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Abstract

Benefiting from large-scale vision-language pre-training

on image-text pairs, open-world detection methods have

shown superior generalization ability under the zero-shot

or few-shot detection settings. However, a pre-defined cate-

gory space is still required during the inference stage of ex-

isting methods and only the objects belonging to that space

will be predicted. To introduce a “real” open-world de-

tector, in this paper, we propose a novel method named

CapDet to either predict under a given category list or di-

rectly generate the category of predicted bounding boxes.

Specifically, we unify the open-world detection and dense

caption tasks into a single yet effective framework by in-

troducing an additional dense captioning head to gener-

ate the region-grounded captions. Besides, adding the cap-

tioning task will in turn benefit the generalization of detec-

tion performance since the captioning dataset covers more

concepts. Experiment results show that by unifying the

dense caption task, our CapDet has obtained significant

performance improvements (e.g., +2.1% mAP on LVIS rare

classes) over the baseline method on LVIS (1203 classes).

Besides, our CapDet also achieves state-of-the-art perfor-

mance on dense captioning tasks, e.g., 15.44% mAP on VG

V1.2 and 13.98% on the VG-COCO dataset.

1. Introduction

Most state-of-the-art object detection methods [33, 34,

50] benefit from a large number of densely annotated detec-

tion datasets (e.g., COCO [27], Object365 [36], LVIS [12]).

However, this closed-world setting results in the model only

being able to predict categories that appear in the training

set. Considering the ubiquity of new concepts in real-world

scenes, it is very challenging to locate and identify these

new visual concepts. This predictive ability of new concepts

in open-world scenarios has very important research value

*Equal contribution.
†Corresponding authors.
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Figure 1. Comparison of the different model predictions under

OWD, OVD, and our setting. (a) OWD methods [14, 18, 48] are

not able to describe the detailed category of the detected unknown

objects and (b) the performance of OVD methods [8, 12, 41] usu-

ally depends on the pre-defined category list during the inference.

(c) With the unification of two pipelines of dense captioning and

open-world detection pre-training, our CapDet can either predict

under a given category list or directly generate the description of

predicted bounding boxes.

in real-world applications such as object search [29,30], in-

stance registration [45], and human-object interaction mod-

eling [10].

Currently, the open world scenario mainly includes two

tasks: open world object detection [18] (OWD) and open-

vocabulary object detection [44] (OVD). Although the

paradigms of OWD and OVD tasks are closer to the real

world, the former cannot describe the specific concept of

the detected unknown objects and requires a pre-defined

category list during the inference. Specifically, as shown

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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in Figure 1, previous OWD methods [14,18,48] would rec-

ognize new concepts not in the predefined category space

as “unknown”. Further, another line of task OVD requires

the model to learn a limited base class and generalize to

novel classes. Compared to the zero-shot object detection

(ZSD) proposed by [32], OVD allows the model to use ex-

ternal knowledge, e.g., knowledge distillation from a large-

scale vision-language pre-trained model [8, 12], image-

caption pairs [44], image classification data [49], grounding

data [25, 41, 46]. With the external knowledge, OVD meth-

ods show a superior generalization capacity to detect the

novel classes within a given category space. However, as

shown in Figure 1, when given an incomplete category list,

OVD can only predict the concepts that appear in the given

category list, otherwise, there will be recognition errors, (

i.e., as illustrated in Figure 1 (b), the OVD methods prone

to predict the “wall socket” as “remote”, since the latter is

in the category list but not the former).

Thus, under the OVD setting, we mainly face the follow-

ing two challenges: (i) it is difficult to define a complete list

of categories; (ii) low response values on rare categories

often lead to recognition errors. This is mainly because

we cannot exhaustively enumerate new objects in the real

world, and secondly, it is difficult to collect enough sam-

ples for rare classes. However, the fact that rare objects in

the real world, even some new objects that are unknown

to humans, such as UFOs, do not prevent people from using

natural language to describe it as “a flying vehicle that looks

like a Frisbee”.

