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Abstract

Dataset distillation, also known as dataset condensation,
aims to compress a large dataset into a compact synthetic
one. Existing methods perform dataset condensation by as-
suming a fixed storage or transmission budget. When the
budget changes, however, they have to repeat the synthe-
sizing process with access to original datasets, which is
highly cumbersome if not infeasible at all. In this paper,
we explore the problem of slimmable dataset condensation,
to extract a smaller synthetic dataset given only previous
condensation results. We first study the limitations of exist-
ing dataset condensation algorithms on such a successive
compression setting and identify two key factors: (1) the in-
consistency of neural networks over different compression
times and (2) the underdetermined solution space for syn-
thetic data. Accordingly, we propose a novel training ob-
jective for slimmable dataset condensation to explicitly ac-
count for both factors. Moreover, synthetic datasets in our
method adopt a significance-aware parameterization. The-
oretical derivation indicates that an upper-bounded error
can be achieved by discarding the minor components with-
out training. Alternatively, if training is allowed, this strat-
egy can serve as a strong initialization that enables a fast
convergence. Extensive comparisons and ablations demon-
strate the superiority of the proposed solution over existing
methods on multiple benchmarks.

1. Introductions

The success of deep learning is largely attributed to the
enormous amount of training data [5,8,12,15,21,36,37,41,
50]. However, the massive data not only inevitably intro-
duces heavy burdens on storage and transmission but also
incommodes many applications that require training over
datasets multiple times, such as hyper-parameter optimiza-
tion [3, 9, 16, 29, 30] and neural architecture search [10,
24, 43, 49]. Moreover, it raises concerns on privacy and
copyright if raw datasets are published and accessed di-
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Figure 1. Scenarios where slimmable dataset condensation is use-
ful: (a) adapting to devices with different storage budgets, (b) con-
tinual learning using a synthetic buffer with a fixed size, and (c)
federated learning with synthetic data where a dynamic number of
participants share the network bandwidth.
rectly [7, 40, 51]. These issues can be largely alleviated
by using smaller datasets containing only a few synthetic
samples but with performance similar to the original ones.
How to compress a given real dataset into such a synthetic
dataset is the main focus of dataset distillation, also known
as dataset condensation (DC), whose concept is introduced
by Wang et al. [45] and further developed by a series of
following works recently [2,17,28,33,34,44,54,55,57,58].

Specifically, existing DC approaches work under a pre-
defined storage budget, e.g., the number of images per class.
Although it has been demonstrated that most performance
of original datasets can be recovered by the synthetic ones
with only a few synthetic samples, the fixed storage budget
does not take the variations of the storage budget into con-
sideration. Some examples are shown in Fig. 1. On the
one hand, different devices may have different storage and
transmission resources. On the other hand, in applications

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3759



like continual learning [4,31,32,38,39,46,52] and federated
learning [11,13,19,25,26,42,48,59], the storage and trans-
mission budgets may change on different occasions, since
a replay buffer with a static memory size needs to take ac-
count for more and more historical data, and the bandwidth
allocated to each participant is smaller with the increas-
ing number of participants, respectively. In these scenar-
ios where it is necessary to adapt to different capacities on
storage and transmission, or the budget is changed, exist-
ing algorithms have to repeat the synthesizing process for
the newly-defined budget with access to original datasets,
which is largely cumbersome if not infeasible at all due to
the lack of original data.

In this paper, we phrase the task of re-condensing a syn-
thetic dataset, derived from dataset distillation per se, as
slimmable dataset condensation (slimmable DC). In fact, it
even remains unclear whether a valid synthetic dataset can
be re-condensed from only previously condensed samples.
Unfortunately, we find that the answer is negative for exist-
ing state-of-the-art methods [28, 33, 34, 58]. The basic idea
of these methods is to optimize the validation error on real
datasets for models trained by synthetic ones. Although the
solution is effective for the original DC setting, it is not the
case for slimmable DC. Specifically, we reveal that since
the synthetic data for re-condensation are much less than
the original ones, existing methods suffer from two main is-
sues: (1) the performance is sensitive to the inconsistency of
neural networks adopted on different occasions of compres-
sion, and (2) solution spaces for re-condensed datasets be-
come underdetermined, which triggers deviations in train-
ing results and further leads to inferior performances.

To address these drawbacks, we propose to explicitly
regulate the consistency between the training effects using
synthetic datasets before and after a condensation step for
slimmable DC. Specifically, the proposed objective is com-
posed of two terms: first-order and infinity-order parame-
ter matching, which are designed to explicitly account for
the two aforementioned issues. The former encourages a
unified embedding space over different training iterations,
while the latter enforces the consistency of final training pa-
rameters in such a space. Optimized with the proposed ob-
jective function, we achieve favorable results for slimmable
DC: the performance of a further condensed dataset from
a previously condensed one effectively approaches that ob-
tained with access to the real dataset.

