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Abstract

Vision transformers have achieved significant improve-
ments on various vision tasks but their quadratic interac-
tions between tokens significantly reduce computational ef-
ficiency. Many pruning methods have been proposed to re-
move redundant tokens for efficient vision transformers re-
cently. However, existing studies mainly focus on the token
importance to preserve local attentive tokens but completely
ignore the global token diversity. In this paper, we empha-
size the cruciality of diverse global semantics and propose
an efficient token decoupling and merging method that can
jointly consider the token importance and diversity for to-
ken pruning. According to the class token attention, we de-
couple the attentive and inattentive tokens. In addition to
preserving the most discriminative local tokens, we merge
similar inattentive tokens and match homogeneous atten-
tive tokens to maximize the token diversity. Despite its sim-
plicity, our method obtains a promising trade-off between
model complexity and classification accuracy. On DeiT-S,
our method reduces the FLOPs by 35% with only a 0.2%
accuracy drop. Notably, benefiting from maintaining the to-
ken diversity, our method can even improve the accuracy of
DeiT-T by 0.1% after reducing its FLOPs by 40%.

1. Introduction

Transformer [32] has become the most popular archi-
tecture in both natural language processing and computer
vision communities. Vision transformers (ViTs) [8] have
achieved superior performance and outperformed standard
CNNs in different vision tasks such as image classifica-
tion [12, 31, 34, 41], semantic segmentation [20, 22, 33, 36],
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Figure 1. The ImageNet accuracy and keep rate of the pruned
DeiT-S. (a) Importance-based method preserves attentive tokens
based on the class token attention and masks all inattentive tokens;
(b) Diversity-based method clusters similar tokens into a group
and then combines tokens from the same group into a new token.
(c) Incorporate method decouples and merges tokens to consider
token importance and diversity simultaneously.

and object detection [1, 5]. The most remarkable advantage
of transformer is its ability to effectively capture long-range
dependencies between patches in the input image through
the self-attention mechanism [26]. However, quadratic in-
teractions between tokens significantly degrade the compu-
tational efficiency [39], which motivates many researches
on exploring efficient transformers.

As one of the most direct and effective ways to reduce
computational complexity, token pruning has been widely
studied recently. Existing studies mainly focus on designing
different importance-evaluating strategies to retain attentive
tokens and prune inattentive tokens [10, 21, 24, 26, 38, 40].
In these importance-based works, DyViT [26] introduces
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an extra module to estimate the importance of each token
while EViT [21] reorganizes image tokens based on the
class attention importance score. However, inspired by re-
cent diversity-preserving studies in ViT variants [11,13–15,
28,30], we argue that promoting token diversity is also cru-
cial for token pruning. Though inattentive tokens like the
image background and low-level textures are not directly
related to the classification objects, they can increase the
token diversity and improve the expressivity of the model.
As discussed in [35], image backgrounds (e.g., the grass
and leaves in Fig. 2) can improve the classification accuracy
due to their potential relations to foreground objects. To this
end, we first investigate a diversity-based pruning strategy
on DeiT-S [31] with different keep rates. Specifically, in-
stead of highlighting the token importance, it directly clus-
ters and combines similar tokens into a single one, hereby
maximizing the token diversity. Surprisingly, as shown in
Fig. 1, such an intuitive strategy can achieve comparable
and even better performance than SOTA importance-based
pruning methods, especially at the low keep rate.

Despite its promising performance, the diversity-based
strategy cannot retain original attentive tokens and may con-
sequently weaken the discriminative ability of the model.
As shown in Fig. 2 (c), the most representative tokens, e.g.,
eyes and ears of the dog or beaks of two birds, contain crit-
ical semantic information for classification tasks but cannot
be preserved by the diversity-based strategy. To address this
issue, we naturally tend to keep all these dominant tokens
while maintaining the token diversity, as shown in Fig. 2
(d). In short, a satisfied pruning method should jointly take
the token importance and diversity into account, such that
the most important local information and the diverse global
information can be preserved simultaneously.

