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Abstract

Unsupervised Domain Adaptation (UDA) of semantic
segmentation transfers labeled source knowledge to an un-
labeled target domain by relying on accessing both the
source and target data. However, the access to source
data is often restricted or infeasible in real-world scenar-
ios. Under the source data restrictive circumstances, UDA
is less practical. To address this, recent works have ex-
plored solutions under the Source-Free Domain Adaptation
(SFDA) setup, which aims to adapt a source-trained model
to the target domain without accessing source data. Still,
existing SFDA approaches use only image-level informa-
tion for adaptation, making them sub-optimal in video ap-
plications. This paper studies SFDA for Video Semantic
Segmentation (VSS), where temporal information is lever-
aged to address video adaptation. Specifically, we pro-
pose Spatio-Temporal Pixel-Level (STPL) contrastive learn-
ing, a novel method that takes full advantage of spatio-
temporal information to tackle the absence of source data
better. STPL explicitly learns semantic correlations among
pixels in the spatio-temporal space, providing strong self-
supervision for adaptation to the unlabeled target domain.
Extensive experiments show that STPL achieves state-of-
the-art performance on VSS benchmarks compared to cur-
rent UDA and SFDA approaches. Code is available at:
https://github.com/shaoyuanlo/STPL

1. Introduction
The availability of large amounts of labeled data has

made it possible for various deep networks to achieve re-
markable performance on Image Semantic Segmentation
(ISS) [2, 4, 30]. However, these deep networks often general-
ize poorly on target data from a new unlabeled domain that is
visually distinct from the source training data. Unsupervised
Domain Adaptation (UDA) attempts to mitigate this domain
shift problem by using both the labeled source data and un-
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Figure 1. Comparison of VSS accuracy. Video-based UDA meth-
ods [12, 38, 49] outperform image-based UDA methods [33, 51],
showing the importance of video-based strategies for the VSS task.
Image-based SFDA methods [16, 39] perform lower than the UDA
methods, which shows the difficulty of the more restricted SFDA
setting. The proposed STPL, even with SFDA, achieves the best
accuracy and locates at the top-right corner of the chart (i.e., more
restriction, but higher accuracy).

labeled target data to train a model transferring the source
knowledge to the target domain [11, 12, 31, 32, 38, 41]. UDA
is effective but relies on the assumption that both source and
target data are available during adaptation. In real-world
scenarios, the access to source data is often restricted (e.g.,
data privacy, commercial proprietary) or infeasible (e.g.,
data transmission efficiency, portability). Hence, under these
source data restrictive circumstances, UDA approaches are
less practical.

To deal with these issues, the Source-Free Domain Adap-
tation (SFDA) setup, also referred to as Unsupervised Model
Adaptation (UMA), has been recently introduced in the lit-
erature [6, 26, 27, 52]. SFDA aims to use a source-trained
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model (i.e., a model trained on labeled source data) and adapt
it to an unlabeled target domain without requiring access to
the source data. More precisely, under the SFDA formula-
tion, given a source-trained model and an unlabeled target
dataset, the goal is to transfer the learned source knowledge
to the target domain. In addition to alleviating data privacy or
proprietary concerns, SFDA makes data transmission much
more efficient. For example, a source-trained model (∼ 0.1
- 1.0 GB) is usually much smaller than a source dataset (∼
10 - 100 GB). If one is adapting a model from a large-scale
cloud center to a new edge device that has data with different
domains, the source-trained model is far more portable and
transmission-efficient than the source dataset.

Under SFDA, label supervision is not available. Most
SFDA studies adopt pseudo-supervision or self-supervision
techniques to adapt the source-trained model to the target
domain [16, 39]. However, they consider only image-level
information for model adaptation. In many real-world seman-
tic segmentation applications (autonomous driving, safety
surveillance, etc.), we have to deal with temporal data such as
streams of images or videos. Supervised approaches that use
temporal information have been successful for Video Seman-
tic Segmentation (VSS), which predicts pixel-level semantics
for each video frame [19, 22, 28, 46]. Recently, video-based
UDA strategies have also been developed and yielded better
performance than image-based UDA on VSS [12, 38, 49].
This motivates us to propose a novel SFDA method for
VSS, leveraging temporal information to tackle the absence
of source data better. In particular, we find that current
image-based SFDA approaches suffer from sub-optimal per-
formance when applied to VSS (see Figure 1). To the best of
our knowledge, this is the first work to explore video-based
SFDA solutions.

