUN RGB-D [62].

(a) NYU Depth V2: This dataset contains images of indoor
scenes with 480× 640 resolution [61]. We follow the stan-
dard train and test split setting used by previous works for
experiments [33]. Precisely, we use 24, 231 image-depth
pairs for training the network and 654 images for testing
the performance. Note that the depth map evaluation for
this dataset has an upper bound of 10 meters.

(b) KITTI: This dataset contains images and depth data of
outdoor driving scenarios. The official experimental split
contains 42, 949 training images, 1, 000 validation images,
and 500 test images with 352× 1216 resolution [17]. Here,
the depth map accuracy can be evaluated up to an upper
bound of 80 meters. In addition, there are few works fol-
lowing the split from Eigen [13], which includes 23, 488
images for training and 697 images for the test.

(c) SUN RGB-D: It contains data of indoor scenes captured
by different cameras [62]. The depth values range from 0 up
to 10 meters. The images are resized to 480×640 resolution
for consistency. We use the official test set [62] of 5050
images to evaluate the generalization of the frameworks.

Training Details. We use Adam optimizer [27] to mini-
mize our proposed loss function and learn network parame-
ters. At train time, the learning rate is decreased from 3e−5

to 1e−5 by the cosine annealing scheduler. Our encoder–
which is inspired from [43], is initialized by pre-training
the network on ImageNet [12]. For the KITTI dataset, we
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Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
GeoNet [49] ResNet-50 - 0.128 0.569 - 0.834
DORN [14] ResNet-101 - 0.115 0.509 - 0.828
VNL [74] ResNeXt-101 - 0.108 0.416 - 0.875
TransDepth [73] ViT-B - 0.106 0.365 - 0.900
ASN [44] HRNet-48 - 0.101 0.377 - 0.890
BTS [33] DenseNet-161 11.533 0.110 0.392 0.142 0.885
DPT-Hybrid [51] ViT-B 9.521 0.110 0.357 0.129 0.904
AdaBins [7] EffNet-B5+ViT-mini 10.570 0.103 0.364 0.131 0.903
ASTrans [8] ViT-B 10.429 0.103 0.374 0.132 0.902
NeWCRFs [75] Swin-L 9.102 0.095 0.331 0.119 0.922
Ours Swin-L 8.323 0.087 0.311 0.110 0.933
% Improvement 8.56% 8.42% 6.04% 7.56% 1.18%

Table 1. Comparison with the state-of-the-art methods on the NYU test set [61]. Please refer to Sec. 4.1 for details.

Method SILog↓ Abs Rel↓ Sq Rel↓ iRMS↓
DLE [39] 11.81 9.09 2.22 12.49
DORN [14] 11.80 8.93 2.19 13.22
BTS [33] 11.67 9.04 2.21 12.23
BANet [3] 11.55 9.34 2.31 12.17
PWA [34] 11.45 9.05 2.30 12.32
ViP-DeepLab [50] 10.80 8.94 2.19 11.77
NeWCRFs [75] 10.39 8.37 1.83 11.03
Ours 9.93 7.99 1.68 10.63
% Improvement 4.43% 4.54% 8.20% 3.63%

Table 2. Comparison with the state-of-the-art methods on the the
KITTI official test set [17]. We only list the results from the pub-
lished methods.

train our framework for 10 and 20 epochs on the official
split [17] and Eigen [13] split, respectively. For the NYU
dataset [61], our framework is trained for 20 epochs. We
randomly apply horizontal flipping on the image and depth
map pair at train time for data augmentation.

4.1. Performance Comparison with Prior Works

Tab. 1, Tab. 2, Tab. 3, and Tab. 4 show our method’s sta-
tistical performance comparison with popular state-of-the-
art (SOTA) methods on NYU Depth V2 [61], KITTI offi-
cial [17] and Eigen [13] split, and SUN RGB-D [62]. From
the tables, it is easy to infer that our approach consistently
performs better on all the popular evaluation metrics. The
percentage improvement over the previous SOTA is indi-
cated in green for better exposition. In particular, on the
NYU test set, which is a challenging dataset, we reduce
the SILog error from the previous best result of 9.102 to
8.323 and increase δ1 metric from 0.922 to 0.9334. Fig. 6
shows qualitative comparison results. It can be observed
that our method’s predicted depth is better at low and high-
frequency scene details. For the SUN RGB-D test set, all
competing models, including ours, are trained on the NYU
DepthV2 train set without fine-tuning on SUN RGB-D [62].
In addition, we align the predictions from all the models
with the ground truth by a scale and shift following [52].
Tab. 4 results indicate our method’s better generalization ca-
pability than other approaches. More results are provided in
the supplementary material.

4At the time of submission, our method’s performance on the KITTI
official leaderboard was the best among all the published works.

4.2. Bayesian Uncertainty Estimation Comparison

In this part, we compare with the classical Bayesian
dropout [26], which uses independent Gaussian distribu-
tion to quantify uncertainty. As for our approach, we also
use dropout to sample multiple depth predictions, and com-
pute the negative log likelihood following the distribution
in Eq.(9). More specifically, in each block of Swin trans-
former [43], we randomly drop feature channels before the
layer normalization [5] operation with probability 0.01. We
first sample S = 10 predictions for each test image, then
compute the mean and covariance of the mixture of Gaus-
sian distributions in Eq.(9), and further approximate the
entire distribution as single Gaussian following [31]. We
present the comparison results of the negative log likelihood
in Fig. 7. Our multivariate Gaussian distribution achieves
much lower negative log likelihood cost.

