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Abstract

Recently deep learning techniques have significantly ad-

vanced image super-resolution (SR). Due to the black-box

nature, quantifying reconstruction uncertainty is crucial

when employing these deep SR networks. Previous ap-

proaches for SR uncertainty estimation mostly focus on cap-

turing pixel-wise uncertainty in the spatial domain. SR

uncertainty in the frequency domain which is highly re-

lated to image SR is seldom explored. In this paper, we

propose to quantify spectral Bayesian uncertainty in im-

age SR. To achieve this, a Dual-Domain Learning (DDL)

framework is first proposed. Combined with Bayesian ap-

proaches, the DDL model is able to estimate spectral un-

certainty accurately, enabling a reliability assessment for

high frequencies reasoning from the frequency domain per-

spective. Extensive experiments under non-ideal premises

are conducted and demonstrate the effectiveness of the pro-

posed spectral uncertainty. Furthermore, we propose a

novel Spectral Uncertainty based Decoupled Frequency

(SUDF) training scheme for perceptual SR. Experimental

results show the proposed SUDF can evidently boost per-

ceptual quality of SR results without sacrificing much pixel

accuracy.

1. Introduction

Image super-resolution (SR) is a basic computer vision

task that aims to recover an underlying high-resolution

(HR) image from its degraded low-resolution (LR) obser-

vation. Image SR is widely used in many applications

where high-frequency (HF) information is required, such

as medical imaging [38], microscopy imaging [36], surveil-

lance [46], etc. In recent years, learning-based approaches

with convolutional neural networks (CNN) have become the

primary workhorse for image SR. Starting from the pio-

neering work SRCNN [9], various CNN-based SR mod-

els [7,21,24,31,43,49] have been proposed and significantly

pushed the frontier of image SR research.

*Corresponding author.

Despite the impressive success in image SR benchmarks,

most of these CNN-based SR models tend to overfit the

training data so that their reliability and generalizability

may not be guaranteed in practice. A well-trained SR

model often makes inaccurate reasoning for HF details

when it receives LR images away from its training distri-

bution, thereby making the downstream processing unreli-

able. Therefore, it is quite crucial to quantify reconstruc-

tion uncertainty when employing these SR models, espe-

cially in some high risk applications (e.g. medical imaging)

or when under some harmful adversarial attacks. Bayesian

neural networks (BNNs) which combine deep neural net-

works with Bayesian learning open up the possibility to

capture model uncertainty, by placing distributions over the

network weights and then obtaining the predictive distribu-

tion through marginalization over posterior. Since the exact

Bayesian inference is usually intractable for deep networks,

various stochastic techniques that are compatible with mod-

ern deep learning are widely used for posterior approxima-

tion, such as dropout [11], batch normalization [41], weight

initialization [22], etc.

However, existing Bayesian models for image SR are

mostly developed in the spatial domain to capture pixel-

wise uncertainty [40, 41]. The uncertainty in the frequency

domain which is highly related to image SR is seldom ex-

plored. From the frequency domain perspective, image SR

is essentially a task of recovering HF components given

low-frequency (LF) ones. Thus the uncertainty of HF com-

ponents directly characterizes the reliability of the SR re-

sults. Besides, the common pixel-wise uncertainty is sensi-

tive to local mismatch of spatial structures, where a slight

pixel shift among Monte Carlo (MC) samples may result

in high uncertainty. So it is also desirable to quantify the

reconstruction uncertainty in a global way. Moreover, im-

age HF components in the frequency domain usually play

an important role in some specific areas. For instance, the

calculation of imaging resolution in optical imaging heav-

ily depends on the HF components of objects [8]. The un-

certainty of HF components directly reveals the credibility

of the imaging resolution. Therefore, estimating frequency

spectral uncertainty for image SR is valuable.
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To fill this research gap, we aims to quantify SR un-

certainty not only in the spatial domain but also in the

frequency domain. Concretely, we first propose a dual-

domain learning (DDL) framework for image SR. The pro-

posed DDL introduces explicit frequency learning within

networks and learns to reconstruct SR images and spectra

simultaneously. Then combined with Bayesian approaches

(MC-dropout [11] in this paper), the DDL model is able

to estimate both spatial and spectral uncertainty of SR re-

sults. To the best of our knowledge, we are the first to quan-

tify SR uncertainty in the frequency domain. Extensive ex-

periments on different non-ideal premises are conducted to

show the effectiveness of the spectral uncertainty. Lastly,

we further propose a spectral uncertainty based decoupled

frequency (SUDF) training scheme for perceptual SR. The

SUDF decouple the training of different image frequencies

with the guidance of estimated spectral uncertainty map,

thereby boosting perceptual quality of SR results signifi-

cantly without sacrificing much pixel accuracy.