In this paper, we propose a novel spatio-temporal SFDA
method namely Spatio-Temporal Pixel-Level (STPL) Con-
trastive Learning (CL), which takes full advantage of both
spatial and temporal information for adapting VSS mod-
els. STPL consists of two main stages. (1) Spatio-temporal
feature extraction: First, given a target video sequence in-
put, STPL fuses the RGB and optical flow modalities to
extract spatio-temporal features from the video. Meanwhile,
it performs cross-frame augmentation via randomized spatial
transformations to generate an augmented video sequence,
then extracts augmented spatio-temporal features. (2) Pixel-
level contrastive learning: Next, STPL optimizes a pixel-
level contrastive loss between the original and augmented
spatio-temporal feature representations. This objective en-
forces representations to be compact for same-class pixels
across both the spatial and temporal dimensions.

With these designs, STPL explicitly learns semantic corre-
lations among pixels in the spatio-temporal space, providing
strong self-supervision for adaptation to an unlabeled tar-
get domain. Furthermore, we demonstrate that STPL is a

non-trivial unified spatio-temporal framework. Specifically,
Spatial-only CL and Temporal-only CL are special cases of
STPL, and STPL is better than a naı̈ve combination of them.
Extensive experiments demonstrate the superiority of STPL
over various baselines, including the image-based SFDA as
well as image- and video-based UDA approaches that rely
on source data (see Figure 1). The key contributions of this
work are summarized as follows:
• We propose a novel SFDA method for VSS. To the best of

our knowledge, this is the first work to explore video-based
SFDA solutions.

• We propose a novel CL method, namely STPL, which
explicitly learns semantic correlations among pixels in the
spatio-temporal space, providing strong self-supervision
for adaptation to an unlabeled target domain.

• We conduct extensive experiments and show that STPL
provides a better solution compared to the existing image-
based SFDA methods as well as image- and video-based
UDA methods for the given problem formulation.

2. Related work
Video semantic segmentation. VSS predicts pixel-level se-
mantics for each video frame [10, 15, 19, 22, 25, 28], which
has been considered a crucial task for video understand-
ing [46]. VSS networks use temporal information, the in-
herent nature of videos, to pursue more accurate or faster
segmentation. For example, FSO [22] employs the dense
conditional random field as post-processing to obtain tem-
porally consistent segmentation. NetWarp [10] uses optical
flow information to transfer intermediate feature maps of
adjacent frames and gains better accuracy. ACCEL [19]
integrates predictions of sequential frames via an adaptive
fusion mechanism. TDNet [15] extracts feature maps across
different frames and merges them by an attention propaga-
tion module. ESVS [28] considers the temporal correlation
during training and achieves a higher inference speed. These
works rely on large densely annotated training data and are
sensitive to domain shifts.
Unsupervised domain adaptation. UDA tackles domain
shifts by aligning the representations of the two domains [11].
This framework has been widely investigated in ISS. Exist-
ing approaches can be categorized into two main streams:
adversarial learning-based [3, 9, 41, 43, 45] and self-training-
based [17, 33, 51, 53]. Recently, there are several works
studying UDA for VSS [12, 38, 49]. DA-VSN [12] presents
temporal consistency regularization to minimize temporal
discrepancy across different domains and video frames. VAT-
VST [38] extends both adversarial learning and self-training
techniques to video adaptation. TPS [49] designs temporal
pseudo supervision to adapt VSS models from the perspec-
tive of consistency training. These UDA approaches rely on
labeled source data for adaptation, which is not practical in
many real-world scenarios.
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Figure 2. Overview of the proposed Spatio-Temporal Pixel-Level (STPL) contrastive learning framework. STPL consists of two main stages.
(1) Spatio-temporal feature extraction: First, STPL fuses the RGB and optical flow (ot−1→t) modalities to extract spatio-temporal features
(z(t−1,t), z̃(t−1,t)) from both the original and augmented video sequences (X , X̃). (2) Pixel-level contrastive learning: Next, after passing
through a projection head and pseudo pixel-wise feature separation, STPL optimizes the pixel-level contrastive loss between the original and
augmented spatio-temporal features (Lstpl). For simplicity, this illustration considers a two-frame video sequence as the input.

