
SlowLiDAR: Increasing the Latency of LiDAR-Based Detection Using
Adversarial Examples

Han Liu, Yuhao Wu, Zhiyuan Yu, Yevgeniy Vorobeychik, Ning Zhang
Washington University in St. Louis

{h.liu1,yuhao.wu,yu.zhiyuan,yvorobeychik,zhang.ning}@wustl.edu

Abstract

LiDAR-based perception is a central component of au-
tonomous driving, playing a key role in tasks such as ve-
hicle localization and obstacle detection. Since the safety
of LiDAR-based perceptual pipelines is critical to safe au-
tonomous driving, a number of past efforts have investi-
gated its vulnerability under adversarial perturbations of
raw point cloud inputs. However, most such efforts have fo-
cused on investigating the impact of such perturbations on
predictions (integrity), and little has been done to under-
stand the impact on latency (availability), a critical con-
cern for real-time cyber-physical systems. We present the
first systematic investigation of the availability of LiDAR
detection pipelines, and SlowLiDAR, an adversarial per-
turbation attack that maximizes LiDAR detection runtime.
The attack overcomes the technical challenges posed by the
non-differentiable parts of the LiDAR detection pipelines by
using differentiable proxies and uses a novel loss function
that effectively captures the impact of adversarial perturba-
tions on the execution time of the pipeline. Extensive ex-
perimental results show that SlowLiDAR can significantly
increase the latency of the six most popular LiDAR detec-
tion pipelines while maintaining imperceptibility 1.

1. Introduction
The promise of autonomous transit has stimulated ex-

tensive efforts towards the development of self-driving plat-
forms [1–3, 5]. A central feature of most such platforms is
a LiDAR-based perceptual pipeline (usually integrated with
other sensors, such as camera and radar) for critical control
tasks, such as localization and object detection [1, 3, 51].
Since errors in localization or obstacle detection can cause
the vehicle to crash, these tasks are crucial in ensuring the
safety of an autonomous vehicle. As a result, extensive
prior research has been devoted to understanding and assur-
ing the robustness of the LiDAR-based perceptual pipelines

1Code is available at: https://github.com/WUSTL-CSPL/SlowLiDAR

Add

Perturb

Figure 1. SlowLiDAR attack. The attack goal is to maximize
the runtime latency of the state-of-the-art LiDAR detection models
with either an adding-based attack or a perturbation-based attack.

against adversarial perturbations on its raw point cloud in-
puts [22, 51, 53, 54]. A key focus in prior work has been on
perceptual prediction accuracy, for example, the ability of
the adversary to hide real obstacles or create phantom obsta-
cles [15,32,43,44]. Another significant aspect of the robust-
ness analysis of LiDAR-based perception that has received
little attention is its real-time performance (availability). In
particular, a delay in perceptual processing caused solely by
computational quirks of the LiDAR processing pipeline can
be just as damaging as a mistaken prediction. For example,
a delay in obstacle recognition can cause the vehicle to react
to an obstacle too late, failing to avoid a crash.

We present the first systematic analysis of the impact
of adversarial point cloud perturbations on the runtime la-
tency of common LiDAR perceptual pipelines. To this
end, we propose SlowLiDAR, an algorithmic framework for
adding adversarial perturbations to point cloud data aim-
ing to increase the execution time of LiDAR-based ob-
ject detection. Specifically, we consider two attack mech-
anisms (see Figure 1): 1) perturbation of the 3D coor-
dinates of existing points in the raw point cloud (point
perturbation attacks), and 2) adding points to the raw
point cloud (point addition attacks). Due to the unique
representation and processing procedure of LiDAR detec-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5146

tion pipelines, existing availability attacks on other AI
pipelines, such as camera-based detection [39], cannot be
directly applied. Specifically, there are three new chal-
lenges: C1. Non-differentiable aggregation. LiDAR point
clouds are generally sparsely distributed in a large 3D
space without an organized pattern. To process such un-
structured data, the state-of-the-art LiDAR-based detec-
tion models extract aggregated features of the points at
the level of either 2D or 3D cells [30, 52, 55]. However,
the aggregation operation is by nature non-differentiable
[14], which presents new challenges to end-to-end opti-
mization. C2. New objective function. Different than ex-
isting attacks targeting accuracy, a novel loss function
needs to be carefully designed to effectively capture the
impact of adversarial perturbations on runtime latency.
C3. Large search space. Because points are distributed in
a large space, the perturbation search space is quite large,
and conventional gradient-based optimization approaches
for crafting attacks may yield poor local optima.

We address these technical challenges as follows. First,
in order to enable end-to-end training of adversarial input
perturbations, we develop a differentiable proxy to approx-
imate the non-differentiable pre-processing pipelines. Sec-
ond, we conduct a response time analysis on the detection
pipeline to identify the most vulnerable components, and
design a novel loss function to best capture the impact of
input perturbations on the runtime latency of the identified
components. Third, to tackle the large search space, we
propose a probing algorithm to identify high-quality initial-
ization for gradient-based attack optimization.

We evaluate SlowLiDAR on six popular LiDAR-based
detection frameworks that are adopted in modern commer-
cial autonomous driving systems. Our experiments show
that SlowLiDAR is effective in slowing down the models
while retaining comparable imperceptibility. Moreover, the
performance of our attacks remains consistent across differ-
ent hardware and implementations. Our contributions can
be summarized as follows:

• We systematically dissect the LiDAR detection models
to analyze the attack surface of their runtime latency to
adversarial inputs.

• We propose the first adversarial perturbation attacks
against LiDAR detection with the goal of maximizing
runtime latency. To this end, we overcome the non-
differentiability of the pre-processing pipelines in or-
der to perform end-to-end gradient-based attack opti-
mization, and design a novel loss function to capture
the impact of input perturbations on execution time.

• We evaluate our attacks on six popular LiDAR detec-
tion models in modern commercial autonomous driv-
ing systems in different hardware and implementations
to demonstrate the ability to significantly increase la-
tency with comparable imperceptibility.