Motivated by these above observations, in this paper, we
propose a novel pruning method that incorporates the token
importance and diversity through efficient token decoupling
and merging. As shown in Figure 1 (c), we first decouple
the origin token sequence into attentive and inattentive por-
tions based on class token attention. Instead of discarding
inattentive tokens completely, we apply a simplified density
peak clustering algorithm [27] to efficiently cluster similar
inattentive tokens and combine these tokens from the same
group into a new one. In addition, unlike existing methods
that preserve all attentive tokens, we design a straightfor-
ward matching algorithm to fuse homogeneous attentive to-
kens and improve the calculation efficiency further. In this
way, we can effectively prune tokens while maximizing the
preservation of token diversity. We conduct extensive to-
ken pruning experiments to validate the effectiveness of our
method. Despite its simplicity, our method achieves supe-
rior pruning performance on ImageNet [6] for two different
vision transformers, DeiT [31] and LV-ViT [17]. Our main
contributions are summarized as follows:

(a) (b) (c) (d)

Figure 2. Visualizations of pruning results of different methods on
ImageNet with DeiT-S. (a) Original image. (b) Importance-based
method masks inattentive tokens. (c) Diversity-based method clus-
ters similar tokens and visualizes the same group of tokens as one
colour. (d) Our method preserves the most discriminative tokens,
e.g., the heads of birds and dogs. In addition, we merge similar
inattentive tokens and match homogeneous attentive tokens, e.g.,
the grass and leaves.

• To the best of our knowledge, we are the first to em-
phasize the token diversity for pruning ViT. We also
demonstrate its cruciality through numerical and em-
pirical analysis.

• We propose a simple yet effective decoupling and
merging method that can simultaneously preserve the
most attentive local tokens and diverse global seman-
tics without imposing extra parameters.

• Benefiting from incorporating token importance and
diversity, our method achieves new SOTA performance
on the trade-off between accuracy and FLOPs. It
can also be deployed to other token pruning methods,
achieving excellent performance improvement.

2. Related work
Vision Transformers. Different from convolution net-
works, the transformer has a significant ability to model
long-range dependencies and minimal inductive bias [38].
Recent advances suggest that the variants of transformers
could be a competitive alternative to CNNs. Visual trans-
former (ViT) [8] is the first work to apply transformer ar-
chitecture to achieve STOA performance, but it only re-
places the standard convolution in the deep neural network
on large-scale image datasets. To free ViT from dependence
on large datasets, DeiT [31] incorporates an additional to-
ken for knowledge distillation to improve the training effi-
ciency of vision transformers. LV-ViT [17] further improves
the performance by utilizing all the image patch tokens to
calculate the training loss intensively. It is equivalent to
converting the image classification problem into each token
recognition problem. While ViT and its follow-ups achieve
excellent performance, the complexity quadratic with the
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Figure 3. Illustration of our approach. (top) Employ our method at the 4th, 7th, and 10th layers of the DeiT-S model. (bottom) Model
structure within a single transformer block. We decouple the attentive and inattentive tokens according to class token attention. Then, we
cluster inattentive tokens and combine the tokens from the same group into a new token. Meanwhile, we match homogeneous attentive
tokens and combine the same pair of tokens.

number of tokens incurs high computational costs. Token
pruning aims to reduce redundant tokens and improve the
inference efficiency of various ViT backbones.

ViT Token pruning. Though ViT has achieved compet-
itive accuracy in vision tasks [1, 5, 9, 12, 19, 31, 34, 41], it
needs huge memory and computational resources. There-
fore, how to build a more efficient transformer draws
researchers’ interest. Compared with CNN, the higher
computing cost of the transformers is mainly due to
the quadratic time complexity of multi-head self-attention
(MHSA). Accordingly, some work [21, 24, 26, 38] attempts
to prune tokens based on importance score in transformer.
Based on whether extra parameters need to be introduced
to the model, we divide the existing token pruning methods
into the following two groups. One group performs token
pruning by inserting prediction modules. DyViT [26] de-
signs a lightweight prediction module inserted into differ-
ent layers to estimate the importance score of each token
to prune redundant tokens given the current features. IA-
RED2 [24] introduces interpretable modules to dynamically
delete redundant patches that are not related to the input.
AdaViT [23] connects a lightweight decision network to

the backbone to dynamically generate decisions. The other
group leverages the class token attention to keep attentive
tokens. EViT [21] divides image tokens into attentive and
inattentive tokens according to class token attention, retains
attentive tokens and discards inattentive image tokens to re-
organize image tokens. Evo-ViT [38] distinguishes infor-
mative and uninformative tokens through global class atten-
tion for slow and fast updates, respectively. A-ViT [40] de-
signs an adaptive token pruning mechanism based on class
token attention, which dynamically adjusts the calculation
cost of images with different complexity. Unlike these to-
ken pruning methods, which only focus on the importance
of tokens, our method also considers the diversity of to-
ken semantic information. Therefore our method achieve
incredible performance.