Source-free domain adaptation. SFDA, a.k.a. UMA,
aims to adapt a source-trained model to an unlabeled tar-
get domain without requiring access to the source data
[6, 26, 27, 44, 52]. It has been investigated for ISS in re-
cent years [16, 23, 24, 29, 39, 40]. SFDA-SS [29] develops a
data-free knowledge distillation strategy for target domain
adaptation. UR [39] reduces the uncertainty of target data
predictions. HCL [16] presents the historical contrastive
learning, which leverages the historical source hypothesis to
compensate for the absence of source data. Edge/Feature-
Mixup [24] generates mixup domain samples used for both
source training and target adaptation. However, the need
for modifying source training makes it inflexible, and it is
expensive to be scaled to the video level. SFDA for videos
is still relatively unexplored.

Contrastive learning. CL has been a successful represen-
tation learning technique [5, 13, 20, 21, 34]. The key idea
is to create positive and negative sample pairs, then learn
disciminative feature representations by maximizing the em-
bedding distance among positive pairs and minimizing that
among negative pairs. Recent works [1, 47] further explore
pixel-to-pixel contrast for the ISS task, but they need label
supervision for training.

3. Proposed method
An overview of the proposed STPL is illustrated in Fig-

ure 2. STPL is implemented by two key designs: spatio-
temporal feature extraction and pixel-level CL. This section
first introduces the detailed designs. Then we demonstrate
that STPL is a non-trivial unified spatio-temporal framework.

3.1. Spatio-temporal feature extraction

The input is an unlabeled target video sequence X =
{x1, x2, ..., xt−1, xt}, where xt is the current frame. For
simplicity, let us consider X = {xt−1, xt}, i.e., a video with
a current frame and a previous frame. Given X , the VSS net-
work’s encoder E extracts feature representations for each
frame: zt−1 = E(xt−1) and zt = E(xt). In addition, we
employ FlowNet 2.0 [18] denoted as O, a widely used opti-
cal flow estimator, to estimate the optical flow between the
previous and the current frames as: ot−1→t = O(xt−1, xt).
Spatio-temporal fusion block. Next, we propose a spatio-
temporal fusion block F to extract spatio-temporal feature
representations from the previous and the current features
zt−1 and zt (see Figure 3 (a)). It adopts the estimated op-
tical flow ot−1→t to warp the previous feature zt−1 to the
propagated feature as: z′t−1 = W (zt−1; ot−1→t), where
W denotes the warping operation. This feature propaga-
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Figure 3. (a) The proposed spatio-temporal fusion block (F ).
(b) The proposed fusion operation (f ): Spatio-Temporal Atten-
tion Module (STAM). STAM infers the attention of a spatio-
temporal feature along the spatial and temporal dimensions sep-
arately, weighting important components in the spatio-temporal
space. Details can be found in Appendix A1. Our fusion block is
also compatible with various fusion operations.

tion aligns the pixel correspondence between the previous
and the current features, which is crucial for the dense pre-
diction task. Then a fusion operation f is used to fuse
the cross-frame features into a spatio-temporal feature as:
z(t−1,t) = f(z′t−1, zt).

The fusion operation integrates two input features into
one output feature. It can be element-wise addition, concate-
nation, 1×1 convolution layer, an attention module, or other
variants. Inspired by [48], we design a Spatio-Temporal
Attention Module (STAM) illustrated in Figure 3 (b). STAM
infers the attention of a spatio-temporal feature along the
spatial and temporal dimensions separately, weighting im-
portant components in the spatio-temporal space. Details
can be found in Appendix A1.
Cross-frame augmentation. Meanwhile, we perform cross-
frame augmentation [49] that applies randomized spatial
transformations T on each input frame to generate an aug-
mented video sequence: X̃ = T (X) = {x̃t−1, x̃t}. Then
we apply the same spatio-temporal feature extraction pro-
cess on X̃ and extract the augmented spatio-temporal feature
z̃(t−1,t). The augmentation T contains randomized Gaussian
blurring and color jittering transformations.