2. Related Work

Point Cloud Recognition. Deep learning has achieved re-
markable progress in 2D image-based recognition tasks in
computer vision [24, 26, 38], and has been recently applied
to 3D point cloud-based recognition for its exceptional per-
formance. Differing on the pre-processing steps, two of the
most popular LiDAR detection models are bird’s eye view
(BEV)-based detection, and voxel-based detection. BEV-
based methods generally project point clouds into a top-
down view and learn features through 2D convolutional
neural networks (CNNs) [18, 33, 52]. Notably, the widely-
used autonomous driving platform Apollo [1] adopts BEV-
based methods in its LiDAR perception module. In con-
trast, voxel-based methods slice the point clouds into 3D
voxel grids and extract features through a voxel-based de-
tection network [29, 30, 55]. Autoware [3], another pop-
ular industry-level self-driving platform, adopts PointPil-
lars [30]. Furthermore, there is another line of work that
directly learns the feature from the raw point cloud, often
referred to as point-based methods [36, 37, 40].

Adversarial Point Cloud Attack. Recognizing the impor-
tance of security, recent works have investigated the feasi-
bility of adversarial attacks on point cloud recognition mod-
els. Zheng et al. proposed an untargeted attack by utilizing
a saliency map to drop out critical points [53], while Xiang
et al. proposed a targeted attack by perturbing or gener-
ating the points while using several metrics (e.g., Chamfer
Measurement) to improve the imperceptibility [48]. Sub-
sequent studies focused on improving imperceptibility by
considering various shapes and positions of the point cloud
[27, 34, 47]. In contrast to existing adversarial attacks that
target integrity, our attack focuses on availability, requiring
a new formulation to capture the temporal property.

Availability-based Slowdown Attack. Recently, availabil-
ity has emerged as a new attack surface [31,45]. Shumailov
et al. were the first to present an availability-based attack
[41], exploiting the vulnerability of the embedding process
of NLP models. Following [41], there have been studies that
target adaptive neural networks [23, 25] and token-output
process of neural image caption generation models [17].
Closely related to our work, Shapira et al. proposed a slow-
down attack on camera-based object detection algorithms
by exploiting the vulnerability of the post-processing stage,
overloading the models with predicted candidate bounding
boxes [39]. However, availability attack on LiDAR detec-
tion models require new formulations due to the differences
in representations and processing procedures.

3. Availability Attack Surface Analysis

LiDAR Processing Pipelines. LiDAR-based detection
modules are extensively utilized in autonomous driving ve-

5147

Algorithm 1: Non-maximum Suppression
1 Input: Bounding box proposals C, confidence scores of

proposals S, confidence score threshold T , maximum number
of boxes threshold K, IoU threshold I .

2 Output: Selected bounding box proposals C∗, confidence scores
of selected proposals S∗.

3 S′ ← {}, C′ ← {}, S∗ ← {}, C∗ ← {}
4 ↓ O(N),Ω(N)
5 for s, c in Zip(S, C) do
6 if s > T then
7 S′ ← S′ ∪ {s}, C′ ← C′ ∪ {c}
8 end
9 end

10 ↓ O(NlogN),Ω(N)
11 S′′, C′′ ← Sort(S′, C′)[: K]

12 ↓ O(K2),Ω(K)
13 while |S′′| > 0 do
14 u← IoU(S′′(0), S′′(1 :)) if u > I then
15 S′′ ← {S′′}\{su}, C′′ ← {C′′}\{cu}
16 end
17 S′′ ← {S′′}\{s0}, C′′ ← {C′′}\{c0}
18 S∗ ← S∗ ∪ {s0}, C∗ ← C∗ ∪ {c0}
19 end
20 return S∗, C∗

hicles for environment perception. LiDAR first uses laser
scanning to collect point cloud data, which contains the 3D
coordinates and intensities of the reflected points. A de-
tection model then processes the point clouds and identifies
obstacles. A common pipeline of LiDAR-based detection
models comprises three modules: a pre-processing module,
a backbone network, and a post-processing module.

Pre-processing often falls into either BEV-based that
projects point cloud onto feature maps [18,33,52] or voxel-
based that transforms point cloud into 3D voxel grids
[29, 30, 55]. The backbone network processes the pre-
processed feature maps and generates a set of bounding
boxes that contain information on potential obstacles, such
as confidence scores, location coordinates, orientation, etc.
The post-processing module filters proposals with low con-
fidence scores and performs a non-maximum suppression
(NMS) to remove proposals with large overlapping areas.

Response Time Analysis. There are three key steps in the
processing pipeline. First, the pre-processing step typically
employs a rule-based point aggregation manipulation. For
example, in voxel-based detection models, the 3D space is
divided into voxel units, and each raw point is transposed
into the corresponding voxel based on its coordinates. The
time complexity of this process is O(n), where n represents
the number of points in the point cloud. Due to the linear
time complexity, a considerable amount of points needs to
be added to effectively slow this process down, resulting in
increased cost and perceptibility of the attack.

Second, the time consumption of the backbone network
in LiDAR detection models depends on the computation
dimension [41] and the number of computations [23, 25].

However, the input dimension and number of computations
for the backbone network are generally fixed.

Lastly, in the post-processing module, the number of
proposals before the NMS module can vary greatly for dif-
ferent inputs. The NMS algorithm, which is provided in
Algorithm 1, first filters out proposals by a pre-defined con-
fidence score threshold. The best-case and worst-case time
complexity for this step is Ω(N) and O(N), respectively,
where N is the number of bounding box proposals. Next,
the proposals are sorted by their confidence scores and fil-
tered by a pre-defined threshold. Since the default sorting
algorithm in Python is TimSort [12], this process has a best-
case time complexity of Ω(N) and a worst-case time com-
plexity of O(NlogN), where N represents the number of
proposals after filtering. Finally, the proposal with the high-
est score is selected, and other proposals with a significant
overlap are filtered out. This step can have significant vari-
ance in terms of time complexity. In the best-case scenario,
where all proposals are highly overlapping, the loop will run
only once with a time complexity of Ω(K). In contrast, in
the worst-case scenario, every proposal is highly dispersed,
and the loop will continue until only one proposal is left,
resulting in a time complexity of O(K2).