Moreover, for an efficient slimming procedure, we ex-
plore a significance-aware synthetic dataset parameteriza-
tion, which explicitly embeds a linear space with orthogonal
bases and askew-distributed singular values during training.
Theoretical derivation indicates an upper-bounded error by
discarding the minor components, i.e., bases with the small-
est singular values. This strategy may serve as either a
learning-free slimmable DC solution or a strong initializa-

tion in learning-based settings to accelerate convergence.
We conduct extensive experiments on multiple bench-

marks and applications, including continual learning and
federated learning, and demonstrate the effectiveness of the
proposed solution. Results suggest that our method out-
performs all state-of-the-art baselines by a large margin on
slimmable DC. Our contributions are summarized below:

• We introduce the task of slimmable dataset condensa-
tion beyond the typical DC setting, which alleviates
the dilemma of existing DC methods when the budget
changes for storage or transmission.

• We delve into the limitations of existing algorithms for
typical DC and propose a novel first-order and infinity-
order matching-based training objective pertinently for
slimmable DC.

• We propose a significance-aware synthetic dataset
parameterization with a theoretical guarantee for
learning-free slimmable DC or initialization to accel-
erate convergence in learning-based settings.

• Experiments on multiple benchmarks and applications
demonstrate the effectiveness of the proposed method
and its superiority over state-of-the-art baselines.

2. Related Works
The target of dataset distillation, or dataset condensa-

tion, is to synthesize a much smaller dataset whose train-
ing performance on deep neural networks can be compara-
ble with the original one. The seminal work by Wang et
al. [45] propose a bi-level learning framework, to minimize
the loss on real datasets for networks trained by synthetic
ones, which is known as the performance matching objec-
tive [53]. Since the GPU memory required for the bi-level
optimization increases proportionally with the number of
inner updates, this method can only take training effects for
a few steps with synthetic datasets into consideration, which
bottlenecks its performance. Works in recent years leverage
linear regression, by either approximating neural networks
as linear models [33, 34] or mapping samples to a linear
embedding space with non-linear neural networks [28, 58].
Due to the analytical optimal solution for linear regression,
these methods can access the optimal parameters trained
by synthetic datasets without computing higher-order gra-
dients, which achieves state-of-the-art DC performance.

On another line, Zhao et al. [57] propose the gradient
matching objective for DC, to overcome the inconvenience
of higher-order gradients in the seminal work [45], given
that gradients in neural networks can reflect the training ef-
fect of adopted datasets, whose performance is further im-
proved by a lot of following works [14,17,23,54]. In partic-
ular, Cazenavette et al. [2] propose to match training trajec-
tories between synthetic datasets and real ones, which can
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be viewed as a more general gradient matching framework
considering higher-order gradients.

Some works adopt the distribution matching objec-
tive [44, 55]. Although they often achieve inferior perfor-
mance, these methods enjoy overall fast optimization and
low GPU memory consumption, which makes them scale
up for larger synthetic datasets efficiently.

In this paper, we aim to study whether existing DC ap-
proaches are suitable for slimmable DC, i.e., a successive
condensation fashion. Thanks to the superior baseline per-
formance of the performance matching objective, the anal-
ysis mainly focuses on works in this direction. We find
that although they achieve state-of-the-art results for typ-
ical DC, the performance would drop significantly during
further condensation compared to retraining a synthetic set
with the same size using original datasets. We will also dis-
cuss the performance of other methods in the experiments.

There are also a series of works focusing on synthetic
data parameterization [6, 17, 22, 27, 56]. The essential idea
lies in that synthetic samples are stored in more parameter-
efficient ways other than formats of raw samples. In this
paper, the way of storing different components along with
their significance scores can also be viewed as an alternative
parameterization. However, our main focus is on slimmable
DC, while the emphasis of other works is on how to incor-
porate as many samples as possible given a fixed storage
budget, which is dramatically different.

3. Methods
This section introduces the proposed approach for

slimmable dataset condensation, i.e., how to extract a
smaller synthetic dataset from only a previously synthesized
one for a real target dataset.

3.1. Preliminary of Typical DC

Let T = (Xt, Yt), Xt ∈ Rnt×d and Yt ∈ Rnt×c, denote
a target real dataset, where Xt denotes samples, Yt denotes
the corresponding labels, nt is the number of samples in
the dataset, and each sample has d dimensions and c label
entries. For example, for RGB image classification tasks,
d = h × w × 3 and c is the number of classes. Dataset
condensation aims at a synthetic dataset S = (Xs, Ys),
Xs ∈ Rns×d and Ys ∈ Rns×c, where ns ≪ nt is the size
of the synthetic dataset S.