3.2. Pixel-level contrastive learning

With the extracted original and augmented spatio-
temporal features z(t−1,t) and z̃(t−1,t), we propose a new CL
method to derive a semantically meaningful self-supervision.
Typical CL schemes [5, 20] assume that an input contains
only a single semantic category, and need a large batch size
to offer sufficient positive/negative pairs for training. Never-
theless, in VSS, the input contains multiple instances, and
a large batch size is computationally infeasible. Hence, we
propose a method based on a pixel-level CL paradigm that
leverages pixel-to-pixel contrast [1, 47], and refer to our

method as Spatio-Temporal Pixel-Level (STPL) CL.
Pseudo pixel-wise feature separation. STPL aims to ac-
quire pixel-level representations that are similar among the
same-class pixel samples but distinct among different-class
pixel samples. Since we do not have target domain labels,
we use our VSS model’s prediction for the input X as
pseudo-label ŷ. Subsequently, we use ŷ to do pixel-wise
feature separation. To maintain high-quality pseudo-labels,
we set a hyperparameter of confident proportion k to control
the proportion of pixels preserved as pseudo-labels. More
precisely, the confident pseudo-labels ŷ∗ are obtained by
ŷ∗ = topk(ŷ; k) ⊂ ŷ, where topk is an operation that re-
turns the k-proportion of the most confident predictions ac-
cording to their probability scores.
Pixel-to-pixel contrastive loss. To perform CL, we first
adopt a projection head H to project our feature represen-
tations zh(t−1,t) = H(z(t−1,t)) and z̃h(t−1,t) = H(z̃(t−1,t)),
similar to SimCLR [5]. According to the generated confident
pseudo-labels ŷ∗, we denote the confident pixel representa-
tion sets in zh(t−1,t) and z̃h(t−1,t) as z∗h(t−1,t) ⊂ zh(t−1,t) and
z̃∗h(t−1,t) ⊂ z̃

h
(t−1,t), respectively. Next, consider a query con-

fident pixel representation q ∈ z∗h(t−1,t) (i.e., q is a pixel rep-
resentation in the feature z∗h(t−1,t)) with a predicted pseudo-
label ŷ∗q , we define its positive pair set as:

Pq ≡ {q+ ∈ z̃∗h(t−1,t) : ŷ
∗
q+ = ŷ∗q}, (1)

i.e., all the same-class pixels in the augmented feature
z̃∗h(t−1,t). Then we define its negative pair set as:

Nq ≡ {q− ∈ z̃∗h(t−1,t) : ŷ
∗
q− 6= ŷ∗q}, (2)

i.e., all the different-class pixels in z̃∗h(t−1,t). We follow Sup-
Con [20] to develop a CL scheme with multiple positive pairs.
The complete formulation of the proposed STPL contrastive
loss is as follows:

Lstpl
q =

−1
|Pq|

∑
q+∈Pq

log
exp(q · q+/τ)∑

q−∈Nq
exp(q · q−/τ)

, (3)

where τ is a temperature parameter, and the · symbol denotes
the inner product. Finally, the overall objective for the given
video sequence input X is defined as:

Lstpl =
1

|z∗h(t−1,t)|
∑

q∈z∗h
(t−1,t)

Lstpl
q . (4)

This objective enforces the pixel representations in the origi-
nal spatio-temporal features to be similar to that of the same-
class pixels in the augmented features, while being distinct
from that of the different-class pixels. This explicitly learns
semantic correlations among pixels in the spatio-temporal
space and thus can achieve better class discriminability. The
proposed STPL provides a strong self-supervision for video
adaptation under the SFDA setup.
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Figure 4. Illustration of (a) the proposed spatio-temporal contrast
Lstpl (Eq. (3), (4)), (b) spatial-only contrast Lspa, and (c) temporal-
only contrast Ltem.

3.3. STPL as a unified spatio-temporal framework

We further demonstrate that STPL is a non-trivial unified
spatio-temporal framework. Specifically, Spatial-only CL
and Temporal-only CL are special cases of STPL. Moreover,
we show that a naı̈ve combination of them is sub-optimal
compared to STPL.
Spatial-only contrast. Let us turn off the fusion operation
F of the STPL framework with an identity operation. Then,
let us allow only the current frame feature zt, and similarly,
only the augmented current frame feature z̃t to pass through
the fusion block. After the projection head and confident fil-
tering steps, the contrastive loss would be computed between
z∗ht and z̃∗ht instead of the spatio-temporal features z∗h(t−1,t)
and z̃∗h(t−1,t). That is, in Eq. (3) and Eq. (4), it becomes
that q ∈ z∗ht and {q+, q−} ∈ z̃∗ht . This computes contrast
between only spatial variations and thus is a spatial-only
special case of STPL. We denote this loss as Lspa.
Temporal-only contrast. Let us consider a duplicate copy
of the input video as an augmentation (i.e., X̃ = X). Next,
let us turn off the fusion operation F of STPL, allowing only
the current frame feature zt and the augmented previous
frame feature z̃t−1 to pass through the fusion block. Here
z̃t−1 = zt−1 since X̃ = X . Hence, after the projection head
and confident filtering steps, the contrastive loss would be
computed between z∗ht and z∗ht−1. That is, in Eq. (3) and
Eq. (4), it becomes that q ∈ z∗ht and {q+, q−} ∈ z∗ht−1. This
computes contrast between only temporal variations and thus
is a temporal-only special case of STPL. We denote this loss
as Ltem.
Naı̈ve combination. To learn spatio-temporal contrast,
a naı̈ve way would be to combine the spatial-only and
temporal-only contrastive losses together: Lspa+Ltem. Our
experiments in Sec. 4.3 show that the naı̈ve combination
is sub-optimal compared to STPL. This demonstrates that
the proposed STPL is a non-trivial unified spatio-temporal
framework. Figure 4 compares the proposed spatio-temporal
contrast Lstpl, spatial-only contrast Lspa, and temporal-only
contrast Ltem.