In summary, the contributions of this paper are:

• We propose to quantify the frequency spectral uncer-

tainty for deep SR networks. Experiments under sev-

eral non-ideal premises demonstrate the effectiveness.

To the best of our knowledge, it is the first work to

estimate SR uncertainty in the frequency domain.

• A DDL method is proposed for image SR. By per-

forming explicit frequency domain learning in feature

space, DDL can restore more HF information and thus

provide more accurate uncertainty estimation when

combined with Bayesian approaches.

• Based on the estimated spectral uncertainty, a novel

SUDF training scheme is proposed, helping enhance

perceptual quality of SR results while maintaining re-

construction faithfulness.

2. Related work

2.1. Image Super-resolution

Recently, image SR solutions have been dominated by

learning-based methods with deep neural networks, which

aims to learn general image priors automatically from given

exemplar LR-HR pairs. Among these works, SRCNN [9]

makes the first attempt to adopt CNN for image SR with

only three convolution layers. Inspired by SRCNN, a va-

riety of CNN architectures are developed to improve SR

performance. These improvements primarily arise from

increase of model depth [21], more flexible information

flow [24, 49, 50], and various efficient attention techniques

[7, 26, 31, 48, 49]. Another research line of image SR is

to devise better loss functions. Pixel-wise L1 or L2 loss

is typically used in most works to ensure accuracy in pixel
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Figure 1. Left: The SR degradation visualization in both spatial

and frequency domains. Right: The power spectral density of HR,

LR and SR images. Image SR is to restore the high frequencies

given low frequencies in LR images.

domain [9, 21, 24, 26, 49]. However, such pixel-wise losses

are demonstrated to produce over-smooth results owing to

their limited ability in capturing perceptually relevant simi-

larity [23]. To enhance the visual quality, some perception-

oriented SR methods are also proposed, by introducing per-

ceptual loss [19, 35] or adversarial loss [23, 33, 37, 43].

These perceptual-driven losses can help restore more fine

details but also lead to much higher distortion.

2.2. Applications of Frequency Domain Knowledge

Frequency domain knowledge has been widely applied

in computer vision. CNNs can be understood in the fre-

quency domain [32], and have been proved to be biased to-

wards fitting low frequencies, i.e. the so-called F-principle

or spectral bias [44]. To promote the ability in capturing

frequency discrepancy, several studies attempt to introduce

frequency domain knowledge to deep models, by design-

ing frequency-based loss [10, 16, 18], or exploring infor-

mation interaction between spatial and frequency domains

[26, 27, 34]. For image SR, the training of SR networks can

be viewed from the standpoint of frequency domain as an

implicit conditional learning of HF components given LF

ones [14]. So understanding the faithfulness of HF compo-

nents is the core to assess credibility of SR results.

2.3. Uncertainty in Bayesian Deep Learning

Bayesian uncertainty has drawn much attention in recent

years. BNN assign a prior distribution over the weights

instead of deterministic weights as in non-Bayesian mod-

els. However, the optimization of BNNs is intractable since

there is no conjugate prior postierior pairs for complex deep

networks. Hence, approaches of approximate Bayesian in-

ference are required to calculate posterior distribution of

weights, such as variational inference [12, 20] and Markov

Chain Monte Carlo [13]. Recently, some more efficient

techniques for capturing model uncertainty are explored.

For instance, Gal et al. [11] prove that applying dropout [39]

in deep networks which utilizes Bernoulli variational distri-

bution is mathematically equivalent to approximate varia-
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Figure 2. The architecture of the proposed DDL-EDSR.

tional inference in the deep Gaussian process. Likewise,

other stochastic techniques like DropConnect [30], batch

normalization [41], and weight initialization [22] are also

widely used for quantifying Bayesian uncertainty. These

methods are also widely applied for image reconstruction

[2, 3, 15, 40, 41].