4. Methodology
4.1. Threat Model, Formulation, and Overview

Threat Model and Formulation. For a LiDAR detection
model D, given the pristine 3D point cloud x, the adversary
aims to craft an adversarial example x∗ to maximize the
latency of the processing pipeline while remaining imper-
ceptible. We formulate this as the following optimization
problem:

argmax
x∗

T (M(x∗)) s.t. D(x, x∗) < η, (1)

where T is the latency measurement function, M is the Li-
DAR detection model, and D is the distance between the
original and adversarial point clouds. Following prior work
on adversarial perturbations to LiDAR point clouds [34,47,
51, 56], we make the assumption of over-the-line adversary
capable of modifying sensed LiDAR data, and consider two
types of attacks to analyze the algorithmic latency robust-
ness: 1) point perturbation attacks and 2) point addition
attacks. Point perturbation attacks modify the 3D coordi-
nates of existing points, subject to a constraint that limits
the magnitude of coordinate perturbations. Addition attacks
generate a new set of adversarial points and combine them
with the original points to form the final adversarial point
clouds, while restricting both the number of inserted points
and their distance from the original points.
Overview. In this paper we propose SlowLiDAR, the first
adversarial attack maximizing the latency of LiDAR detec-
tion models. The overview of the attack pipeline is given in

5148

Add

Perturb

Benign

Point Cloud

LiDAR Model

Malicious

Point Cloud

Updated

Pertubation
Preprocess

Approximation

Imperceptibility Loss

Adversarial

Loss

Optimization

Effective

Probing

Figure 2. Overview of proposed SlowLiDAR attacks.

Figure 2. There are two types of attacks: in perturbation at-
tacks, the positions of existing points are optimized; in addi-
tion attacks, extra points are first initialized and then get op-
timized. As discussed previously (§1), there are three chal-
lenges. To address C1, the pre-processing procedure is ap-
proximated with a differentiable operation to perform end-
to-end training (§4.2). To address C2, we design both an
adversarial loss function and an imperceptibility loss func-
tion for tackling the optimization in a new scenario (§4.3).
To address C3, we propose an effective probing algorithm
to identify a suitable initialization point in the large search
space (§4.4).

4.2. Pre-processing Pipeline Approximation

To perform end-to-end attacks on raw point clouds, the
pre-processing pipelines of two widely-used LiDAR detec-
tion models, BEV-based models [33, 52] and voxel-based
models [29, 55], are dissected. The details of these pre-
processing pipelines are described in the following.

BEV-based Detection Model. The BEV-based detection
methods first slice the point cloud into evenly-spaced cubes
in the 3D space, with each cube having the same size
L×W×H . Then, the occupancy tensor is determined by an
occupancy encoding procedure. Specifically, for each cube,
if there exist points within the grid, the value is 1 otherwise
it is 0. The reflectance data is aggregated along the height
dimension and normalized to be within [0, 1] to get a 2D
reflectance tensor. The final BEV representation is a com-
bination of the 3D occupancy tensor and the 2D reflectance
tensor. Despite the increase in processing efficiency, the
occupancy encoding is by nature non-differentiable since it
produces discontinuous binary values. To render the occu-
pancy encoding differentiable, we apply a differentiable and
accurate approximation of the encoding process. Specifi-
cally, we formulate the encoding values following trilinear
interpolation [13, 14] with the occupancy value for a point
pi in cube cj computed as

O(pi, cj) =

(
1−

d(li, lj)

L

)
·
(
1−

d(wi, wj)

W

)
·
(
1−

d(hi, hj)

H

)
,

(2)

where li is the x-coordinate, wi is the y-coordinate, and
hi is the z-coordinate of the point pi. Similarly, lj , wj , hj

represents the (x, y, z) coordinates of the central point in
cube cj . The function d(·) is defined as

d(a, b) =
X

2
+

X

2
· sign

(
∥a− b∥ −

X

2

)
. (3)

The intuition behind this approximation is that when the dis-
tance between point pi and the central coordinate of cube cj
for all coordinates is smaller than the dimension of the cube,
the occupancy value is 1; otherwise, the occupancy value is
0. However, the formulated encoding procedure is still non-
differentiable due to the existence of the sign function. To
address this, we apply principal Padé approximation [28] to
approximate the sign function as

sign(z) ≈ tanh(k · arctanh(z)), (4)

where k controls the steepness of the approximation: a
larger k yields a better approximation, but also less stable
gradients, making the optimization problem more challeng-
ing. After substituting 4 into 3, we get a full approximation
rendering of the BEV pre-processing pipelines.

Voxel-based Detection Model. The voxel-based models
first slice the point cloud into the evenly spaced grid in the
3D space and then put each point into the grid according
to its coordinates. The number of points in each voxel is
generally constrained, random sampling is applied when
a voxel holds too much data, and zero padding is applied
when the voxel contains too little data. After removing the
empty voxels, the final dense voxel representation is ob-
tained. This process is differentiable and the gradient can
be directly propagated to each individual raw point. Typ-
ically, to accelerate the training and inference process, the
pre-processing pipelines are implemented in C++2 3; we re-
implemented this code using Pytorch 4 to ensure a differen-
tiable end-to-end pipeline.