A typical optimization objective for S is to minimize the
loss function on T for deep neural networks trained by S,
which is known as the performance matching objective. To
this end, recent approaches [28, 58] first embed all samples
with a pool of non-linear neural networks and then consider
the linear regression problem in embedding spaces, which
achieves state-of-the-art DC performance and ensures the
efficiency simultaneously. Formally, let Xθ ∈ Rn×f denote
the output embedding of a neural network parameterized by

θ taking X as input, where f is the embedding dimension,
and the parameter θ is drawn from a distribution Θ. The
objective can be written as:

min
Xs,Ys

Eθ∼Θs [∥X
θ
t X

θ
s

†
Ys − Yt∥2F ], (1)

where Xθ
s
†
Ys is the optimal linear regression parameter

with respect to (Xθ
s , Ys). Since the number of synthetic

samples is typically less than the dimension of feature em-
bedding, the pseudo inverse Xθ

s
† should adopt the form of

Xθ⊤
s (Xθ

sX
θ⊤
s )−1. For simplicity, we omit the regulariza-

tion term λI added before the matrix inversion for numeri-
cal stability since the weight λ is typically a small constant
in practice and makes little difference to the final result.

Θs in Eq. 1 denotes a pool of neural networks trained
by synthetic datasets S. In practice, Θs and S are trained
alternately [58]. Specifically, in each iteration, a network is
sampled from the pool, and the synthetic dataset is updated
with Eq. 1 while the network is trained with the currently
synthetic dataset for one step.

3.2. Drawbacks in Slimmable DC

For slimmable DC, only given a previously synthesized
dataset S = (Xs, Ys), we aim at a even smaller synthetic
dataset S ′ = (X ′

s, Y
′
s ), which is expected to hold the opti-

mality of Eq. 1 when (Xs, Ys) is substituted with (X ′
s, Y

′
s ).

In formal, using the same paradigm for further condensation
is to optimize the following objective:

min
X′

s,Y
′
s

Eθ∼Θ′
s
[∥Xθ

sX
′θ
s

†
Y ′
s − Ys∥2F ], (2)

which is expected to achieve:

min
X′

s,Y
′
s

Eθ∼Θs [∥X
θ
t X

′θ
s

†
Y ′
s − Yt∥2F ]. (3)

Comparing Eqs. 2 and 3, we find that for further condensa-
tion in slimmable DC, the distribution of neural networks is
desired to be consistent with that used in the first conden-
sation with real data and that the loss on unseen real data
is desired to be minimized for linear regression in embed-
ding spaces of these neural networks. Unfortunately, simply
adopting original methods for further compression can meet
neither goal through the following analysis.

Inconsistent Embedding Space: Analyzed from Eqs.
2 and 3, the adopted neural network space is trained with
S ′ while the desired space is with S. Given that the pool
of neural networks is not allowed to be stored for future
use, we find that the performance is sensitive to such in-
consistency without an explicit regulation in existing ap-
proaches1. We use linear embedding for illustration. As-
sume that (Xs, Ys) minimizes the performance matching

1Since S is available, we can recover the neural network pool with S
instead of using S′ as the original version does. However, this operation
does not support multiple-time slimmable condensation where S in the
first condensation becomes unavailable.
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Figure 2. Limitations of directly using existing DC approaches on
slimmable DC. (a) The solution plane by synthetic data can per-
fectly minimize the error on real data in the original linear space.
(b) Projecting the original space to another, e.g., 2× scaling up for
axis x1 in this case, the solution plane by synthetic data shifts from
the optimal one. (c) If current synthetic data are used for further
condensation, the solution plane becomes underdetermined: any
plane passing through the two synthetic points can minimize the
error on current synthetic data, but cannot for real data.

loss for linear regression under a linear embedding func-
tion parameterized by θ, i.e., ∥Xθ

t X
θ
s
†
Ys − Yt∥2F = 0, and

P ∈ Rf×f is a projection matrix transforming this linear
space to another. The performance matching loss Lpm in
the new embedding space is then:

Lpm = ∥Xθ
t P (Xθ

sP )†Ys − Yt∥2F

= ∥Xθ
t P (Xθ

sP )⊤(Xθ
sPP⊤Xθ

s

⊤
)−1Ys − Yt∥2F

= ∥Xθ
t PP⊤(Xθ

s

†
Xθ

s )
⊤(PP⊤)−1Xθ

s

†
Ys − Yt∥2F .

(4)

Note that Xθ
s
†
Xθ

s cannot be canceled out since ns < f
typically, and thus the loss can be amplified by inconsistent
embedding functions, which negatively affects slimmable
DC. An illustrative example is shown in Fig. 2(b).

Underdetermined Solution Space: Even if the neural
networks for embedding, Θ′

s and Θs, are the same in Eqs.
2 and 3, we find that solutions by Eq. 2 cannot guarantee
the optimality of Eq. 3 due to the underdetermined solution
space. Specifically, the performance matching objective in
Eq. 2 enforces the parameters of linear regression with the
new synthetic dataset to minimize the error on the previous
one. Note that for the previously synthesized dataset, the
number of samples ns is less than the embedding dimension
f . Thus, there are multiple, or an infinite number of param-
eters as optimal solutions of linear regression in slimmable
DC, but most of them cannot minimize the error on original
real datasets. In other words, the resultant (X ′

s, Y
′
s ) by op-

timizing Eq. 2 also becomes underdetermined and fails to
achieve the goal in Eq. 3. Fig. 2(c) provides a visualized
example demonstrating this effect.