3. Methodology

3.1. Frequency Perspective of Image SR

In image SR, the degradation process is typically mod-

eled as:

I
LR = (IHR ⊗ k) ↓s, (1)

where the HR image I
HR is convolved with blur kernel k,

followed by a s-fold downsampler. Then the LR image ILR

is generated. Image SR aims to find an inverse mapping of

the degradation process: M : ILR → I
HR.

From the frequency domain perspective, Eq. (1) can be

re-written as:

S
LR = F(ILR) =

∑

nµ

∑

nυ

[SHR ·K](µ−nµµs, υ−nυυs),

(2)

where F denotes Fourier transform (FT). S and K denote

the frequency spectra of I and k, respectively. (u, v) are

the coordinates of the frequency domain and µs and υs are

the sampling rates along these two dimensions. To avoid

multiple replicas of SHR overlapping their HF components

(i.e. the so-called aliasing), the K are typically modeled

as low-pass filters to attenuate HF in S
HR. Hence, only

low frequencies are preserved in the S
LR. Assuming K

an ideal low-pass filter, the frequency understanding of SR

is essentially an implicit conditional learning of erased HF

content according to the remained LF information [14]. An

example of using common isotropic Gaussian filter as k is

shown in Fig. 1. One can see HF components are attenu-

ated during degradation process and then well restored in

SR images.

3.2. Dual-domain Learning for Image SR

Existing SR networks are primarily developed in the spa-

tial domain, where the recovery of HF components is tak-

ing place in an implicit manner. Inspired by [27], we pro-

pose a DDL method, which combines complex CNN lay-

ers [42] with the existing SR models, thereby achieving ex-

plicit frequency domain learning within models. Below, We

first briefly introduce two basic complex-valued layers [42]

(i.e. complex conlution and activation) and then present the

DDL method.

Complex layers. Complex layers is used for dealing

with complex-valued signals, which treat the real and imag-

inary part of a complex number as logically distinct real-

valued entities and then achieve complex arithmetic through

real-valued arithmetic [42]. Given complex-valued input

feature F = F real + iF imag where real and imag re-

spectively represent the real and imaginary part, complex

convolution adopts a complex filter w = wreal + iwimag

and convolve with F in the form of:
[
F real
out

F
imag
out

]

=

[
wreal −wimag

wimag wreal

]

∗

[
F real

F imag

]

, (3)

in which Fout = F real
out + iF

imag
out is the output feature.

For complex activation, we use CReLU [42] which applies

ReLU on the real and imaginary parts separately:

CReLU(F ) = ReLU(F real) + iReLU(F imag). (4)

DDL. We make use of above complex layers to extend

the existing models to DDL models. In this paper, we uti-

lize the classic EDSR [24] (the baseline version) as a base
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architecture and term its DDL derivative as DDL-EDSR. As

displayed in Fig. 2, there are two modifications in DDL-

EDSR: 1) all ResBlocks (RB) in EDSR are replaced by

our proposed DDL-RB. Beside a normal spatial branch as

in RB, DDL-RB adds an parallel frequency branch which

starts with a FT and then employs two complex convolution

layers and one CReLU in between. Lastly the output fea-

tures of frequency branch are transformed back to spatial

domain and added with those of spatial branch. 2) In the

tail of the model, DDL-EDSR adopts two heads to output

SR images and SR spectra simultaneously. For training of

DDL-EDSR, dual-domain restrictions are imposed:

LDDL = ∥ISR − I
GT ∥1

︸ ︷︷ ︸

Lpix

+λ ∥SSR − S
GT ∥1

︸ ︷︷ ︸

Lfreq

, (5)

where the superscript ºSRº and ºGTº denote the image or

spectra of SR results and ground truth, respectively. λ is a

balancing parameter and fixed as 0.01. Note that the mean

of the two heads is taken as our final result.

3.3. Spectral Bayesian Uncertainty Estimation

In this section, we further extend the DDL-EDSR to a

BNN model. Given training data D, our goal is to find a

Bayesian model G(ILR; Θ) : ILR → I
SR,SSR, where

parameter Θ follows posterior distribution p(Θ|D). Then

for a new input ILR∗, the predictive distribution of ISR∗

and S
SR∗ can be obtained by integrating

p(ISR∗|ILR∗, D) =

∫

Θ

p(ISR∗|ILR∗,Θ)p(Θ|D)dΘ,

p(SSR∗|ILR∗, D) =

∫

Θ

p(SSR∗|ILR∗,Θ)p(Θ|D)dΘ.