4.3. Loss Function Design

Adversarial Loss. As shown in the response time analysis
given in Section 3, the main computational complexity is
from the sorting procedure and the box selection procedure.
Therefore, in order to maximize the processing latency, we
need to increase the number of bounding box proposals be-
fore the confidence-based filtering process and also increase
the number of iterations in the box-selection procedure. In
LiDAR detection models, for each bounding box proposal
it predicts, it would also predict a confidence score. In order
to increase the number of boxes after filtering, we need to
maximize the number of boxes whose confidence score is
above the filtering threshold. To achieve this, we formulate
the loss function as

2PIXOR: https://github.com/philip-huang/PIXOR
3VoxelNet: https://github.com/skyhehe123/VoxelNet-pytorch
4Pytorch: https://pytorch.org

5149

Lconf =
1

N

∑
n

max(Tconf − Cn, λ), (5)

where N represents the total number of predicted proposals,
Cn represents the confidence scores of proposal n, Tconf is
the filtering threshold set by the model, and λ is a control
parameter to prevent our algorithm from increasing the con-
fidence scores of several candidate proposals.

To increase the number of iterations in the proposal-
selection procedure, it is crucial to ensure that proposals
are sparsely distributed and are not overlapping with one
another, since overlapping proposals tend to get filtered out
within a few iterations. Generally, the larger the area of pro-
posals and the closer two proposals are, the easier it is for
two proposals to overlap. Therefore, we formulate the loss
function as

Lprop =
1

N(N − 1)

∑
i

∑
j ̸=i

max

(√
Si ·

√
Sj

Di,j
, κ

)
, (6)

where Si represents the area of proposal i, and Di,j repre-
sents the distance between the central coordinates of pro-
posals i and j. Similarly, we use a parameter κ to control
the magnitude. Then the adversarial loss is represented by

Ladv = Lconf + αLprop, (7)

Imperceptibility Loss. Following the existing methods
[22, 34, 51], we adopt the Chamfer Distance (CD) [19] as
the perturbation metric, defined as the average distance of
all nearest point pairs. Formally, the loss function is

Lcd =
1

∥P ∗∥
∑

p1∈P∗
min
p2∈P

∥p1 − p2∥22, (8)

where P ∗ is the adversarial and P the original point cloud.
Then, the total loss function is defined as

Ltotal = Ladv + βLcd. (9)

Ensemble Training. Since the adversary cannot always
have white-box access to the targeted models, attack trans-
ferability is important. Ensemble training over multiple
models can help generalize the adversarial examples and
improve transferability [39, 46]. We formulate the ensem-
ble training process as a min-max optimization problem to
find an ideal performance balance between different models
following [49]. Specifically, we define our problems as

min
p∗∈P

max
w∈W

∑
i

wiL
i
adv(p

∗)−
σ

2

∥∥∥∥w − 1

N

∥∥∥∥2
2

+ βLcd(p, p
∗), (10)

where p is the original cloud, p∗ is the adversarial point
cloud, W is the a probabilistic simplex given by W =
{w|1Tw = 1 ≥ 0}, Li

adv is the adversarial loss function
for detection model i, N is the total number of models, and
σ is a regularization parameter.

Algorithm 2: Effective Probing
1 Input: Probing steps K, number of added points Nadd, number

of probing point Nprob, original point cloud Pori, Gaussian
distribution mean µ1, µ2, µ3 and variance σ2

1 , σ
2
2 , σ

2
3 .

2 Output: Initial coordinate of added points P ∗.
3 S∗ ← {}, P ∗ ← {}
4 for i = 1 to K do
5 P ← {}
6 while i < Nprob do
7 x← N (µ1, σ2

1), y ← N (µ2, σ2
2), z ← N (µ3, σ2

3)
8 P ← P ∪ {(x, y, z)}
9 end

10 S ← ∥ ∂Ltotal(M(P∪Pori))
∂P

∥22
11 S∗ ← S∗ ∪ S, P ∗ ← P ∗ ∪ P
12 S∗, P ∗ ← Sort(S∗, P ∗)[: Nadd]

13 end
14 return P∗

4.4. Effective Probing for Initialization

Point addition attacks are non-trivial: given that LiDAR
point clouds are sparsely distributed in a large space, the
optimization on such a large scale can easily converge to
a local optimal. To address this issue, we need to find a
good initialization position. To this end, we propose an ef-
fective probing (EP) algorithm for point initialization (see
Algorithm 2 for details). Specifically, we generate a large
set of random probing points. We then calculate the impor-
tance of each point using the gradient with respect to the
loss function as

S =

∥∥∥∥∂Ltotal(M(P ∪ Pori))

∂P

∥∥∥∥2
2

, (11)

where P is the added point set, Pori is the original point
set, and S is the importance scores corresponding to each
point in P . This step is repeated to keep the points with the
highest importance scores.

5. Experiments
5.1. Experimental Setup

Datasets and Target Models. We use the KITTI dataset
[20] for training and evaluating the proposed attacks. The
KITTI dataset contains LiDAR point clouds collected in the
wild and 3D bounding box labels, serving as a widely-used
vision benchmark for autonomous driving with 7481 point
clouds for training, and 7518 point clouds for testing. For
target models, we cover two popular types of LiDAR de-
tection models in commercial autonomous driving systems:
BEV-based models - PIXOR [52], Complex-YOLO [42],
and YOLO3D [11] and voxel-based models - PointPillar
[30], VoxelNet [55], and Second [50]. We choose popular
open-sourced repositories as targets with two different im-
plementations of NMS in Python [4,6,8,10], and C++ [7,9]
for each model. We train them on KITTI dataset following

5150

their original works to obtain the victim models.

Evaluation Metrics. To measure the increase in response
latency of the model, we measure the rate of increase (ROI)
in the number of candidate proposals before NMS and pro-
cessing time. Additionally, we define two metrics regarding
processing time, ROI-P and ROI-Latency, in terms of the
rate of increase in proposals and latency as

ROI-Proposal =
Proposal(x∗)− Proposal(x)

Proposal(x)
,

ROI-Latency =
Latency(x∗)− Latency(x)

Latency(x)
.

(12)

We compute the ROI-Latency for both NMS stage (ROI-
NMS) and end-to-end processing time (ROI-TT).

Testing Hardware. We evaluated the effectiveness of our
attack in various hardware to simulate real-world deployed
platforms of LiDAR detection models since processing la-
tency is hardware-dependent. We tested the latency on 3
hardware platforms: AMD Ryzen 9 3900X CPU, GeForce
RTX 3070 Ti GPU, and GeForce RTX 3090 Ti GPU.