4. Experiments

4.1. Experimental setup

Datasets. We evaluate our method on two widely used do-
main adaptive VSS benchmarks: VIPER [36]→ Cityscapes-
Seq [7] and SYNTHIA-Seq [37]→ Cityscapes-Seq. VIPER
has 133,670 synthetic video frames with a resolution of
1080×1920. SYNTHIA-Seq consists of 8,000 synthetic
video frames with a resolution of 760×1280. We consider
VIPER and Synthia-Seq as source datasets to pre-train source
models, respectively. Cityscapes-Seq is a realistic traffic
scene dataset. It contains 2,975 training and 500 valida-
tion video sequences with a frame resolution of 1024×2048.
We use it as a target dataset. Following [12, 49], we resize
the frames of VIPER and Cityscapes-Seq to 760×1280 and
512×1024, respectively. For evaluations, the output predic-
tions are interpolated to the original size.
Implementation details. Following [12, 49], we employ
ACCEL [19] as our VSS network. It includes two segmenta-
tion branches, an optical flow estimation branch, and a pre-
diction fusion layer. These branches consist of DeepLabv2
[4] architecture with ResNet-101 [14] backbone, FlowNet
[8], and a 1×1 convolution layer, respectively. All the adap-
tation models are trained by an SGD optimizer with an initial
learning rate of 2.5e−6 and a momentum of 0.9 for 20k it-
erations. The learning rate decreases along the polynomial
decay with a power of 0.9. We set the temperature τ = 0.07
and the confident proportion k = 0.7. The mean Intersection-
over-Union (mIoU) is used as the evaluation metric. Our
experiments are implemented using PyTorch [35].

4.2. Main results

Baselines. Since the proposed STPL is the first SFDA
method for VSS, we compare it with multiple related do-
main adaptation state-of-the-art approaches described as fol-
lows. (1) Image-based UDA: FDA [51], PixMatch [33] and
RDA [17]; (2) Image-based SFDA: UR [39] and HCL [16];
and (3) Video-based UDA: DA-VSN [12], VAT-VST [38] and
TPS [49]. The image-based approaches are applied to videos
by using a VSS backbone (ACCEL in our experiments), fol-
lowing the practice of [12, 49]. Furthermore, to fairly assess
our STPL, we create the SFDA versions of these video-based
UDA approaches as our (4) Video-based SFDA baselines.
We remove all of their loss terms containing source data
while keeping all the loss terms computed from only target
data. We use the * symbol to denote these baselines. The
results of the source-only and oracle (i.e., trained with target
domain labels) models are also reported for reference. For
fair comparisons, all four types of baselines use the same
VSS backbone and training settings.
VIPER→ Cityscapes-Seq. Table 1 reports the evaluation
results on the VIPER→ Cityscapes-Seq adaptation bench-
mark. The proposed STPL outperforms all four types of
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Table 1. Quantitative comparisons (%) with multiple types of domain adaptation baselines on VIPER [36] → Cityscapes-Seq [7].