(6)

However, Eq. (6) is intractable since no conjugate prior

postierior pairs exist for deep networks so that approxima-

tions are typically required to achieve Bayesian posterior

inference. In this paper, we utilize MC-dropout [11] for its

simplicity. We open dropout in both training and inference

phases. In this way, MC samples of ISR∗ and S
SR∗ can

be generated through multiple stochastic forward passes:
{

I
SR∗

1 , ..., ISR∗

T

}

,
{

S
SR∗

1 , ...,SSR∗

T

}

. Then the Bayesian

uncertainty can be induced by measuring the prediction dis-

persion of these MC samples. For uncertainty in the spatial

domain, pixel-wise variance is typically used as the uncer-

tainty. However, using variance becomes inappropriate for

quantifying frequency-wise uncertainty since the dynamic

range of different frequencies varies a lot. In this paper, we

propose that the coefficient of Variation (CV) is a proper

statistic for measuring spectral uncertainty:

US =

∑T
t=1

(

S
SR∗

t

)2

−
(
∑T

t=1
S

SR∗

t

)2

∑T
t=1

S
SR∗

t

, (7)

img_119082 Frequency spectrum Spectral Uncertainty (𝑈𝑺)

LF contents HF contents with low 𝑈𝑺 HF contents with high 𝑈𝑺
Figure 3. Identify the corresponding image contents of LF com-

ponents, HF components with low spectral uncertainty, and HF

components with high spectral uncertainty. The red dashed rect-

angle denotes the frequency support of the ideal bicubic kernel.

where US is the quantified spectral uncertainty of SR re-

sults.

3.4. Spectral Uncertainty based Perceptual SR

For SR networks training, loss function is a pivotal in-

gredient that significantly affects SR performance. The

commonly-used loss functions can be mainly classified into

two categories: PSNR-oriented (e.g. pixel-wise L1, L2) and

perceptual-driven (e.g. adversarial loss). Training SR net-

works with the former can obtain results with high PSNR

value but poor perceptual quality, since such losses are apt

to learning LF components but struggle in capturing sim-

ilarity of HF information. On the other hand, perceptual-

driven losses can help generate results with rich HF details,

but leads to much higher image distortion. Considering that

different image frequencies encode different image contents

and thus have different effects on SR results, an intuitive

idea is to distinguish different image frequencies and adopt

different loss functions to guide their training towards their

suitable objectives. So how to distinguish different image

frequencies properly becomes the key issue.

In this paper we find the spectral uncertainty could be a

good indicator to separate image frequencies. As shown in

Fig. 3, we separate frequencies into three parts: LF com-

ponents, HF components with low US , and HF components

with high US . The LF components are well preserved dur-

ing degradation and thus can be restored in a well-posed

way. HF components with low US correspond to the sim-

ple or periodic structures (e.g. building) while the HF ones

with high US encode more complex textures (e.g. tree).

We find the former highly relies on context information and

can also be well resolved by PSNR-oriented losses. In con-

trast, the restoration of the latter one is more difficult and

needs to resort to perceptual-driven methods. To conclude,

the learning of frequencies with low US (the former two

parts in Fig. 3) can be guided by PSNR-oriented losses and

training with perceptual-driven losses is a better option for
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“Img_012“ from Urban100

LR

EDSR

DDL-EDSR

Figure 4. Evaluation of the proposed DDL framework based on

EDSR model [24]. Left: The qualitative comparison between

DDL-EDSR and EDSR (×4). Right: The power spectral den-

sity of SR results are shown. The example image is from Ur-

ban100 [17].

frequencies with high US (the latter one part in Fig. 3).

Based on above considerations, we propose a Spectral

Uncertainty guided Decoupled Frequency (SUDF) training

for perceptual SR. SUDF is a three-step method. In the first

step, we train a Bayesian DDL-EDSR model to get the spec-

tral uncertainty map US given input LR images. To aviod

discontinuity, we smooth the US by a gaussian filter. The

result is served as a frequency mask (denoted as M ) in the

latter steps. In the second step, a PSNR-oriented SR model

is trained with LDDL defined in Eq. (5). This model is

denoted as GPSNR parameterized by ΘPSNR, which can

provide accurate restoration for frequencies with low US .

In the third step, we employ the well-trained GPSNR as an

initialization and obtain another GAN-based SR model (de-

noted as GGAN parameterized by ΘGAN ) by fine-tuning.