Comparison Baselines. To the best of our knowledge, we
are the first to propose slowdown attacks against LiDAR de-
tection models while existing adversarial attacks focus on
corrupting the integrity of the models. To evaluate the per-
formance of SlowLiDAR and show that existing attacks do
not effectively slow down the models, we compare SlowL-
iDAR with three LiDAR integrity-based attack algorithms:
PGD [35], I-FGM [21], and CW [16]. For each algorithm,
we implement both the point perturbation and addition at-
tacks, training the samples with randomly chosen target la-
bels under the Chamfer distance constraint. For addition
attacks, in order to successfully change the labels, we fol-
low [51] to add 10% of the total points.

Implementation Details. For all the LiDAR detection
models, we adopt the threshold setting of the NMS stage in
the official implementation. In our ablation study, we fur-
ther alter these thresholds to observe their effect on attacks.
For addition attacks, we set the maximum number of added
points as 3% of the number of original points. We use Adam
optimizer with learning rate 10−2 for perturbation attacks,
and 10−3 for addition attacks. For effective probing, we set
the number of probing points in each step to 3000 and the
probing step to 30. Each adversarial sample is trained with
2000 iterations.

5.2. Evaluation Results

A comparison between our proposed method and base-
line methods is shown in Table 1. SlowLiDAR can increase
the total number of proposals in PointPillar up to 165.92
times for perturbation attacks and 156.16 times for addition
attacks. However, a larger ROI-P does not necessarily result
in higher latency, as it may depend on the implementation

Table 1. Comparison of rate of increase in proposals (ROI-P) be-
fore NMS stage with baseline in LiDAR detection models.

Model Attack Type PGD CW I-FGM Slow-LiDAR

PIXOR [52]
Perturb 0.05 0.00 0.01 35.21

Add 0.55 0.16 0.22 45.15

YOLO3D [11]
Perturb -0.50 0.00 -0.50 499.00

Add 2.50 1.50 2.00 479.00

Complex-YOLO [42]
Perturb 1.00 0.00 0.00 539.00

Add 5.00 2.00 2.00 552.00

VoxelNet [55]
Perturb 0.25 0.00 0.03 48.29

Add 0.83 0.14 0.28 33.38

PointPillar [30]
Perturb 0.16 0.03 0.05 165.92

Add 0.62 0.16 0.29 156.16

Second [50]
Perturb 0.22 0.00 0.11 127.70

Add 0.44 0.22 0.22 187.20

and the size of base candidate proposals. Therefore, we fur-
ther measured the processing latency.

Table 2 presents the results of our processing latency
tests on various hardware configurations. Our proposed
system, SlowLiDAR, can increase the processing latency
in both the NMS-stage and end-to-end. Specifically, we
observed an average 116 times increase in the processing
time of the NMS-stage for perturbation attacks, and an aver-
age 65.75 times increase for addition attacks in the PIXOR
model. For the end-to-end processing time, we observed
that it can be slowed down up to 85.08 times in perturbation
attacks and up to 48.22 times in addition attacks on the 3090
Ti GPU. The difference in the effectiveness of slowdown
between the CPU and the two GPUs is due to the slower
model forward time on the CPU, which limits the effec-
tiveness of increasing the NMS-stage latency. Additionally,
models with NMS implemented in Python are more vul-
nerable compared to those implemented in C++, with the
exception of Second, which is implemented in Python but
equipped with GPU acceleration. Furthermore, our SlowL-
iDAR system achieved a slightly larger Chamfer distance
for perturbation attacks, as compared to the accuracy-based
baseline methods. This is because the baseline methods per-
turb the points around certain proposals to flip their pre-
dictions, while our SlowLiDAR system aims to perturb all
points to create as many proposals as possible.

5.3. Ablation Study

Attack Effectiveness Under Different Thresholds. As
discussed in Section 3, the effectiveness of attacks on Li-
DAR models is most impacted by three factors: (i) proposal
limit thresholds, (ii) confidence score thresholds, and (iii)
IoU thresholds. To evaluate their impact on latency, we var-
ied the thresholds with different values and measured pro-
cessing latency in the NMS stage on the 3070 Ti GPU. Our
results show that (i) and (ii) visibly impact the defense ca-
pability, as illustrated in Figure 3. However, setting better
thresholds cannot fully defend against our attacks. For in-

5151

Table 2. Results of NMS-stage and end-to-end processing latency with CD in different LiDAR detection models and hardware.

Model Attack Type Hardware PGD CW I-FGM Slow-LiDAR
ROI-NMS↑ ROI-TT↑ CD↓ ROI-NMS↑ ROI-TT↑ CD↓ ROI-NMS↑ ROI-TT↑ CD↓ ROI-NMS↑ ROI-TT↑ CD↓

PIXOR [52]

Perturb
CPU 0.04 0.01

3.69
0.00 0.00

0.00
0.01 0.01

0.01
168.10 4.91

0.603070 Ti 0.04 0.01 0.00 0.00 0.01 0.01 79.10 65.07
3090 Ti 0.04 0.01 0.00 0.00 0.01 0.01 116.00 85.08

Add
CPU 0.04 0.01

8.87
0.02 0.00

1.10
0.02 0.05

2.56
94.24 2.80

0.783070 Ti 0.04 0.01 0.02 0.00 0.02 0.00 42.48 35.53
3090 Ti 0.04 0.01 0.02 0.00 0.02 0.00 65.75 48.22

YOLO3D [11]

Perturb
CPU 0.00 0.00

0.14
0.00 0.00

0.00
0.00 0.00

0.00
2019.11 229.11

0.073070 Ti 0.00 0.00 0.00 0.00 0.00 0.00 2031.35 230.68
3090 Ti 0.00 0.00 0.00 0.00 0.00 0.00 3136.99 327.33

Add
CPU 0.00 0.00

1.55
0.00 0.00

0.88
0.00 0.00

0.12
815.62 92.30

0.783070 Ti 0.00 0.00 0.00 0.00 0.00 0.00 825.24 94.30
3090 Ti 0.00 0.00 0.00 0.00 0.00 0.00 907.80 94.73

Complex-YOLO [11]