3.3. Parameter Matching for Slimmable DC

Based on the above analysis, inconsistent embedding
space and underdetermined solution space are the two ma-
jor obstacles to existing state-of-the-art DC approaches in
the setting of slimmable DC. Accordingly, in this paper, we

propose first-order and infinity-order parameter-matching
objectives specifically for slimmable DC.

First-Order Parameter Matching: The intuitive target
of first-order parameter matching is to enforce a consistent
neural network pool Θs in Eq. 1. Given that neural net-
works typically adopts gradient-decent-based solutions like
Adam [18], we consider the first-order gradient and encour-
age the consistency between parameters of a neural network
trained by previously condensed data and targeting further
condensed data in each iteration. This workflow is simi-
lar to the gradient matching objective [57]. However, in
this paper, we empirically find that it is sufficient to only
take gradients of the final linear layer into consideration,
which has an analytical form and can be computed more
efficiently without the necessity of second-order derivative
computation. Specifically, given the parameters of the final
linear layer wθ, the embedding before this layer Xθ, and
the corresponding label Y , the prediction, training loss, and
gradient with respect to the parameters can be computed by:

Ŷ = Xθwθ,

Ltrain =
1

2
∥Ŷ − Y ∥2F ,

∂Ltrain

∂w
= Xθ⊤(Ŷ − Y ) = Xθ⊤(Xθwθ − Y ).

(5)

The parameters are updated by a gradient decent step:
w1 ← w − η ∂Ltrain

∂w , where η is the learning rate. The
first-order parameter matching loss with respective to the
further condensed data (X ′

s, Y
′
s ) in slimmable DC is:

L1
pm = ∥w′1

s − w1
s∥2F

= ∥X ′θ
s

⊤
(X ′θ

s wθ − Y ′
s )−Xθ

s

⊤
(Xθ

sw
θ − Ys)∥2F .

(6)

Infinity-Order Parameter Matching: The analysis in
Sec. 3.2 and the phenomenon in Fig. 2(c) indicate that
it is important to maintain the solution plane solved with
original real data during different times of condensation. To
this end, we explicitly enforce the consistency of optimal
linear regression parameters using their analytical form:

L∞
pm = ∥X ′θ

s

†
Y ′
s −Xθ

s

†
Ys∥2F

= ∥X ′θ⊤
s (X ′θ

s X ′θ⊤
s )−1Y ′

s −Xθ⊤
s (Xθ

sX
θ⊤
s )−1Ys∥2F .

(7)
Since linear regression is a convex-optimization problem
and the solution would converge to the optimal analytical
one by sufficient gradient decent steps, we term this objec-
tive as infinity-order parameter matching denoted as L∞

pm.
Interestingly, if we pre-multiply the content in the expec-

tation of Eq. 1 by Xθ
t
†, given that nt > f for real datasets,

Xθ
t
†
Xθ

t would result in an identity matrix and we derive
∥Xθ

s
†
Ys −Xθ

t
†
Yt∥2F , which indicates a theoretical equiva-

lency between performance matching and our infinity-order
parameter matching objectives in the special case. How-
ever, for further condensation using only (Xs, Ys), Xθ

s
†
Xθ

s
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cannot be canceled out since ns < f , the performance
matching objective fails to maintain the optimal parameters,
which makes it inapplicable for slimmable DC.

3.4. Significance-Aware Parameterization

In slimmable DC, it is expected that smaller synthetic
datasets could be established as efficiently as possible, with
only a few or even no training steps required. To this end,
we explore a significance-aware parameterization for syn-
thetic datasets. Motivated by singular value decomposition
(SVD), in this paper, we propose to learn a joint param-
eterization of different components and their correspond-
ing singular values, which represent their contribution to
the whole synthetic dataset. In specific, a synthetic dataset
(Xs, Ys) is parameterized by (U,Σ, Vx, Vy): Vx ∈ Rb×d

and Vy ∈ Rb×c denote orthogonal bases for constructing
samples and labels respectively, where b is the total number
of components; Σ = diag(s1, . . . , sb) with s1 ≥ · · · ≥ sb
is a diagonal matrix, where each si denotes the significance
of the i-th component; and U ∈ Rns×b is an orthogonal
matrix representing coefficients of different components for
constructing each data. In this way, the synthetic samples
and corresponding labels are constructed by:

Xs = UΣVx, Ys = UΣVy. (8)

One significant benefit of such a significance-aware pa-
rameterization is that it is possible to simply discard less
important components when we need to slim a synthetic
dataset, i.e., deleting the entries with least singular values
in Σ, the corresponding columns in U , and the correspond-
ing rows in Vx and Vy , which has the potential to serve
as a learning-free slimmable DC strategy. Alternatively, if
learning is allowed, it can also become a favorable initial-
ization for the slimmed datasets, which encourages fast con-
vergence in only a few training steps. Theoretically, in the
case of linear regression, the error on the resultant solution
plane satisfies the following proposition:

Proposition 1 In linear regression, if a synthetic dataset
(Xs, Ys) takes the parameterization in Eq. 8, and rows in
Vx and Vy corresponding to the least singular values in Σ,
denoted as Ṽx and Ṽy , are removed for slimmable DC, the
first-order parameter distance between parameters before
and after slimming is bounded by:

∥w′1
s − w1

s∥22 ≤ s22∥Xsw − Ys∥22, (9)

and the infinity-order parameter distance is bounded by:

∥X ′θ
s

†
Y ′
s −Xθ

s

†
Ys∥22 = ∥Ṽx

⊤
Ṽy∥22 ≤ 1. (10)

The proof can be found in the supplement.
The bound in Eq. 9 indicates that maximizing the con-

tribution of the first component and minimizing others are
of great importance for maintaining the solution plane in

Algorithm 1 Slimmable Dataset Condensation.

Input: Vx, Vy , Σ, and U : parameterization of a synthetic
dataset by Eq. 8; K: the number of components for
the slimmed dataset; T : the number of allowed train-
ing steps; T ′: the number of maximal updated steps for
each neural network; M : the size of the neural network
pool.

Output: V ′
x, V ′

y , Σ′, and U ′: parameterization of the
slimmed dataset.

1: Initialize V ′
x, V ′

y , Σ′, and U ′ by deleting components
with significance scores less than the K-th largest one;

2: Initialize the neural network pool Θ;
3: Compute Xs = UΣVx and Ys = UΣVy;
4: for 1 ≤ i ≤ T do
5: Compute X ′

s = U ′Σ′V ′
x and Y ′

s = U ′Σ′V ′
y ;

6: Sample a neural network with parameter θ from Θ;
7: Compute embedding X ′θ

s and Xθ
s for X ′

s and Xs;
8: Gradient decent with Eq. 13 for V ′

x, V ′
y , Σ′, and U ′;

9: Update θ with (X ′
s, Y

′
s );

10: if θ has been updated T ′ times then
11: Reinitialize θ;
12: end if
13: end for

slimmable DC. Given that we choose components with the
least singular values for deletion, a skewed distribution for
all singular values would result in a smaller parameter dis-
tance compared with a uniform one. Thus, we add the fol-
lowing objective Lskew on skewness:

Lskew = 1− s21∑b
i=1 s

2
i

. (11)

In this paper, U , Vx, and Vy are orthogonal matrices.
The orthogonality of U is enforced by conducting SVD to
a learnable matrix. For Vx and Vy , we add the following
regularization to encourage their orthogonality:

Lortho = ∥VxV
⊤
x − I∥2F + ∥V ⊤

y Vy − I∥2F , (12)

given that the number of bases is smaller than the feature
dimension and larger than the number of label entries.

3.5. Overall Pipeline

Overall, given a previously synthesized dataset S orga-
nized by Eq. 8 and a smaller storage budget K, we initially
discard components with singular values less than the K-th
largest one to fit the budget and then perform optimization
for a limited number of step T , with a weighted combina-
tion of objectives in Eqs. 6, 7, 11, and 12:

L = λ1L1
pm + λ∞L∞

pm + λskewLskew + λorthoLortho, (13)

where each λ is the hyper-parameter controlling the weight
of the corresponding term. Alg. 1 summarizes the pipeline.
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Dataset FashionMNIST CIFAR10 CIFAR100

IPC 50 20 10 5 2 1 50 20 10 5 2 1 20 10 5 2 1

RS 81.77 77.88 76.02 72.47 66.41 55.32 55.10 44.97 38.17 32.71 21.88 20.95 23.23 17.74 13.97 8.41 6.51

DC
[57]

RT 82.89 84.37 83.38 80.54 76.07 70.27 53.43 49.73 43.74 39.88 38.89 28.20 28.93 25.08 21.29 16.46 12.44
LBS - 79.60 75.42 67.92 61.34 57.35 - 45.59 39.83 35.45 29.65 23.00 - 21.28 17.07 12.63 9.34
Gap↓ - 4.77 7.96 12.62 14.73 12.92 - 4.14 3.91 4.43 9.24 5.20 - 3.80 4.22 3.83 3.10
LFS - 72.25 70.22 56.39 54.79 34.84 - 41.82 32.66 25.88 18.76 17.37 - 21.78 13.30 6.74 4.64

DSA
[54]

RT 88.73 86.68 85.27 81.99 76.66 70.33 60.58 57.11 52.15 47.31 34.23 28.10 36.35 32.49 27.35 20.47 13.81
LBS - 86.08 83.32 79.17 70.29 51.58 - 52.77 46.55 39.51 30.07 20.48 - 29.89 24.34 17.61 11.62
Gap↓ - 0.60 1.95 2.82 6.37 18.75 - 4.34 5.60 7.80 4.16 7.62 - 2.60 3.01 2.86 2.19
LFS - 79.86 74.14 71.27 54.63 43.81 - 41.54 29.29 27.56 20.10 14.05 - 23.69 14.92 8.06 4.95