Method Design DA road side. buil. fence light sign vege. terr. sky pers. car truck bus mot. bike mIoU

Source-only - - 56.7 18.7 78.7 6.0 22.0 15.6 81.6 18.3 80.4 59.9 66.3 4.5 16.8 20.4 10.3 37.1

FDA [51] (CVPR’20) Image UDA 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4
PixMatch [33] (CVPR’21) Image UDA 79.4 26.1 84.6 16.6 28.7 23.0 85.0 30.1 83.7 58.6 75.8 34.2 45.7 16.6 12.4 46.7

RDA [17] (ICCV’21) Image UDA 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4

UR [39] (CVPR’21) Image SFDA 84.2 20.1 80.1 11.5 30.7 31.1 82.8 22.1 69.2 59.5 81.0 4.9 52.7 36.6 8.7 45.0
HCL [16] (NeurIPS’21) Image SFDA 80.6 34.0 76.8 29.7 20.5 36.3 79.1 19.2 56.3 58.1 73.9 3.4 5.2 20.0 28.9 41.5

DA-VSN [12] (ICCV’21) Video UDA 86.8 36.7 83.5 22.9 30.2 27.7 83.6 26.7 80.3 60.0 79.1 20.3 47.2 21.2 11.4 47.8
VAT-VST [38] (AAAI’22) Video UDA 87.1 41.2 82.2 17.1 26.0 33.1 83.2 20.6 70.6 64.3 71.0 11.6 84.1 27.8 11.1 48.7

TPS [49] (ECCV’22) Video UDA 82.4 36.9 79.5 9.0 26.3 29.4 78.5 28.2 81.8 61.2 80.2 39.8 40.3 28.5 31.7 48.9

DA-VSN* [12] (ICCV’21) Video SFDA 77.8 32.6 79.6 29.2 37.5 34.7 82.0 22.0 64.1 61.1 76.0 6.6 32.8 32.2 11.4 45.3
VAT-VST* [38] (AAAI’22) Video SFDA 48.2 20.4 78.1 28.8 33.1 33.6 81.1 20.0 56.1 58.3 74.7 8.6 73.5 29.7 9.6 43.6

TPS* [49] (ECCV’22) Video SFDA 69.9 0.0 77.4 0.0 6.2 14.8 77.5 0.2 47.4 36.9 67.7 0.0 19.3 0.0 0.0 27.8

STPL (Ours) Video SFDA 83.1 38.9 81.9 48.7 32.7 37.3 84.4 23.1 64.4 62.0 82.1 20.0 76.4 40.4 12.8 52.5

Oracle - - 96.5 76.8 89.2 58.3 49.5 60.0 90.3 37.5 80.5 72.1 92.0 41.6 64.6 63.1 76.2 69.9

Table 2. Quantitative comparisons (%) with multiple types of domain adaptation baselines on SYNTHIA-Seq [37] → Cityscapes-Seq [7].

Method Design DA road side. buil. pole light sign vege. sky pers. rider car mIoU

Source-only - - 56.3 26.6 75.6 25.5 5.7 15.6 71.0 58.5 41.7 17.1 27.9 38.3

FDA [51] (CVPR’20) Image UDA 84.1 32.8 67.6 28.1 5.5 20.3 61.1 64.8 43.1 19.0 70.6 45.2
PixMatch [33] (CVPR’21) Image UDA 90.2 49.9 75.1 23.1 17.4 34.2 67.1 49.9 55.8 14.0 84.3 51.0

RDA [17] (ICCV’21) Image UDA 84.7 26.4 73.9 23.8 7.1 18.6 66.7 68.0 48.6 9.3 68.8 45.1

UR [39] (CVPR’21) Image SFDA 83.5 8.0 68.1 16.5 9.9 17.7 62.4 65.1 31.9 15.3 82.3 41.9
HCL [16] (NeurIPS’21) Image SFDA 79.0 44.7 78.9 25.4 12.9 36.6 75.2 63.0 49.0 19.5 50.1 48.6

DA-VSN [12] (ICCV’21) Video UDA 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5
VAT-VST [38] (AAAI’22) Video UDA 82.8 26.5 78.3 23.7 12.8 20.0 78.4 64.5 45.5 16.0 69.6 47.1

TPS [49] (ECCV’22) Video UDA 91.2 53.7 74.9 24.6 17.9 39.3 68.1 59.7 57.2 20.3 84.5 53.8

DA-VSN* [12] (ICCV’21) Video SFDA 81.0 37.9 68.4 23.7 14.0 27.5 69.8 71.3 46.4 18.7 80.2 49.0
VAT-VST* [38] (AAAI’22) Video SFDA 84.8 28.6 72.4 25.6 17.1 32.9 64.5 56.9 50.7 21.9 83.4 49.0

TPS* [49] (ECCV’22) Video SFDA 62.6 0.0 69.2 0.2 0.8 14.4 56.6 10.4 4.2 0.2 24.5 22.1