3. Preliminaries
In standard vision transformers [8], each input image

I ∈ RH×W×C is first converted into a single-dimensional
patch sequence X ∈ RN×P 2×C . Then all patches are
mapped into D-dimensional token embeddings via a train-
able linear layer. Additionally, a learnable position embed-
ding Epos ∈ R(N+1)×D is added to token embedding to
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retain position information. Formally, the input patch se-
quence can be represented as:

X = [xcls; x1; . . . ; xN] + Epos, (1)

where xcls denotes the learnable class token that serves as
the image representation, and xi denotes the token of the i-
th patch with i ≥ 0. Afterwards, such token sequence is fed
into a ViT model with L stacked transformer blocks, each of
which consists of a multi-head self-attention (MHSA) mod-
ule and a feed forward network (FFN).

3.1. MHSA & FFN

In MHSA, the input token sequence is linearly mapped
into three different matrices of query Q, key K, and value
V, respectively. MHSA can be formulated as:

MHSA(Z)=Concat

[
softmax

(
Qh
(
Kh
)⊤

√
d

)
Vh

]H
h=1

, (2)

where Z is the token sequence of N+ 1 tokens. Concat[·]
outputs the feature concatenation of H heads. Qh, Kh and
Vh are projection matrices of Q, K, and V in the h-th head,
respectively. d is the feature dimension of the single head.

FFN typically consists of two fully-connected layers and
a nonlinear mapping layer, which can expressed as:

FFN (Z) = Sigmoid(Linear(GeLU(Linear(Z)))), (3)

where Linear denotes the fully-connected layers and GeLU
is an non-linear activation function.

3.2. Computation Complexity

The dimension of the input token sequence is N ×D,
where N is the number of tokens and D is the embed-
ding dimension of each token. Thus the calculational costs
of MSHA and FFN modules are O

(
4ND2 + 2N2D

)
and

O
(
8ND2

)
, respectively. Obviously, vision transformers

require very intensive computational costs, with the total
computational complexity of O

(
12ND2 + 2N2D

)
. Since

reducing the channel dimension D only affects the calcu-
lation of current matrix multiplication, most related works
tend to prune tokens, e.g. reducing the number of N , to re-
duce all operations linearly or even quadratically.

4. Methodology
4.1. Overview

Different from existing works only focus on attentive to-
kens, our method incorporating token importance and di-
versity to obtain efficient and accurate vision transformers.
To this end, we propose the token decoupling and merging
method, achieving promising trade-offs between the FLOPs
and accuracy. As shown in Figure 3, we insert our approach
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Figure 4. Comparing the pruning results of our method and the
EViT method with different keep rates on DEiT-S in terms of the
diversity score and classification accuracy on ImageNet. The di-
versity score is obtained at the final pruning layer.

at the 4th, 7th, and 10th layers of the DeiT-S model. The
approach has two main components: the token decoupler
and the token merger. The decoupler divides the origin
token sequence into attentive and inattentive sections based
on class token attention. Then the merger clusters similar
inattentive tokens and matches homogeneous attentive to-
kens. In this section, we first demonstrate how preserving
token diversity benefits token pruning and then present the
two main components in detail.