Perturb
CPU 0.01 0.00

0.88
0.01 0.00

0.01
0.01 0.00

0.00
398.98 7.79

0.293070 Ti 0.01 0.00 0.01 0.00 0.01 0.00 400.08 134.94
3090 Ti 0.01 0.00 0.01 0.00 0.01 0.00 444.72 136.76

Add
CPU 0.03 0.01

1.89
0.02 0.01

0.67
0.02 0.01

1.42
103.76 2.02

0.443070 Ti 0.03 0.01 0.02 0.01 0.02 0.01 104.25 36.95
3090 Ti 0.03 0.01 0.02 0.01 0.02 0.01 118.70 36.41

VoxelNet [55]

Perturb
CPU 0.05 0.01

8.32
0.01 0.00

0.01
0.02 0.01

0.04
14.32 2.41

0.853070 Ti 0.05 0.01 0.01 0.00 0.02 0.01 14.13 2.37
3090 Ti 0.05 0.01 0.01 0.00 0.02 0.01 14.36 2.88

Add
CPU 0.05 0.01

18.87
0.02 0.01

3.03
0.02 0.01

5.90
13.65 1.80

2.483070 Ti 0.05 0.01 0.02 0.01 0.02 0.01 13.58 1.75
3090 Ti 0.05 0.01 0.02 0.01 0.02 0.01 13.88 1.92

PointPillar [30]
Perturb

3070 Ti 0.05 0.01
3.86

0.02 0.01
0.00

0.02 0.01
0.02

7.86 2.72
0.41

3090 Ti 0.05 0.01 0.02 0.01 0.02 0.01 8.65 3.12

Add
3070 Ti 0.05 0.01

11.88
0.02 0.01

1.73
0.02 0.01

4.73
6.77 1.91

1.10
3090 Ti 0.05 0.01 0.02 0.01 0.02 0.01 9.23 2.30

Second [50]
Perturb

3070 Ti 0.01 0.00
2.34

0.01 0.00
0.01

0.01 0.00
0.02

40.55 3.56
0.40

3090 Ti 0.02 0.00 0.01 0.00 0.01 0.00 32.33 4.22

Add
3070 Ti 0.03 0.01

3.23
0.02 0.00

1.11
0.02 0.00

2.88
22.67 2.39

0.59
3090 Ti 0.03 0.01 0.02 0.01 0.02 0.01 19.05 2.68

100 500 1000 2000 3000 5000 6000 8000 10000
Threshold of the number of proposals

0

20

40

60

80

100

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(a) Proposal-Perturb

0.1 0.2 0.3 0.35
Confidence Score Threshold

0

20

40

60

80

100

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(b) Confidence-Perturb

0.01 0.04 0.07 0.10
IoU Threshold

0

20

40

60

80

100

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(c) IoU-Perturb

100 500 1000 2000 3000 5000 6000 8000 10000
Threshold of the number of proposals

0

10

20

30

40

50

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(d) Proposal-Add

0.1 0.2 0.3 0.35
Confidence Score Threshold

0

10

20

30

40

50

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(e) Confidence-Add

0.01 0.04 0.07 0.10
IoU Threshold

0

10

20

30

40

50

RO
I-N

M
S

PIXOR
VoxelNet
PointPillar

(f) IoU-Add

Figure 3. Attack effectiveness under different thresholds in NMS stage.

0.001 0.01 0.04 0.07 0.1
Standard Deviation of Noises

0.0

0.2

0.4

0.6

0.8

RO
D-

Pr
op

os
al

PIXOR
VoxelNet
PointPillar

(a) Perturb

0.001 0.01 0.04 0.07 0.1
Standard Deviation of Noises

0.0

0.2

0.4

0.6

0.8

RO
D-

Pr
op

os
al

PIXOR
VoxelNet
PointPillar

(b) Add

Figure 4. Robustness tests.

5 10 20 50
Number of steps in effective probing

0

2

4

6

8

RO
I-P

PIXOR
VoxelNet
PointPillar

(a) Performance

0 10 20 30 40 50
Number of Steps in Effective Probing

0

600

1200

1800

2400

3000

Ti
m

e
(s

)

PIXOR
VoxelNet
PointPillar

(b) Latency

Figure 5. EP Evaluation.

stance, when the proposal limit is set to 3000 in PIXOR,
the ROI-NMS is only 47.28. Similarly, with a confidence
threshold of 0.35, the ROI-NMS is 88.9. Furthermore, fine-
tuning (i) and (ii) as defenses are not feasible since they
significantly reduce performance on benign samples.
Feasibility of Physical Attacks. While our main emphasis
is on the algorithmic aspects of attacks, we also investigated
their feasibility under physical constraints. To account for
the potential impact of noise, we conducted a robustness
analysis by adding Gaussian noise with different standard

deviations to the modified point clouds. Figure 4 shows the
rate of decrease (ROD) of prediction proposals. For com-
mon noise at the level of 0.01m, the ROD is less than 3%
for PointPillar and VoxelNet, and less than 13% for PIXOR.
Additionally, we conducted an experiment with a revised
loss function to account for the predefined grid of directions
in which a LiDAR device shoots laser rays. The point cloud
was first converted to spherical coordinates, and we used the
sign of the gradient for variable updates to ensure a discrete
resolution of optimization steps. Our attacks achieved an

5152

ROI-P of 90.016 for PointPillar, 23.209 for VoxelNet, and
12.979 for PIXOR with a perturbation resolution of 0.02.
Variance of Running Time. To account for the potential
variability in running time due to multiple factors, we re-
peated the experiments and measured the variances of ROI-
NMS and ROI-TT, as presented in Table 3. The variance
was found to be negligible compared to the original values.
Transferability. To evaluate the transferability of our at-
tack, we train the samples on each targeted model, then test
their effectiveness on them using the pre-trained samples.
We also evaluate the effectiveness of the ensemble training
strategy. The results are given in Table 4. As we can see, the
transferability is limited compared to directly training on
the target models due to the unique pre-processing pipelines
in different LiDAR detection models. On the other hand,
ensemble learning boosts transferability and increases the
number of proposals by 12.994 times on PIXOR models.