Note that GGAN is responsible to perform perceptual learn-

ing for high frequencies with high US . In order to improve

reconstruction faithfulness of GGAN , another term that di-

rectly measures discrepancies of corresponding frequencies

are also exerted. That is:

LGAN = Ladv(F
−1(SSR ⊙M),F−1(SGT ⊙M))

+γ∥M ⊙ (SSR − S
GT )∥,

(8)

where F−1 is the inverse FT (iFT). Ladv is the loss provided

by relativistic discriminator as in [43]. γ is set to 50.

In model inference, the final SR result is obatined by

frequency spectrum fusion between results of GPSNR and

GGAN :

S
SR = GPSNR(I

LR,ΘPSNR) · (1−M)

+GGAN (ILR,ΘGAN ) ·M.
(9)

This way, the advantage of both PSNR-oriented and

perceptual-driven methods are inherited. The spatial results

can be obtained easily by iFT: ISR = F−1(SSR).

SR Images Spatial Uncertainty SR Spectra Spectral Uncertainty

Figure 5. Visualizations of the reconstructed results and the corre-

sponding uncertainty in both spatial and frequency domain. From

top to bottom: ×2, ×3, and ×4 SR. The example image is from

Urban100 [17].

4. Experiments

4.1. Experimental Settings

Datasets and Evaluation. Following prior arts [7, 24,

49], we use 800 training images of DIV2K [1] as the train-

ing set. LR images are obtained by downsampling HR

images using MATLAB bicubic kernel. For testing, five

standard benchmark datasets including Set5 [4], Set14 [45],

B100 [28], Urban100 [17], and Manga109 [29] are used. As

for evulation metric, the SR results are evaluated by PSNR

and SSIM on Y channel of image YCbCr space. LPIPS [47]

metric is also reported when involving perceptual SR.

Implementation details. In this paper, we choose the

classic EDSR [24] (baseline version) as the base model. In

DDL-EDSR, all complex convolution layers adopt 1 × 1
kernel to introduce negligible extra parameters. We use

DDL-EDSR to analyze subsequent spectral uncertainty and

SUDF training scheme. For MC-dropout, we place dropout

with p = 10% after each DDL-RB. In testing phase, we use

40 MC samples.

To train our models, a batch of 16 LR images of size 48

× 48 are randomly cropped as model input. The training

patches are further augmented by random horizontal flips

and 90◦ rotations. Adam optimizer with β1 = 0.9, β2 =
0.999 and ϵ = 10−8 is employed for training. Learning

rate is set to 1 × 10−4 initially and decays with a factor of

0.5 every 2 × 105 iterations of back-propagation. All our

experiments are conducted on a server equipped with four

NVIDIA RTX 2080Ti GPUs.

4.2. Evaluation of DDL models

We first demonstrate the effectiveness of the proposed

DDL method for image SR. The classic EDSR [24] is cho-

sen as the base model which is then extended to DDL-

EDSR. The quantitative comparison between EDSR and

DDL-EDSR for ×2, ×3, and ×4 SR are listed in Tab. 1.
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Table 1. Quantitative evaluation of the proposed DDL-EDSR.

Model Scale
Set5 Set14 B100 Urban100 Manga109

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

EDSR
×2

37.914 0.9602 33.512 0.9172 32.125 0.8995 31.881 0.9263 38.362 0.9766

DDL-EDSR 38.048 0.9607 33.754 0.9188 32.209 0.9003 32.412 0.9308 38.897 0.9775

EDSR
×3

34.288 0.9261 30.278 0.8414 29.055 0.8044 27.988 0.8493 33.412 0.9434

DDL-EDSR 34.500 0.9277 30.453 0.8447 29.159 0.8072 28.454 0.8574 33.898 0.9460

EDSR
×4

32.036 0.8920 28.540 0.7811 27.539 0.7357 25.965 0.7825 30.339 0.9066

DDL-EDSR 32.302 0.8951 28.703 0.7845 27.644 0.7388 26.342 0.7921 30.764 0.9100

N
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Figure 6. Dual-domain ×4 SR results and the corresponding un-

certainty estimation when input LR images are contaminated by

Gaussian noise of different variances. Noise variance from top to

bottom: 0, 5, 10. The example image is from Set5 [4].
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SR Images SR SpectraSpatial uncertainty Spectral uncertainty

Figure 7. Dual-domain ×4 SR results and corresponding uncer-

tainty under adversarial attacks of different perturbation levels.