4.2. Token diversity matters

In the literature, most work only emphasize retaining im-
portant tokens but directly discard all the remaining ones to
achieve satisfactory token keep rates. However, inspired by
the observations in [35], that even the image background
can help improve foreground-instance classification, we ar-
gue that the less important tokens could also contain use-
ful semantic information and be an effective complemen-
tary to the information diversity. Also, as discussed in
[11, 13–15, 28, 30], the token diversity is very critical to
optimize transformer structures. Therefore, appropriately
preserving these inattentive tokens augments the diversity
of semantic information, which can be beneficial to token
pruning. On the contrary, blindly discarding tokens will
cause irreversible loss of semantic information, especially
at the low keep rates. Referring to [7, 13, 29, 30], we lever-
age the difference between the token and a rank-1 matrix to
measure the diversity of token sequence Z. The diversity
scores r (Z) can be calculated as:

r (Z)=
∥∥Z− 1z⊤

∥∥ ,where z =argminz′
∥∥Z−1z′⊤

∥∥, (4)

where ∥ · ∥ represents l1 norm. Z ∈ RN×C is the token se-
quence of N tokens and z, z′ ∈ RC is one of the tokens. z⊤
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is the matrix transpose of z and 1 is an all-ones vector. The
rank of matrix 1z⊤ is 1. A larger diversity score indicates a
more diverse token sequence.

We investigate how the diversity scores affect the token
pruning performance. In Figure 4, we examine the classi-
fication accuracy and the diversity score at different keep
rates. Obviously, we can see that the token sequence di-
versity score is positively correlated with classification ac-
curacy. In either the EViT method or our proposed method,
higher diversity score consistently result in higher accuracy.
In addition, it can also be observed that, as for the EViT
method, the diversity score and classification accuracy drop
rapidly as the keep rate decreases. Differently, benefiting
from our diversity-preserving token merging strategy, our
method can maintain relatively higher diversity scores at
different keep-rates and thus consistently outperform the
EViT method, especially at the low keep-rate. Therefore,
maintaining higher token diversity is crucial to improve
classification accuracy.

4.3. Token Decoupler

In order to fully consider token importance while main-
taining diversity, we prioritize the attentive tokens to pre-
serve the most important semantic information. Therefore,
we decouple original token sequence into attentive and inat-
tentive tokens so that we maintain token diversity and im-
portance simultaneously. Same as [32], we split the tokens
into two groups by comparing their similarities with the
class tokens. Mathematically, the similarity scores Attncls
between the class token and other tokens as class token at-
tention can be calculated by

Attncls = Softmax

(
qcls ·K⊤

√
d

)
, (5)

where qcls denotes the class token of query vector. With N
tokens in total and the keep rate of η, we choose the top-K
tokens as attentive tokens according to attention scores. The
remaining N -K tokens are identified as inattentive tokens
that contain less information. Moreover, in the multi-head
self-attention layer, we calculate the average of the attention
scores of all heads.

4.4. Token Merger

We apply different strategies for attentive and inatten-
tive tokens when merging tokens. For inattentive tokens,
we first apply density peak clustering algorithm to clus-
ter inattentive tokens and then combine the tokens from
the same group into new token by weighted sum. In this
way, we can integrate a new inattentive token sequence
T = [t1; . . . ; tn]. For attentive tokens, we adapt a straight-
forward matching algorithm to fuse homogeneous attentive
tokens. The fused token sequence is P = [p1; . . . ; pm].

We concat T and P to obtain the pruned token sequence
Z = [zcls; p1; . . . ; pm; t1; . . . ; tn].

Inattentive Token Clustering. Common K-means clus-
tering algorithm requires multiple iterations to obtain satis-
factory results, reducing throughput in practice and defeat-
ing the intent of speeding up the model. After research, we
found that the density clustering algorithm can quickly find
classes of arbitrary shape by exploiting the density connec-
tivity of classes. Therefore, we simplify an efficient density
peak clustering algorithm (DPC) with neither an iterative
process nor more parameters. We follow the DPC algorithm
proposed in [27]. It assumes that the cluster center is sur-
rounded by low-density neighbours, and that the distance
between the cluster center and any high-density points is
relatively large. We calculate two variables for each token
i: the density ρ and the minimum distance from the higher
density token δ. Given a set of tokens x, we calculate the
density of each token ρ by

ρi = exp

−
∑
zj∈Z

∥zi − zj∥22

 , (6)

where Z denotes the set of tokens. zi and zj are correspond-
ing token features.

For the token with the highest density, its minimum dis-
tance is set to the maximum distance between it and any
other tokens. We define δi as the minimum distance be-
tween the token i and any other token with higher density.
The minimum distance of each token is:

δi =

{
minj:ρj>ρi

∥zi − zj∥2 , if ∃j s.t. ρj > ρi
maxj ∥zi − zj∥2 , otherwise . (7)

We denote the clustering center score of the i-th token
as ρi × δi. Higher scores mean higher potential to be clus-
ter centers. We select top-K-scored tokens as cluster cen-
ters. The DPC algorithm assigns each remaining token to
the cluster whose cluster center is closest to the token and
has a higher density.