0.075

-0.222

1.0 0.50.00.5 1.0

Classical Bayesian Dropout
Ours

0.106
-1.342

1.0 0.50.00.5 1.0

Figure 7. Comparison with the classical Bayesian dropout for un-
certainty estimation. The left and right figures present the Negative
Log Likelihood (NLL) of the predicted depth map distribution on
KITTI Eigen [13,17] split and NYU test set [61] respectively. Our
multivariate Gaussian distribution achieves lower NLL than the in-
dependent Gaussian distribution in classical Bayesian dropout.

4.3. Ablations and Further Analysis

To better understand our introduced approach, we per-
formed ablations on the NYU Depth V2 dataset [61] and
studied our trained model’s inference time and memory
footprint for its practical suitability.

(i) Effect of NLL Loss. To realize the significance of NLL
loss in Eq.(11), we replaced it with L2 loss, SI loss [13],
gradient loss, and virtual normal loss [74] one by one, while
keeping the remaining term in Eq.(11) fixed. The statistical
results are shown in Tab. 5. The stats show that our pro-
posed NLL loss achieves the best performance over all the
widely used metrics.
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Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
DORN [14] ResNet-101 - 0.072 0.273 0.120 0.932
VNL [74] ResNeXt-101 - 0.072 0.326 0.117 0.938
TransDepth [73] ViT-B 8.930 0.064 0.275 0.098 0.956
BTS [33] DenseNet-161 8.933 0.060 0.280 0.096 0.955
DPT-Hybrid [51] ViT-B 8.282 0.062 0.257 0.092 0.959
AdaBins [7] EffNet-B5+ViT-mini 8.022 0.058 0.236 0.089 0.964
ASTrans [8] ViT-B 7.897 0.058 0.269 0.089 0.963
NeWCRFs [75] Swin-L 6.986 0.052 0.213 0.079 0.974
Ours Swin-L 6.757 0.050 0.202 0.075 0.976
% Improvement 3.28% 3.85% 5.16% 5.06% 0.21%

Table 3. Comparison with the state-of-the-art methods on the KITTI Eigen test set [13]. Please refer to Sec. 4.1 for details.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑
AdaBins [7] EffNet-B5+ViT-mini 13.652 0.110 0.321 0.137 0.906
NeWCRFs [75] Swin-L 13.695 0.105 0.322 0.138 0.920
Ours Swin-L 11.985 0.090 0.282 0.120 0.936
% Improvement 12.49% 14.29% 12.42% 13.04% 1.74%

Table 4. Comparison with AdaBins [7] and NeWCRFs [75] on SUN RGB-D test set [62]. All methods are trained on NYU Depth V2 train
set without fine-tuning on SUN RGB-D. Please refer to Sec. 4.1 for details.

Loss SILog ↓ Abs Rel ↓ RMS ↓ δ1 ↑
L2 8.912 0.090 0.324 0.929
SI [13] 8.762 0.089 0.322 0.929
Gradient 8.886 0.090 0.323 0.929
VNL [74] 8.543 0.090 0.325 0.926
Ours 8.323 0.087 0.311 0.933

Table 5. Comparison of our NLL loss function with widely used
loss functions for solving SIDP task.
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Figure 8. Depth prediction accuracy of our method using differ-
ent evaluation metrics w.r.t change in the rank of the covariance
matrix. The increase in the rank improves prediction accuracy and
shows saturation at 128, thereby showing the effectiveness of our
low-dimensional modeling.

(ii) Performance with the change in the Rank of Covari-
ance. We vary the rank of Ψθ(I), and observe our method’s
prediction accuracy. We present the accuracy under vari-
ous evaluation metrics in Fig. 8. With increase in the rank,
the distribution is better approximated, and the performance
improves, but saturates later showing the suitability of its
low-dimensional representation.

(iii) Evaluation on NeWCRFs. We evaluate our loss func-
tion on NeWCRFs [75] network design using their proposed
training strategies. The depth prediction accuracy is shown
in Tab. 6. The results convincingly indicate the benefit of
our proposed loss on a different SIDP network.

Method SILog ↓ Abs Rel ↓ RMS ↓ δ1 ↑
NeWCRFs 9.102 0.095 0.331 0.922
+Our Loss 8.619 0.086 0.316 0.935

Table 6. Results using our loss on [75] network on NYU Depth.

(iv) Inference Time & Parameter Comparison. We com-
pared our method’s inference time, and the number of
model parameters to the recent state-of-the-art NeWCRFs
[75]. The inference time is measured on the NYU Depth
V2 test set [61] with batch size 1. As shown in Tab. 7,
our method achieves lower scale invariant logarithmic er-
ror (SILog) with fewer network parameters and comparable
FPS. Such a statistical performance further endorse our ap-
proach’s practical adequacy.

Method SILog↓ Speed (FPS)↑ Param (M)↓
NeWCRFs 9.171 10.551 258
Ours 8.323 9.909 244

Table 7. Comparison of the inference time and parameters with
NeWCRFs [75] on NYU Depth V2 [61].

Refer supplementary for more experiments and results

5. Conclusion

This work suitably formalizes the connection between
robust statistical modeling techniques, i.e., multivariate co-
variance modeling with low-rank approximation, and pop-
ular loss functions in neural network-based SIDP problem.
The novelty presented in this paper arises from the fact that
the proposed pipeline and loss term turns out to be more
general, hence could be helpful in the broader application
of SIDP in several tasks, such as depth uncertainty for robot
vision, control and others. Remarkably, the proposed for-
mulation is not only theoretically compelling but observed
to be practically beneficial, resulting in a loss function that
is used to train the proposed network showing state-of-the-
art SIDP results on several benchmark datasets.
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