Therefore, based on the above observations, in this pa-

per, we consider a new setting that is closer to the open

world and real scenes, i.e., we expect the model to both

detect and recognize concepts in a given category list, and

to generate corresponding natural language descriptions for

new concepts or rare categories of objects. Early dense cap-

tioning methods [9, 17] can locate salient regions in images

and generate the region-grounded captions with natural lan-

guage. Inspired by this, to address the challenges faced in

the OVD setting, we propose to unify the two pipelines of

dense captioning and open-world detection pre-training into

one training framework, called CapDet. It empowers the

model with the ability to both accurately detect and recog-

nize common object categories and generate dense captions

for unknown and rare categories by unifying the two train-

ing tasks.

Specifically, our CapDet constructs a unified data for-

mat for the dense captioning data and detection data. With

the data unification, CapDet further adopts a unified pre-

training paradigm including open-world object detection

and dense captioning pre-training. For open-world detec-

tion pretraining, we treat the detection task as a semantic

alignment task and adopt a dual encoder structure as [41]

to locate and predict the given concepts list. The concepts

list contains category names in detection data and region-

grounded captions in dense captioning data. For dense cap-

tioning pretraining, CapDet proposes a dense captioning

head to take the predicted proposals as input to generate

the region-grounded captions. Due to the rich visual con-

cepts in the dense captioning data , the integration of dense

captioning tasks will in turn benefit the generalization of

detection performance.

Our experiments show that the integration of few dense

captioning data brings in large improvement in the object

detection datasets LVIS, e.g., +2.7% mAP on LVIS. The

unification of dense captioning and detection pre-training

gains an additional 2.3% increment on LVIS and 2.1% in-

crement on LVIS rare classes. Besides, our model also

achieves state-of-the-art performance on dense captioning

tasks. Note that our method is the first to unify dense cap-

tioning and open-world detection pretraining.

To summarize, our contributions are three folds:

• We propose a novel open-vocabulary object detection

framework CapDet, which cannot only detect and rec-

ognize concepts in a given category list but also gen-

erate corresponding natural language descriptions for

new concept objects.

• We propose to unify the two pipelines of dense cap-

tioning and open-world detection pre-training into one

training framework. Both two pre-training tasks are

beneficial to each other.

• Experiments show that by unified dense captioning

task and detection task, our CapDet gains significant

performance improvements on the open-vocabulary

object detection task (e.g., +3.3% mAP on LVIS rare

classes). Furthermore, our CapDet also achieves state-

of-the-art performance on the dense captioning tasks,

e.g., 15.44% mAP on Visual Genome (VG) V1.2 and

13.98% mAP on VG-COCO.

2. Related Work

Vision-Language Pre-training. Vision-Language Pre-

training [6, 16, 31] as a scheme in the domains of natural

language processing [1, 5] and computer vision [7] obtains

continual attention currently. And it exhibits strong per-

formance and generalization ability on various downstream

vision and cross-modal tasks. Among them, CLIP [31]

and ALIGN [16] as dual-stream methods utilize large-scale

image-text pairs on the Internet by cross-modal contrastive

learning to get excellent zero-shot classification ability.

Single-stream methods [20,24] unify visual and textual em-

beddings in a single transformer-based model, which can

perform text generation tasks such as image caption and

VQA. Some mixed architectures [23, 39] combine single-

stream and dual-stream to explore a unified way of vision-

language understanding and generation. However, these

methods take low-resolution images as input and serve the
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task of classification and retrieval. Those vision-language

pre-training approaches can not be applied to pure computer

vision task directly, i.e., object detection task.