From top to bottom: the perturbation level is 0/255 (without at-

tack), 1/255, 2/255, 3/255. The example image is from B100 [28].

It can be observed that DDL-EDSR achieves remarkable

performance gains across scales and benchmarks, indicat-

ing the promising potential of utilizing explicit frequency

domain learning for image SR. The visual comparison of

an example of ×4 SR from Urban100 is presented in Fig. 4.

One can see that the DDL-EDSR can produce SR results

with more faithful HF structures. The power spectral den-

sity visualizations clearly show the DDL method can help

models to restore more HF components (highlighted by the

red dashed circle). Note that the proposed DDL method is

general to various CNN backbones. We also conduct ex-

periments based on RCAN [49], which can be seen in Ap-

pendix. Due to the greater ability in terms of HF restora-

tion, DDL-EDSR can estimate more accurate spectral un-

certainty when combined with Bayesian approaches.

4.3. Analysis of Spectral Uncertainty

4.3.1 Spectral Uncertainty in SR

By combining MC-dropout [11] with our DDL-EDSR for

MC samples generation, spatial and spectral uncertainty can

be obtained. In this paper we focus on the latter one. Fig. 5

displays the spatial and frequency visualizations of SR re-

sults and the corresponding uncertainty. It is clear that fre-

quencies with low spectral uncertainty are primarily situ-

ated in LF region since LF information is well preserved

in LR images and easy to recover. In HF region, there are

HF components with low uncertainty and others with high

uncertainty. In the earlier section, we have identified their

corresponding spatial contents in Fig. 3, i.e. the HF com-

ponents with low spectral uncertainty mostly correspond to

simple structures while the ones with high spectral uncer-

tainty primarily encode complex structures or textures. Be-

sides, the spectral uncertainty increases with the increase of

SR scale factor, similar as the behavior of the spatial uncer-

tainty.

4.3.2 Spectral Uncertainty for Input Noise

Most existing SR models are trained under ideal noise-free

condition, thereby lacking the ability in dealing with in-

put noise. Condidering noise is a common degradation in

real-world applications, identifying the model limitation in
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Table 2. Quantitative evaluation of the proposed SUDF training for ×4 SR. The results are based on DDL-EDSR model.

Scale Loss
Set5 Set14 B100 Urban100 Manga109

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

×4

LDDL 32.302 0.1377 28.703 0.2336 27.644 0.3122 26.342 0.1899 30.764 0.0824

+Ladv 30.177 0.0768 26.271 0.1413 25.103 0.1661 24.110 0.1273 27.673 0.0688

SUDF 31.883 0.0995 28.243 0.1574 27.232 0.2093 26.032 0.1375 30.217 0.0622

HR images LR images (bicubic) SUDF (Ours)ℒ𝐷𝐷𝐿 ℒ𝐷𝐷𝐿 +ℒ𝑎𝑑𝑣
Figure 8. Visual evaluation of the proposed SUDF results for ×4 SR. The example images from top to bottom are: img20 from Urban100,

img024 from Urban100 [17], and YumeiroCooking from Manga109 [29].

terms of dealing with input noise is critical in practice. In

this section, we investigate the effect of input noise, for not

only spatial uncertainty, but also spectral uncertainty. Fig. 6

illustrates the SR results and uncertainty in dual domains,

with escalating noise levels. Gaussian white noise of dif-

ferent variances (i.e. σ = 0, 5, 10) are added in input LR

images for its simplicity. As can be seen, SR uncertainty

in both domains increases with the increase of noise level.

However, when input noise is not very obvious (e.g. the

case where variance is 5 in Fig. 6), spatial pixel-wise uncer-

tainty cannot well reflect the SR performance deteriorate. In

contrast, spectral uncertainty is more sensitive, where fewer

high frequencies with high certainty are inferred, indicating

the advantage of spectral uncertainty over the common spa-

tial uncertainty in this scenario. We suggest that spatial and

spectral uncertainty can be complementary to measure the

reliability of SR results locally and globally.