STPL (Ours) Video SFDA 87.6 42.5 74.6 27.7 18.5 35.9 69.0 55.5 54.5 17.5 85.9 51.8

Oracle - - 96.4 78.1 89.1 43.6 42.3 64.9 90.3 84.4 66.8 50.7 92.7 72.7

Figure 5. Qualitative results on VIPER [36] → Cityscapes-Seq [7]. The source-only model produces noisy and inconsistent predictions on
the road and sidewalk. UR [39], an image-based SFDA method, suffers from inaccurate predictions on the sky and sidewalk. In contrast, the
proposed STPL obtains more accurate segmentation results with high temporal consistency across the video sequence.
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baselines by decent margins, which is 15.1% higher than the
source-only model and 3.6% higher than the best-performing
competitor. In particular, its superiority over the image-
based SFDA approaches indicates the benefits of a video-
based solution and demonstrates the effectiveness of our
spatio-temporal strategy for videos. We can also observe
that the video-based UDA approaches suffer from perfor-
mance degradation when applied to SFDA. Whereas, STPL
achieves better performance even compared to their UDA
results relying on source data.
SYNTHIA-seq → Cityscapes-Seq. Table 2 provides the
results on the SYNTHIA-Seq→ Cityscapes-Seq benchmark.
Similarly, our STPL is better than most baselines. Although
TPS achieves the best accuracy under UDA, this requires
accessing source data. Moreover, TPS*’s accuracy dramati-
cally reduces to 22.1% under SFDA, showing that it is not a
proper solution when source data are unavailable. Overall,
these results clearly demonstrate the superiority of STPL.
Qualitative results. Figure 5 shows examples of qualitative
results on VIPER [36]→ Cityscapes-Seq [7]. The source-
only model produces noisy and inconsistent predictions on
the road and sidewalk, showing the domain shift effect. UR,
an image-based SFDA method, suffers from inaccurate sky
predictions and cannot detect the whole sidewalk. In con-
trast, the proposed STPL obtains more accurate segmenta-
tion results with high temporal consistency across the video
sequence. This indicates the importance of a video-based
strategy for the VSS task and demonstrates our method’s
effectiveness. The qualitative and quantitative results are
consistent.

4.3. Ablation analysis

Objective functions. We conduct an ablation study to
validate the effectiveness of our spatio-temporal objective
for adaptation. We create several variants for compari-
son. Vanilla Self-training simply computes the cross-entropy
loss between predictions and pseudo-labels with a confident
threshold. Duplicate CL computes the pixel-level contrastive
loss between two identical video frames, i.e., the loss de-
scribed in Sec. 3.2 but uses a duplicate copy as an augmen-
tation and passes through the current frame features only.
Temporal-only CL, Spatial-only CL and Naı̈ve T+S CL are
described in Sec. 3.3, whose objective functions are Ltem,
Lspa and Ltem + Lspa, respectively.

As can be seen in Table 3, the simple Duplicate CL
achieves higher accuracy than Vanilla Self-training, showing
the effectiveness of the pixel-level contrastive loss. Both
Temporal-only CL and Spatial-only CL make an improve-
ment over Duplicate CL, which indicates the importance of
contrasting with variations. Naı̈ve T+S CL, a naı̈ve com-
bination of the temporal-only and spatial-only contrastive
losses, is slightly better than either single loss. The pro-
posed spatio-temporal objective further outperforms Naı̈ve

Table 3. Ablation study of different objective functions on VIPER
[36] → Cityscapes-Seq [7].

Method / Objective function mIoU

Source-only 37.1

Vanilla Self-training 45.4 (+8.3)
Duplicate CL 45.7 (+8.6)
Temporal-only CL (Ltem) 47.4 (+10.3)
Spatial-only CL (Lspa) 51.1 (+14.0)
Naı̈ve T+S CL (Ltem + Lspa) 51.4 (+14.3)

STPL (Ours; Lstpl) 52.5 (+15.4)

Table 4. Ablation study of different fusion operations f on VIPER
[36] → Cityscapes-Seq [7].