Open World Object Detection / Open-Vocabulary Ob-

ject Detection. Object detection is a core computer vi-

sion task, which aims at localizing objects using a bound-

ing box and classifying them. The mature detection ap-

proaches which show great performance on supervised data

include one-stage detectors (i.e., YOLO [33], ATSS [47])

having a relatively high detection efficiency and two-stage

detectors (i.e., Faster R-CNN [34], Mask R-CNN [15]) hav-

ing good detection accuracy. However, how to generalize

these methods to rare classes and novel concepts in the real

world is a challenge. Currently, several object detection ap-

proaches for such open-world scenes have attracted exten-

sive attention from academia and industry. These methods

are divided into two tasks which are called open-world ob-

ject detection and open-vocabulary object detection respec-

tively depending on whether to detect the class of unknown

classes.

For the OWD task, Zhao et al. [48] proposed a proposal

advisor to assist in identifying unknown proposals without

supervision and a class-specific expelling classifier to filter

out confusing predictions. For the OVD task, GLIP [25]

converts the detection data into grounding format and pro-

poses a fusion module to learn semantic vision information

in grounding data. K-Lite [38] reconstructs the input for-

mat of the data in GLIP from sequential to parallel and uses

nouns hierarchy and definition to format text sequence. Det-

CLIP [41] unifies detection, grounding, and image-text pair

data in a paralleled formulation and constructs a concept

dictionary to augment the text data, which strikes a bal-

ance between performance and efficiency. Differing from

all these works, our CapDet can generate an open-set cap-

tion of each region proposal to cover situations where the

semantics of new object instances are not in the given cate-

gory list.

Dense Captioning. Dense captioning aims at generating

detailed descriptions for local regions, which usually needs

to locate visual regions with semantic information and gen-

erate captions for these regions. J. Johnson et al. [17] uti-

lized a fully convolutional localization network to locate

regions of interest (RoIs) and then describe them. After-

ward, many methods [26, 43] based on Faster-RCNN [34]

and LSTM [11] are proposed to do dense captioning. X. Li

et al. [26] arrange RoI features as a sequence and put them

into LSTM with the guidance of the region features to form

the complementary object context features. This method

also needs ground truth bounding boxes auxiliary tests to

achieve good results. But limited by the forget gate mech-

anism of LSTM, the inputted sequence cannot be too long.

Then, the transformer-based method TDC [37] is proposed

to tackle the long sequence forgotten problem. Instead, our

CapDet proposes a transformer-based caption head to gen-

erate a caption using a single-stage detector ATSS while si-

multaneously achieving open-world detection.

3. Method

The overview of our proposed CapDet is shown in Fig-

ure 2. To construct a detector to either predict under a given

category list or directly generate the concepts of predicted

bounding boxes, we incorporate detection data and dense

caption data together. In this section, we will present a uni-

fied data format for the detection data and dense caption

data in Section 3.1, the model architecture and pre-training

objectives for open-world object detection pre-training in

Section 3.2 and dense captioning in Section 3.3.

3.1. Unified Formulation

We defined a unified triplet-wise data format

(x, {bi}
N
i=1, y

N
i=1) for each sample from different

sources. Specifically, x ∈ R
3×h×w is the input im-

age, {bi|bi ∈ R
4}Ni=1 denotes the bounding boxes

coordinates for each region of the image, and the yNi=1

represents the concepts of the corresponding boxes. N

denotes the number of regions. A concept yi formatted as

a sentence contains the category and textual description

of the corresponding region. In detection data, a concept

y consists of the category name and the corresponding

definition from the concept dictionary [41], while yi
represents the region-grounded caption in dense caption

data. For example, for an image x in detection data, yi can

be:

yi = “person, a human being.”

For an image x from dense captioning data, yi can be:

yi = “an outlet on the wall.”

With the triplet, we can learn a unified image-text alignment

objective on the detection data and the dense captioning

data. The unified formulation also ensures the joint train-

ing of open-world object detection pre-training and dense

captioning.