Table 3. Variances of ROI-NMS and ROI-TT in repeated experi-
ments with different hardware.

Model Attack Type
Variance (CPU, 3070 Ti, 3090 Ti)
ROI-NMS ROI-TT

PIXOR
Perturb 0.124 0.329 0.318 0.024 0.086 0.084

Add 0.302 0.171 0.229 0.061 0.137 0.008

VoxelNet
Perturb 0.060 0.034 0.042 0.009 0.020 0.012

Add 0.037 0.016 0.183 0.024 0.012 0.014

PointPillar
Perturb - 0.064 0.066 - 0.024 0.024

Add - 0.051 0.054 - 0.014 0.017

Effectiveness of Efficient Probing. To assess the effective-
ness of our efficient probing (EP) algorithm for point initial-
ization, we conducted experiments with different probing
steps and evaluated the resulting ROI-P post-initialization.
Figure 5 (a) shows that as the number of probing itera-
tions increases, we obtain more initialized proposals, pro-
viding evidence of the effectiveness of our probing algo-
rithm. However, the probing step introduces additional la-
tency, as shown in Figure 5 (b). We found that processing
time is linearly proportional to the number of probing steps.

6. Discussion

Real-world Impacts. Our study investigates the algorith-
mic runtime robustness of LiDAR detection models by ma-
nipulating digital data. We have further investigated the
physical realizability by further considering the noise and
working principles of lasers in LiDAR. Although our inves-
tigation is on digital domain manipulation, it expands the at-
tack surface beyond accuracy-based attacks and sheds light
on the vulnerability of autonomous driving systems from
the availability perspective. Our tool can also aid the fu-
ture investigation of runtime latency robustness of LiDAR
processing pipelines in autonomous systems.

Table 4. Transferability of SlowLidar in different models.

Attack
Source

Target
PIXOR VoxelNet PointPillar

Perturb

PIXOR 35.213 1.722 1.344
VoxelNet 1.115 48.286 3.359

PointPillar 3.318 1.087 165.922
Min-max Train 8.259 6.239 7.321

Add

Source
Target

PIXOR VoxelNet PointPillar

PIXOR 45.149 0.831 3.016
VoxelNet 1.213 33.381 2.183

PointPillar 8.851 1.087 156.156
Min-max Train 12.994 4.889 7.972

Limitations and Future Work. Firstly, our attack per-
formance is limited in point-based detection models (e.g.,
PointRCNN) because the run-time variance of these mod-
els primarily depends on the process of candidate proposals
in the first stage of the detection algorithm. Even though an
adversary may manipulate runtime by creating more pro-
posal candidates, we found that most existing implemen-
tations of point-based methods offer little room for adver-
sarial manipulation due to the combination of aggressive
proposal generation strategies with thousands of proposals
generated simultaneously and a relatively low pre-defined
proposal limit threshold. Second, even though we’ve mod-
eled physical-world realizability, the feasibility and engi-
neering challenges of tampering with physical-world sig-
nals remain unexplored. Third, we design SlowLiDAR at-
tacks in a white-box setting. Although we evaluated the
transferability of our attacks in a black-box setting through
ensemble training, the performance of black-box attacks is
limited compared to white-box attacks.

7. Conclusion
We present SlowLiDAR, the first adversarial perturba-

tion attack that maximizes LiDAR detection runtime. To
achieve the goal, we propose differentiable proxies to ap-
proximate the non-differentiable parts of the LiDAR detec-
tion pipelines, and design a novel loss function that effec-
tively captures the impact of adversarial perturbations on
runtime efficiency. Extensive experimental results show
that SlowLiDAR can significantly increase the latency of
the six most popular LiDAR detection pipelines while main-
taining imperceptibility.

Acknowledgments
We thank Shixuan Zhai for his valuable assistance in re-

vising this paper. This work was partially supported by the
NSF (CNS-1837519, CNS-1916926, CNS-2038995, CNS-
2229427, CNS-2238635, IIS-1905558, ECCS-2020289),
ARO (W911NF2010141, W911NF1910241), and Intel.

5153

References
[1] Apollo. https://www.apollo.auto. Accessed:

2022-08-28.
[2] Autopilot. https://www.tesla.com/autopilot.

Accessed: 2022-08-28.
[3] Autoware. https://www.autoware.org. Accessed:

2022-08-28.
[4] Complex-yolo implementation. https://github.com/

maudzung/Complex-YOLOv4-Pytorch. Accessed:
2022-10-01.

[5] Nio autonomous driving. https://www.nio.cn/nad.
Accessed: 2022-08-28.

[6] Pixor implementation. https : / / github . com /
philip-huang/PIXOR. Accessed: 2022-10-01.

[7] Pointpillar official implementation. https://github.
com/open-mmlab/OpenPCDet. Accessed: 2022-10-
30.

[8] Second implementation. https://github.com/
traveller59/second.pytorch. Accessed: 2022-10-
01.

[9] Voxelnet implementation. https://github.com/
skyhehe123/VoxelNet-pytorch. Accessed: 2022-
10-01.

[10] Yolo3d implementation. https://github.com/
RichardMinsooGo-ML/Bible_3_42_Pytorch_
Yolo_3d_Yolov4. Accessed: 2022-10-01.

[11] Waleed Ali, Sherif Abdelkarim, Mahmoud Zidan, Mohamed
Zahran, and Ahmad El Sallab. Yolo3d: End-to-end real-time
3d oriented object bounding box detection from lidar point
cloud. In Proceedings of the European conference on com-
puter vision (ECCV) workshops, pages 0–0, 2018.