DM
[55]

RT 88.20 86.21 83.84 80.89 74.42 71.45 62.94 55.41 48.80 42.89 33.50 27.08 34.39 29.33 23.91 15.98 11.51
LBS - 85.92 83.21 80.21 73.78 70.69 - 56.47 49.89 43.57 34.35 26.67 - 30.84 24.74 16.47 11.62
Gap↓ - 0.29 0.63 0.68 0.64 0.76 - -1.06 -1.09 -0.68 -0.85 0.41 - -1.51 -0.83 -0.49 -0.11
LFS - 81.05 78.56 68.04 59.22 58.48 - 46.76 35.35 25.34 16.05 13.81 - 26.72 15.69 7.95 5.22

IDC
[17]

RT 89.06 86.81 85.16 83.13 77.96 70.64 69.32 62.01 58.50 52.13 44.12 35.34 41.99 36.08 30.68 23.34 17.93
LBS - 84.81 83.36 81.16 76.52 67.73 - 58.77 54.24 47.83 38.61 29.16 - 35.16 28.29 18.39 13.40
Gap↓ - 2.00 1.80 1.97 1.44 2.91 - 3.24 4.26 4.30 5.51 6.18 - 0.92 2.39 4.95 4.53
LFS - 82.57 77.02 74.41 60.86 52.75 - 51.91 42.17 30.20 22.84 17.68 - 30.25 19.50 10.96 7.63

FRePo
[58]

RT 89.15 87.44 85.54 83.80 79.91 75.44 71.03 68.63 65.76 61.07 53.24 43.24 40.57 39.97 36.34 31.63 27.07
LBS - 86.60 81.53 67.74 33.44 29.24 - 65.64 53.76 38.02 17.31 11.01 - 35.53 32.08 26.51 19.27
Gap↓ - 0.84 4.01 16.06 46.47 46.20 - 2.99 12.00 23.05 35.93 32.23 - 4.44 4.26 5.12 7.80
LFS - 82.59 75.65 71.76 61.94 44.00 - 59.14 50.48 38.34 29.60 18.22 - 35.18 30.00 19.94 13.63

Ours

RT 88.68 87.50 86.65 83.54 79.63 74.14 70.33 67.60 64.57 59.49 52.88 43.56 42.47 40.29 36.42 32.28 26.75
LBS - 86.81 85.18 83.62 78.58 72.74 - 67.93 63.96 61.05 55.82 47.77 - 36.23 33.49 29.27 26.04
Gap↓ - 0.69 1.47 -0.08 1.05 1.40 - -0.33 0.61 -1.56 -2.94 -4.21 - 4.06 2.93 3.01 0.71
LFS - 82.96 76.71 74.72 69.52 66.43 - 62.05 48.89 40.48 36.51 33.09 - 35.39 28.58 23.69 20.34

Table 1. Comparisons with typical DC methods on the performance of slimmable DC. IPC: number of images per class. RT: retraining
using original datasets. LBS: learning-based slimming. LFS: learning-free slimming. RS: randomly selected real images.

4. Experiments

4.1. Settings and Implementation Details

To evaluate the performance of our method in slimmable
DC, we mainly consider the following successive compres-
sion setting in experiments. A given real dataset is first con-
densed to a synthetic one with relatively large size. Then,
it is shrunk to a smaller set step by step where given only
the set before the current step. We consider two fashions:
learning-based and learning-free slimmable DC in this pa-
per, where the former allows using a limited number of
optimization steps to slim a dataset, while the latter does
not. The evaluation metric consists of two parts: the abso-
lute accuracy for downstream models trained by slimmed
datasets and the performance gap with an equal-size syn-
thetic dataset condensed directly from the real dataset.

Following previous works on DC, we conduct ex-
periments on benchmarked datasets including FashionM-
NIST [47], CIFAR10, and CIFAR100 [20]. The number
of classes is 10, 10, and 100, and the total number of im-
ages is 70,000, 60,000, and 60,000 respectively. For Fash-
ionMNIST and CIFAR10, sizes of synthetic datasets are
50 → 20 → 10 → 5 → 2 → 1 images per class (IPC) for
successive compression, and for CIFAR100, the sequence
is 20 → 10 → 5 → 2 → 1. Experiments on more datasets
and settings can be found in the supplement.

We start the implementation of the main pipeline of
slimmable dataset condensation in Alg. 1 following the
JAX [1] framework of FRePo [58], which is a performance-

matching based dataset condensation solution and achieves
state-of-the-art performance on typical DC settings. The
hyper-parameters λ1, λ∞, λskew, and λortho are empiri-
cally set as 1e − 2, 1, 1e − 2, and 1e − 4 respectively by
default and the sensitivity analysis is conducted in Sec. 4.3.
The training iteration T is 30, 000. For the significance-
aware parameterization, samples of each class share the
same U and Σ for memory efficiency and we simply set
ns = b for U ∈ Rns×b in each class and initialize it with
an identity matrix when training with real datasets. Other
configurations like network architectures for training and
evaluation hold the same as FRePo if not specified. All
quantitative results are based on the average of 5 repeated
evaluations. Full results can be found in the supplement.