Attentive Token Matching. See example images in Fig-
ure 5. Homogeneous tokens are also present in foreground
objects (attentive tokens), such as the cheeks of animals.
This redundancy makes it possible to fuse homogeneous at-
tentive tokens to reduce the number of tokens while main-
taining accuracy. We could apply the same token cluster-
ing strategy as did for inattentive tokens. However, since
the attentive tokens contain critical semantic information
for the final classification task, it would be best if we can
preserve the original tokens. To address this problem, we
customize a straightforward matching algorithm that keeps
the most important tokens while fusing homogeneous to-
kens. Specifically, we define the cosine similarity metric to
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Model Method Top-1 Acc. (%) Params (M) FLOPs (G) FLOPs ↓(%) Throughput (img/s)

DeiT-T

DeiT-T [31] 72.2 5.6 1.3 0.0 2536
DyViT [26] 71.2 5.9 0.9 30.8 3542
PS-ViT [29] 72.0 5.6 0.9 30.8 3563
SViTE [3] 70.1 4.2 0.9 30.8 2836
SPViT [18] 72.2 5.6 1.0 23.1 -

Evo-ViT [38] 72.0 5.6 0.8 38.5 3627
Ours-DeiT-T 72.3 5.6 0.8 38.5 3641

DeiT-S

DeiT-S [31] 79.8 22.1 4.6 0.0 943
DyViT [26] 79.3 22.8 2.9 37.0 1420
PS-ViT [29] 79.4 22.1 2.6 43.5 1392

IA-RED2 [24] 79.1 22.1 3.2 30.4 1362
Evo-ViT [38] 79.4 22.1 3.0 34.8 1449

EViT [21] 79.5 22.1 3.0 34.8 1455
A-ViT [40] 78.6 22.1 3.6 21.7 -

Ours-DeiT-S 79.6 22.1 3.0 34.8 1468
EViT+Ours 79.6 22.1 3.0 34.8 1459

DeiT-B

DeiT-B [31] 81.8 86.6 17.6 0.0 302
DyViT [26] 81.3 - 11.6 34.1 454
PS-ViT [29] 81.5 86.6 11.6 34.1 445

IA-RED2 [24] 80.9 86.6 11.6 34.1 453
Evo-ViT [38] 81.3 86.6 11.6 34.1 448

EViT [21] 81.3 86.6 11.6 34.1 450
Ours-DeiT-B 82.0 86.6 11.6 34.1 462

Table 1. Comparisons with existing token pruning methods on DeiT. We report the top-1 classification accuracy, FLOPs, and throughput
on ImageNet. ‘FLOPs ↓’ denotes the reduction ratio of FLOPs.

determine the similarity between different tokens and calcu-
late cosine similarity scores between attentive tokens. Then
we select top-K most similar token pairs as homogeneous
tokens. Finally, we combine each pair of tokens into a new
token and contact the remaining attentive tokens.

Although tokens in the same set have similar seman-
tic information, the semantic importance of each token is
not necessarily the same. Instead of blindly averaging
the tokens in the same set, we combine these tokens by a
weighted sum. By introducing a class token attention to
represent the importance, we combine the same set of to-
kens into a new token by

pi =
∑
j∈Ci

sjzj , (8)

where sj denotes the importance score of token zj , and Ci

denotes the i-th set.

5. Experiments
5.1. Setup

Dataset and evaluation metrics. Our experiments are
conducted on ImageNet-1K [6] with 1.28 million training
images and 50000 validation images. We report the top-
1 classification accuracy and the floating-point operations

(FLOPs) to evaluate model efficiency. In addition, we mea-
sure the throughput of the models on a single NVIDIA
V100 GPU with batch size fixed to 256.