Fusion operation mIoU

Element-wise addition 51.4
1×1 convolution layer 51.8
Concatenation 52.3
STAM 52.5

T+S CL, showing that our design can learn more seman-
tically meaningful context from the spatio-temporal space
than simply adding the losses of two dimensions together.
This demonstrates that our STPL is a non-trivial unified
spatio-temporal framework for video adaptation.
Fusion operations. As discussed in Sec. 3.1, our STPL
framework is compatible with various fusion operations used
to extract spatio-temporal features. Here we consider and
compare different fusion operations, such as element-wise
addition, 1×1 convolution layer, concatenation, and the pro-
posed STAM module. In Table 4, we can observe that STAM
achieves the best performance, showing its effectiveness. On
the other hand, adopting any fusion operation can outper-
form all the baselines in Table 1 and variants in Table 3. This
demonstrates that STPL maintains superior performance re-
gardless of the choice of fusion operations.
Feature visualization. Figure 6 provides the t-SNE visual-
ization [42] of the feature space learned for the VIPER→
Cityscapes-Seq benchmark. For simplicity, we sample four
classes (road, traffic light, car, and bicycle) to visualize. Each
point in the scatter plots stands for a pixel representation. We
compute the intra-class variance σintra (lower is better) and
inter-class variance σinter (higher is better) of the feature
space to provide a quantitative measurement. As can be seen,
TPS*, which is originally designed for UDA, has a less dis-
criminative feature space under the SFDA setup. It obtains
a higher σintra and a lower σinter than the source-trained
model. HCL, an image-based SFDA approach, acquires a
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Figure 6. The t-SNE visualization [42] of the feature space learned for VIPER [36] → Cityscapes-Seq [7], where each point in the scatter
plots stands for a pixel representation. Four classes (road, traffic light, car, and bicycle) are sampled to visualize. σintra is the intra-class
variance (lower is better) and σinter is the inter-class variance (higher is better) of the feature space. All the methods are evaluated on the
same selected video samples. In comparison, the proposed STPL learns the most discriminative feature space, which is reflected by the
lowest σintra and the high σinter .

Figure 7. The percentage of same-class pixel representations among
the k-nearest neighbors in the feature space. STPL achieves higher
percentage for every k value, showing that STPL learns a more
discriminative and semantically consistent feature space.

higher σinter, but its σintra is much higher. In comparison,
the proposed STPL learns the most discriminative feature
space. Unlike HCL, STPL leverages spatio-temporal in-
formation for video adaptation, and the benefit is clearly
reflected by the lowest σintra and the high σinter. This
demonstrates STPL’s ability to learn semantic correlations
among pixels in the spatio-temporal space.
Feature space neighborhood. This analysis inspects the
neighborhood of the feature space learned by the proposed
STPL, which quantitatively measures the discriminability
of a feature space [50]. We randomly select several video
samples and extract the features at the pixel level. For an un-
biased analysis, 500 pixel representations are considered for
each semantic class to create a feature analysis set. Next, we
query each representation in the set and retrieve the k-nearest
neighbors of that representation. Among the retrieved k
nearest representations, we inspect the percentage of the
same-class representations it contains.

Figure 7 reports the inspection results. For smaller k val-
ues, all the methods have similar accuracy, which indicates
that their feature spaces have semantically consistent neigh-
bors for query pixel representations. Interestingly, when we
increase the k values to retrieve more neighbors, the accu-
racy differences between the proposed STPL and the other
approaches significantly enlarge. In other words, the accu-
racy of STPL drops much slower than the rest. We can see
that for any given k values, STPL has more semantically
consistent representations in the neighborhood. This analy-
sis shows that our method effectively learns a discriminative
feature space, thereby resulting in better performance.

5. Conclusion
In this paper, we propose STPL, a novel SFDA method

for VSS, which takes full advantage of spatio-temporal in-
formation to tackle the absence of source data better. STPL
explicitly learns semantic correlations among pixels in the
spatio-temporal space and provides strong self-supervision
for video adaptation. To the best of our knowledge, this
is the first work to explore video-based SFDA solutions.
Moreover, we demonstrate that STPL is a non-trivial unified
spatio-temporal framework. Extensive experiments show the
superiority of STPL over various baselines, including the
image-based SFDA as well as image- and video-based UDA
approaches. Further insights into the proposed method are
also provided by our comprehensive ablation analysis.
Limitations. Similar to all the existing SFDA methods,
STPL assumes that the source-trained model has learned
source knowledge well. A sub-optimal source-trained model
would affect adaptation performance. Such limitation of
SFDA is an interesting direction for future investigations.
Potential negative social impact. The proposed method
may make attackers easier to adapt pre-trained open-source
models to malicious uses. To avoid such risk, computer
security or defense mechanisms could be incorporated.
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