4.2. Comparisons with Typical DC Methods

In this section, we are interested in the question that
whether existing algorithms for typical DC settings sup-
port slimmable condensation, i.e., taking a previously com-
pressed dataset as the input for further condensation and
producing a slimmed set representative for the original
real one. Thus, we adopt all three categories of DC ap-
proaches as candidates, including three gradient-matching-
based methods: DC [57], DSA [54], and IDC [17], one
distribution-matching based method: DM [55], and one
performance-matching based method: FRePo [58]. Their
performances on slimmable DC settings mentioned above
are listed in Tab. 1. We can figure out that: (1) Gradient-
matching-based methods in slimmable DC demonstrate
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IPC 50 20 10 5 2 1

ResNet

FRePo-RT 62.11 58.07 51.71 44.69 34.65 25.28
FRePo-LFS - 53.22 39.34 23.97 14.09 11.60

Gap↓ - 4.85 12.37 20.72 20.56 13.68

Ours-RT 62.05 55.76 49.64 43.26 34.33 24.63
Ours-LFS - 56.24 49.41 43.73 32.74 25.56

Gap↓ - -0.48 0.23 -0.47 1.59 -0.93

AlexNet

FRePo-RT 68.11 64.41 59.68 55.27 46.78 38.03
FRePo-LFS - 59.65 44.03 29.24 14.85 11.76

Gap↓ - 4.76 15.65 26.03 31.93 26.27

Ours-RT 68.67 63.37 58.57 52.85 47.55 37.13
Ours-LFS - 63.91 57.33 53.74 45.27 36.27

Gap↓ - -0.54 1.24 -0.89 2.28 0.86

VGG

FRePo-RT 60.89 54.30 46.71 42.22 34.02 28.50
FRePo-LFS - 50.72 34.79 23.11 12.93 10.69

Gap↓ - 3.58 11.92 19.11 21.09 17.81

Ours-RT 60.27 52.35 44.52 38.16 33.75 28.92
Ours-LFS - 54.78 43.78 37.43 32.31 28.02

Gap↓ - -2.43 0.74 0.73 1.44 0.90

Table 2. Comparisons with the performance-matching baseline
FRePo [58] on cross-architecture performance on slimmable DC.

a moderate amount of performance dropping compared
with the benchmarked result of retraining using the orig-
inal dataset. The possible reason is that only single-step
gradient matching is insufficient to preserve consistent neu-
ral networks used in different compression times. (2)
Distribution-matching-based DM can recover or even sur-
pass its benchmark, which is not surprising given the anal-
ysis in Sec. 3.2. It adopts random neural networks with-
out any learning bias and thus ensures a consistent embed-
ding space. The mean vector in this space is also read-
ily preserved during multi-time compression. Neverthe-
less, its inferior absolute accuracy makes it a less satisfac-
tory slimmable DC algorithm. (3) Performance-matching
based FRePo is incompetent for slimmable DC with dra-
matic performance drop from the benchmark based on the
analysis in Sec. 3.2. (4) The proposed method based on
first-order and infinity-order parameter matching accounts
for the above factors and performs well on both absolute
accuracy and performance gap with the benchmark2.

We also report results of our learning-free slimmable DC
based on the significance-aware parameterization in Tab. 1,
where results of other methods are based on a random selec-
tion of synthetic samples. We find that our method achieves
significantly superior performance for relatively small stor-
age budgets and at least comparable results in general.

Moreover, Tab. 2 shows the comparisons with the
performance-matching based FRePo on the cross-
architecture performance of slimmable DC on CIFAR10,
with three different architectures: ResNet-18 [12],
AlexNet [21], and VGG-11 [41]. We can observe that the
results are still comparable with the benchmark. Therefore,
the superiority of our method also holds given different

2We omit MTT [2] here since it requires caching hundreds of training
trajectories beforehand, which fulfills neither memory nor time constraints
imposed by slimmable DC. More analysis can be found in the supplement.

architectures during training and evaluation.

4.3. Ablation Studies

Learning-Based Slimmable DC: The proposed first-
order parameter matching objective L1

pm and infinity-order
parameter matching objective L∞

pm are expected to address
problems of inconsistent embedding space and underdeter-
mined solution space respectively. To demonstrate their ef-
fectiveness, on CIFAR10, we try removing L1

pm and replac-
ing L∞

pm with the original performance-matching objective
in Fig. 3(left). We can observe that L∞

pm is a fatal con-
straint to maintain the performance during successive com-
pression. Moreover, removing L1

pm would also cause a per-
formance drop compared with the full version.