Implementation details. To demonstrate the generaliza-
tion of our method, we conduct token pruning on differ-
ent ViT models including DeiT-T, DeiT-S, DeiT-B [31], and
LV-ViT-S [17]. Following [21], we employ our method at
the 4th, 7th, and 10th layers of the DeiT-T/S/B model and
at the 4th, 8th, and 12th layers for LV-ViT-S [17]. We
utilize the same training settings as the original papers of
DeiT [31] and LV-ViT [17]. Following [41], we incorpo-
rate a cosine scheduler into our learning strategy where the
keep-rate gradually decreases from 1 to the target value for
100 epochs. For fair comparisons, all of our models are
trained from scratch for 300 epochs on 8 NVIDIA V100.

5.2. Main Results

Comparisons with the-state-of-the-arts. We compare
our method with SOTA token pruning methods, results are
shown in Table 1. We leveraged the η indicates the keep
rate. We report the top-1 accuracy, FLOPs, and throughput
for each model. Compared to previous work, our method
achieves new SOTA performance with similar computa-
tion costs. Specifically, on the classic model DeiT-S [31],
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Figure 5. Visualization of token merger results on DeiT-S. The masked areas of different colours represent the inattentive tokens are divided
into dissimilar token groups. Our method clusters similar inattentive tokens into a group and matches homogeneous attentive tokens. We
visualize the same groups/pairs of tokens as the same colour.

Method Top-1 Acc FLOPs Params
(%) (G) (M)

ViT-Base/16 [8] 77.9 17.6 86.6
DeiT-S [31] 79.8 4.6 22.1
DeiT-Base/16 [31] 81.8 17.6 86.6
PVT-Small [33] 79.8 3.8 24.5
PVT-Medium [33] 81.2 6.7 44.2
CPVT-Small-GAP [4] 81.5 4.6 23.0
CoaT Mini [37] 80.8 6.8 10.0
CoaT-Lite Small [37] 81.9 4.0 20.0
CrossViT-S [2] 81.0 5.6 26.7
CrossViT-B [2] 82.3 14.1 64.1
Swin-T [22] 81.3 4.5 29.0
Swin-S [22] 83.0 8.7 50.0
Swin-B [22] 83.3 15.4 88.0
T2T-ViT-14 [41] 81.5 5.2 22.0
T2T-ViT-19 [41] 81.9 8.9 39.2
T2T-ViT-24 [4] 82.2 21.2 104.7
RegNetY-8G [25] 81.7 8.0 39.0
RegNetY-16G [25] 82.9 16.0 84.0
LV-ViT-S [16] 83.3 6.6 26.2

DyViT-LV-S 83.0 4.6 26.2
EViT-LV-S 83.0 4.7 26.2
Ours-LV-S 83.1 4.7 26.2

Table 2. Comparisons with state-of-the-art vision transformers on
ImageNet. We prune the LV-ViT-S as the base model.

the top-1 accuracy degradation of our models is controlled
within 0.2% when the computation costs decreases by 35%.
In addition, the superiority of our method is more obvious
at lower keep-rates. When the compression ratio of DeiT-
S is increased to 50%, we improve 0.5% compared to the
best counterpart. In particular, the compression ratio of our
method is close to 40% on the DeiT-T [31] model, and the
accuracy is even better than the original model. Owing to
the token diversity and importance are orthogonal for token
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Figure 6. Performance comparisons of DyViT, EViT, and our
method with different FLOPs.

pruning, our method can be plugged into EViT and achieve
performance improvement. As shown in Table 2, we fur-
ther conduct experiments on the deep-narrow transformer
LV-ViT [17]. We observe that our method achieves better
accuracy-complexity trade-offs on different keep rates com-
pared to the current foremost CNN and ViT architectures.

Performance of existing methods on each keep rate. As
shown in Figure 6, our method consistently achieves the
best performance while the other two methods obtain close
performance. In addition, with the decrease of keep rate,
the classification accuracy of existing token pruning meth-
ods drops sharply. Fortunately, our method alleviates the
phenomenon by preserving the diversity of token seman-
tic information. Especially when the FLOPs of DyViT is
reduced to 1.6G, the classification accuracy drops by more
than 10%. This is because completely discarding inattentive
tokens greatly decreases token diversity, resulting in the re-
duction of the semantic information of the original token
sequence. We apply the token decoupling and merging to
simultaneously consider the token importance and diversity,
achieving incredible accuracy at low keep rates. Intuitively,
when we only keep a few tokens, merging tokens obviously
makes more sense than keeping only top-K attentive tokens.
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Strategy Acc (%) FLOPs (G)

Deit-S 79.8 4.6
DeiT-S/η=0.7

+ attentive token preservation 79.3 3.0
+ inattentive token pack 79.3 3.0
+ inattentive token clustering 79.5 3.0
+ attentive token matching 79.6 3.0

DeiT-S/η=0.5
+ attentive token preservation 78.2 2.3
+ inattentive token pack 78.4 2.3
+ inattentive token clustering 78.8 2.3
+ attentive token matching 79.0 2.3

Table 3. Ablation study on our method with different keep-rate η.