[12] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Piv-
oteau. On the worst-case complexity of timsort. In 26th An-
nual European Symposium on Algorithms (ESA 2018), vol-
ume 112, pages 4–1, 2018.

[13] Paul Bourke. Interpolation methods. Miscellaneous: projec-
tion, modelling, rendering, 1(10), 1999.

[14] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin
Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo
Li. Invisible for both camera and lidar: Security of multi-
sensor fusion based perception in autonomous driving under
physical-world attacks. In 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 176–194. IEEE, 2021.

[15] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou,
Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and
Z Morley Mao. Adversarial sensor attack on lidar-based per-
ception in autonomous driving. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications
security, pages 2267–2281, 2019.

[16] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. Ieee, 2017.

[17] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei
Yang. Nicgslowdown: Evaluating the efficiency robustness
of neural image caption generation models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15365–15374, 2022.

[18] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017.

[19] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017.

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012.

[21] Shixiang Gu and Luca Rigazio. Towards deep neural net-
work architectures robust to adversarial examples. arXiv
preprint arXiv:1412.5068, 2014.

[22] Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard
Ghanem. Advpc: Transferable adversarial perturbations on
3d point clouds. In European Conference on Computer Vi-
sion, pages 241–257. Springer, 2020.

[23] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang.
Ilfo: Adversarial attack on adaptive neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14264–14273, 2020.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[25] Sanghyun Hong, Yigitcan Kaya, Ionut,-Vlad Modoranu, and
Tudor Dumitras. A panda? no, it’s a sloth: Slowdown attacks
on adaptive multi-exit neural network inference. In Interna-
tional Conference on Learning Representations, 2021.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[27] Qidong Huang, Xiaoyi Dong, Dongdong Chen, Hang Zhou,
Weiming Zhang, and Nenghai Yu. Shape-invariant 3d adver-
sarial point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15335–15344, 2022.

[28] Charles S Kenney and Alan J Laub. A hyperbolic tangent
identity and the geometry of padé sign function iterations.
Numerical Algorithms, 7(2):111–128, 1994.

[29] Hongwu Kuang, Bei Wang, Jianping An, Ming Zhang, and
Zehan Zhang. Voxel-fpn: Multi-scale voxel feature aggrega-
tion for 3d object detection from lidar point clouds. Sensors,
20(3):704, 2020.

[30] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697–12705, 2019.

[31] Ao Li, Marion Sudvarg, Han Liu, Zhiyuan Yu, Chris Gill,
and Ning Zhang. Polyrhythm: Adaptive tuning of a multi-
channel attack template for timing interference. In 2022
IEEE Real-Time Systems Symposium (RTSS), pages 225–
239. IEEE, 2022.

5154

[32] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng.
Fooling lidar perception via adversarial trajectory perturba-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7898–7907, 2021.

[33] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.
Deep continuous fusion for multi-sensor 3d object detection.
In Proceedings of the European conference on computer vi-
sion (ECCV), pages 641–656, 2018.

[34] Daniel Liu, Ronald Yu, and Hao Su. Adversarial shape per-
turbations on 3d point clouds. In European Conference on
Computer Vision, pages 88–104. Springer, 2020.

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[36] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[39] Avishag Shapira, Alon Zolfi, Luca Demetrio, Battista Big-
gio, and Asaf Shabtai. Denial-of-service attack on object de-
tection model using universal adversarial perturbation. arXiv
preprint arXiv:2205.13618, 2022.

[40] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 770–779, 2019.

[41] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Paper-
not, Robert Mullins, and Ross Anderson. Sponge examples:
Energy-latency attacks on neural networks. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P),
pages 212–231. IEEE, 2021.

[42] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-
Michael Gross. Complex-yolo: An euler-region-proposal
for real-time 3d object detection on point clouds. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0, 2018.

[43] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley
Mao. Towards robust {LiDAR-based} perception in au-
tonomous driving: General black-box adversarial sensor at-
tack and countermeasures. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 877–894, 2020.

[44] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming
Liang, Bin Yang, Richard Du, Frank Cheng, and Raquel
Urtasun. Physically realizable adversarial examples for li-
dar object detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13716–13725, 2020.

[45] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning
Zhang. Rt-tee: Real-time system availability for cyber-
physical systems using arm trustzone. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 352–369. IEEE,
2022.

[46] Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin Yu Chen, Jia-
cen Xu, Makan Fardad, and Bo Li. Beyond adversarial train-
ing: Min-max optimization in adversarial attack and defense.
Nuclear Physics, Section A, 2019.

[47] Yuxin Wen, Jiehong Lin, Ke Chen, CL Philip Chen, and Kui
Jia. Geometry-aware generation of adversarial point clouds.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[48] Chong Xiang, Charles R Qi, and Bo Li. Generating 3d ad-
versarial point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9136–9144, 2019.

[49] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu
Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, and Xue
Lin. Adversarial t-shirt! evading person detectors in a physi-
cal world. In European conference on computer vision, pages
665–681. Springer, 2020.

[50] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018.

[51] Bo Yang, Yushi Cheng, Zizhi Jin, Xiaoyu Ji, and Wenyuan
Xu. Generating 3d adversarial point clouds under the princi-
ple of lidars.

[52] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7652–7660, 2018.

[53] Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and
Kui Ren. Pointcloud saliency maps. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1598–1606, 2019.

[54] Hang Zhou, Dongdong Chen, Jing Liao, Kejiang Chen, Xi-
aoyi Dong, Kunlin Liu, Weiming Zhang, Gang Hua, and
Nenghai Yu. Lg-gan: Label guided adversarial network for
flexible targeted attack of point cloud based deep networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10356–10365, 2020.

[55] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4490–4499, 2018.

[56] Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani,
Lu Su, and Chunming Qiao. Can we use arbitrary objects to
attack lidar perception in autonomous driving? In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1945–1960, 2021.

5155