4.3.3 Spectral Uncertainty under Attacks

Robustness of deep SR networks against adversarial at-

tacks is a key issue in practice. Unfortunately, previous

studies [6, 41] have shown the vulnerability of existing SR

models. Well-trained SR networks could be confused by

a very slight perturbation in the input LR image, and pro-

duce unpleasant artifacts in SR results. Hence, it is desirable

to adopt Bayesian models for characterizing imperfections

caused by these harmful adversarial attacks.

In this section, we apply PGD algorithm [25] to perturb

LR images with different levels (the maximum perturbation

pixel intensity is 0, 1/255, 2/255, and 3/255). The imple-

mentation details can refer to Appendix. SR results and cor-

responding uncertainty are shown in Fig. 7. Under adversar-

ial attacks, plenty of fake fringe patterns arise in the recon-

structed SR images, which corresponds to the impulse-like

regions in SR spectra. As seen in Fig. 7, such fake HF rea-
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Figure 9. Comparison of perception-distortion trade-off between

SUDF and other methods on B100 [28].

soning of adversarial LR images can be detected by both

spatial uncertainty and our proposed spectral uncertainty.

But when perturbation level is relative small, spectral un-

certainty map could be the better indicator that help to be

aware of these failure cases caused by attacks. Besides, we

can witness the spectral uncertainty increase with the in-

crease of perturbation level, especially in HF regions. More

experimental results about spectral uncertainty quantifica-

tion can be seen in Appendix.

4.4. Results with SUDF Training

4.4.1 Comparison with Common Losses

In this section, we compare the results of our proposed

SUDF method with two commonly-used losses, one of

which is the PSNR-oriented LDDL and the other is the

perceptual-driven LDDL+Ladv . Tab. 2 shows the quantita-

tive comparison for ×4 SR. Compared with PSNR-oriented

LDDL loss, the LPIPS metrics of our SUDF results are sig-

nificantly reduced, implying a much better perceptual qual-

ity. The PSNR is slightly lower since our SUDF relaxes

the training and allows the mismatch of complex textures

between SR results and ground truth. Compared with the

GAN-based model, SUDF is able to yield very close LPIPS

but much higher PSNR. The visual results are displayed in

Fig. 8. We observe that the results of PSNR-oriented LDDL

are blurry and perceptual unpleasant. GAN-based percep-

tual SR help infer more fine-grained details but suffer from

reconstruction distortion artifacts. In contrast, our SUDF

can recover more faithful HF details and alleviate distortion

artifacts.

4.4.2 Comparison with Other Trade-off Methods

Previous work [5] has shown that image perceptual qual-

ity and distortion are at odds with each other in image

restoration tasks including image SR. A simple method

for balancing the perception-distortion trade-off is to train

a PSNR-oriented network and obtain another perceptual-

driven one by fine-tuning, then interpolate the SR results

of the two model in the pixel domain. Wang et al. [43] pro-

poses another alternative to the trade-off by directly inter-

polating all the corresponding parameters of the two mod-

els. In this part, we demonstrate our proposed SUDF train-

ing scheme can help approach a better perception-distortion

trader-off. We use the two competing models in Tab. 2 as the

PSNR-oriented and perceptual-driven models, and draw the

perception-distortion trade-off curves by employing pixel

interpolation and network interpolation, respectively. Ex-

periments are conducted on B100 dataset. As presented

in Fig. 9, both image interpolation and network interpola-

tion methods achieve a compromise between the contradic-

tory image distortion (measured by PSNR) and perceptual

quality (measured by LPIPS). Our SUDF is beyond the two

trade-off curves, indicating a better perception-distortion

trade-off performance for image SR.

5. Conclusion

In this paper, we propose a DDL method for image SR

which enables the quantification of spectral uncertainty in

the frequency domain when combined with Bayesian ap-

proaches. Our experiments show that the spectral uncer-

tainty can characterize the reliability of image HF com-

ponents in a global way. Image SR under several non-

ideal input LR premises demonstrate the better sensitive-

ness of spectral uncertainty against noise and adversarial

attacks. Furthermore, we treat the spectral uncertainty map

as a indicator for distinguishing frequencies that encode

different image contents, and then propose SUDF train-

ing scheme for perceptual SR. Experimental results reveal

the SUDF method can evidently enhance image percep-

tual quality while maintaining excellent faithfulness. The

proposed spectral uncertainty is a valuable supplement to

commonly-used pixel-wise uncertainty. We hope our work

can enlighten researchers to explore the potential of recon-

struction uncertainty in other domains.
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