To figure out how this objective works, we use slimmed
datasets trained with and without this objective, denoted as
S ′w and S ′wo respectively, and the synthetic dataset before
slimmed S, to train the same network ϕ0 separately, and the
trained networks are denoted as ϕ′

w, ϕ′
wo, and ϕ. We then

send S to ϕ′
w, ϕ′

wo, and ϕ, and calculate the embedding dis-
tances: ∥ϕ′

w(S)− ϕ(S)∥2F and ∥ϕ′
wo(S)− ϕ(S)∥2F , which

are plotted as Fig. 3(right) for each iteration on CIFAR10
with 1 IPC. It turns out that the embedding distance for Sw
does not increase with training using different data, unlike
Swo. Thus, L1

pm encourages a consistent embedding space
and thus benefits slimmable DC.

Learning-Free Slimmable DC: According to Prop. 1,
objectives of Lskew and Lortho would contribute to mini-
mizing the first-order and infinity-order parameter distances
and encourage promising results of learning-free slimmable
DC. As shown in Fig. 4(left), we also witness this effect in
the experiments on CIFAR10, where removing any of them
would decrease performances. Also, the results of learning-
free slimming can serve as a strong initialization to benefit
the learning-based setting. As shown in Fig. 4(right), on CI-
FAR10 with 1 IPC, this initialization strategy can accelerate
the training convergence to the final performance compared
with not using this parameterization. Here, for a fair com-
parison, we also provide results of the same parameteriza-
tion, but without Lskew or Lortho, which achieves inferior
performance. In other words, the success of the proposed
learning-free slimming solution relies on both the parame-
terization and the constraints imposed by the loss terms.

Qualitative Visualization: We visualize results of our
learning-based and learning-free slimmable DC methods in
Figs. 5 and 6 respectively. In the learning-based case, com-
pared with FRePo [58], our method can still preserve clear
contents of target semantics, while the content structures
by FRePo are nearly indistinguishable. Given that there is
some positive correlation between performance and qual-
ity of synthetic images [58], our method performs better in
slimmable DC. In the learning-free case, we observe that the
deleted components contain mainly minor structures and
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Figure 5. Visualizations of LBS on CIFAR10 with 1 IPC.
less-significant information, while major contours and se-
mantics are preserved in components with the largest singu-
lar values. It turns out that reconstructed results using top-
20 components only lose some details and become vague.

4.4. Applications

We demonstrate the practical applications of slimmable
DC with two examples: continual learning and federated
learning. Continual learning aims at learning from a se-
quence of tasks. Data of previous tasks are unavailable
when learning the current task. DC is useful in this area
to compress data into a small buffer for future use [35].
Following the configuration of previous works [17, 55, 58],
we conduct experiments on CIFAR100 with 5 sequentially-
coming tasks, where each task includes random 20 classes.
However, previous works assume that the size of the syn-
thetic buffer is proportional to the number of seen classes.
In this paper, we consider a more practical case where the
size of the buffer is fixed and we do not know the total num-
ber of classes in advance. Thus, when new classes come and
the buffer has been used up, we have to conduct slimmable
condensation first. Here, if the size of the buffer is 500 im-
ages in total, then the number of synthetic images per class
rounded up should be 25 → 13 → 9 → 7 → 5 respec-
tively when each new task comes. The performance of our
method and FRePo baseline is shown in Fig. 7(left).

In federated learning, multiple users jointly train a model
with data privacy protection. DC achieves this goal by up-
loading synthetic samples rather than raw data [7]. Simi-
larly, assume there are 5 participants in maximal and each
has 20 classes, with 25 synthetic images per class. The max-
imal network bandwidth is 500 images. If there is more
than 1 participant, they have to slim their synthetic dataset
to adapt to the per-user bandwidth, e.g., the case of 3 par-
ticipants can support 9 images per class. The performance

Original 50
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Top 20
Components

Last 30 
Components

Eigen 
Images

Figure 6. Visualizations of LFS for “automobile” of CIFAR10.
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Figure 7. Comparisons with the performance matching baseline
on applications of slimmable DC: continual learning using a syn-
thetic buffer with a fixed size (left) and federated learning with a
dynamic number of participant (right).

is shown in Fig. 7(right). Unlike continual learning, we do
not need to consider successive compression in this case but
start from initial datasets given a slimming request. Thus,
the performance of FRePo does not drop too much com-
pared with that of continual learning. Please refer to the
supplement for more different settings of these applications.

5. Conclusions

In this paper, we focus on slimmable dataset condensa-
tion, a topic overlooked by existing DC approaches but im-
portant in practice, to extract a slimmed synthetic dataset
only given a previously synthesized one, without access
to the original real dataset. We identify the limitation of
directly applying existing DC methods on slimmable DC,
and accordingly propose an appropriate training objective
to tackle the drawbacks of inconsistent network space and
underdetermined solution space. Moreover, we devise a
significance-aware synthetic data parameterization with an
upper-bounded error for slimmable DC. Discarding the less
important components may serve as either a learning-free
slimming solution or a strong initialization to boost the
training efficiency in learning-based slimmable DC. Exper-
iments on multiple benchmarks and applications demon-
strate the superiority of our method on slimmable DC over
state-of-the-art typical DC algorithms.
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