Visualization of the token merger results. To further
show the interpretability of our method, we visualize the
final token merger results back to its original input patches
in Figure 5. We notice that our method pays attention to
the regions that contribute more to image prediction instead
of uninformative backgrounds. i.e. the animal’s five sense
organs are preserved. It demonstrates that our method effec-
tively decouple the attentive and inattentive tokens. Unlike
other methods that mask all inattentive tokens, our method
combines background patches with similar semantics. i.e.
the animal’s fur is merged into a single token. It implies that
our method not only focuses on attentive tokens but also
maintains the diversity of token semantics. It is also worth
pointing out that the paired eyes are matched in the fifth
and sixth image. Our method effectively fuse homogeneous
attentive tokens and reduces the potential redundancy.

5.3. Ablation Analysis

Effectiveness of each module. As shown in Table 3, we
add the sub-modules one by one to evaluate the effective-
ness of each module. i) Attentive token preservation. Dis-
card inattentive tokens based on the class token attention in
pruning layers; ii) Inattentive token pack. Pack all inatten-
tive tokens into one token; iii) Inattentive token clustering.
Cluster inattentive tokens and combine the tokens of the
same group into a new token; iv) Attentive token matching.
Match attentive tokens and combine the tokens of the same
pair into a new token; It is evident that since the clustering
module preserves token diversity, the accuracy is improved
by 0.2% and 0.8% at keep rates of 0.7 and 0.5, respectively.
Noteworthy, the lower keep rates, the better our method
works. In addition, the attentive token matching module
further reduces the FLOPs of the model while maintaining
accuracy by fusing homogeneous attentive tokens.

Different Token Merger Strategy. As presented in Ta-
ble 4, we compare several common token merging strate-

Method Acc FLOPs Throughput
(%) (G) (img/s)

Pooling strategy
Average pooling 78.1 2.3 1630
Max pooling 78.1 2.3 1623
Spatial pooling 78.2 2.3 1605

Sub-sampling strategy
Convolution 78.2 2.3 1454
MLP 78.3 2.3 1447

Cluster strategy
K-means(1 iter) 78.6 2.3 1386
K-means(3 iter) 78.8 2.3 1231
Ours 79.0 2.3 1670

Table 4. Different token merger strategies on DeiT-S.

gies to assess the effectiveness of our approach. i) Pooling
strategy. Utilize the pooling operation to reduce the num-
ber of tokens. ii) Sub-sampling strategy. Adding a series
of convolution layers between MHSA and FFN to decrease
the token dimension. iii) Cluster strategy. Cluster the to-
kens and combine the tokens of the same group into a new
token. We observe that the clustering strategy generally
improves the accuracy by 0.4% compared to other token
merging strategies. A possible reason is that the cluster-
ing strategy obtains more inductive bias at the same com-
putational cost. However, we find that the throughput of
K-means algorithm is lower, indicating that it does not per-
form well in terms of model acceleration in practice. Fur-
thermore, we discover that the throughput of the K-means
algorithm decreases with the number of iterations. There-
fore we simplify an efficient DPC algorithm with neither an
iterative process nor more parameters, which outperforms
other strategies on both accuracy and efficiency.

6. Conclusion
In this paper, we propose a token decoupling and merg-

ing method to simultaneously consider the token impor-
tance and diversity. Since token importance and diversity
are orthogonal for token pruning, our method can be em-
ployed into exisiting token pruning methods to further im-
prove the performance. We demonstrate that our method
achieved the SOTA performance trade-off between accu-
racy and FLOPs without imposing extra parameters. We
hope this paper combining token importance and diversity
can provide insights for future work of token pruning.
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