3.2. Open­World Object Detection Pre­training

Based on the unified formulation of detection data and

dense captioning data, we regard the captions of regions in

dense captioning data as a kind of category and utilize two

different sources of data for the open-world object detection

pre-training. Compared with the limited class list of detec-

tion data, dense caption data contains richer concepts and

more semantic information than class names of individual

regions. On the other hand, localization and recognition are

two essential tasks of object detection. Traditional object
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dense captions: 
cap 1. the catcher is crouched down
cap 2. the umpire of a baseball game
cap 3. mitt on the player’s hand
…
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…

…

categories: 
cat 1. dog
cat 2. backpack
cat 3. bicycle
…

+

definitions: 
cat 1. a common domesticated dog.
cat 2. a bag carried by a strap on your 
back or shoulder.
cat 3. a wheeled vehicle has two wheels 
and is moved by foot pedals.
…

+

�
��

Figure 2. The overall architecture of CapDet. The training paradigm of CapDet contains open-world object detection pre-training and

dense captioning. In detection, CapDet contains a dual vision-language encoder. The image encoder generates region embeddings from

detection and dense captioning data. The regression loss and centerness loss are introduced to regress the locations. The text encoder takes

the category concepts as input to generate the embeddings from the [EOS] token. Then we treat the detection task as a matching task and

adopt an alignment loss for the category embeddings and region embeddings. In dense captioning, an additional dense captioning head is

proposed to take the region embeddings as input and generate the textual captions for corresponding regions with natural language.

detection always focuses on the salient objects in the image.

While the dense captioning data contains lots of annotations

which are just parts of an object, e.g., an ear of an elephant,

it is not suitable to learn those annotations for the localiza-

tion task. Therefore, we only calculate the localization loss

on detection data.

As shown in Figure 2, CapDet predicts the regions and

treats the recognition task as a region-category matching

task. For efficient learning on the matching task, we adopt

the negative sampling proposed by [41] to provide negative

concepts to enlarge the concept space in a batch. Specif-

ically, for each iteration, we randomly sample a negative

concept set and add to the positive concept set (N samples)

in a batch to obtain the final concept set yMi=1, where M rep-

resents the sum of the number of positive and negative sam-

ples. Finally, we format the triplet to (x, {bi}
N
i=1, y

M
i=1).

CapDet contains a dual vision-language encoder and

takes the triplet (x, {bi}
N
i=1, y

M
i=1) as input. The image en-

coder Φv is an object detector that can predict the bounding

boxes of regions from the input image x and output the re-

gion features O ∈ R
K×D. The text encoder Φl takes the

concept set yMi=1 as input and obtains the text embeddings

W ∈ R
M×D from the special token [EOS] concatenated

with the text input. K,D denotes the number of predicted

regions and region feature dimensions. The alignment score

matrix S ∈ R
K×M of regions and texts is calculated by:

O = Φv(x),W = Φl(y
M
i=1), S = OWT (1)

where T denotes the transpose operation. A ground-truth

alignment matrix G ∈ {0, 1}K×M is constructed to indicate

the matching relation of regions and concepts. The align-

ment loss Lalign is calculated by the predicted alignment

scores of regions S and the ground-truth alignment matrix

G. Following [25, 41], we adopt the ATSS [47] detector as

an image encoder, and Lalign is typically a sigmoid focal

loss. As a one-stage detector, the localization loss contains

centeredness loss Lcen and bounding box regression loss

Lreg . The training objective of detection pre-training can

be written as:

L =

{

Lalign + αLreg + βLcenter , for detection

Lalign , for dense captioning

(2)

where α and β denote the weights for the centerness loss

Lcen and box regression loss Lreg , respectively. The Lcen

is the sigmoid loss and the Lreg is the GIOU loss [35].
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MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS

AP APr / APc / APf

MASK-RCNN [15] SWIN-T LVIS 0.1M 34.1 19.1 / 34.0 / 37.0

ATSS [47] SWIN-T LVIS 0.1M 33.6 19.7 / 32.4 / 37.2

ATSS [47] SWIN-L LVIS 0.1M 43.9 30.6 / 43.7 / 46.3

MDETR [19] RN101 GOLDG+ 0.77M 24.2 20.9 / 24.3 / 24.2

GLIP-T(A) [25] SWIN-T+DH+F O365 0.66M 18.5 14.2 / 13.9 / 23.4

GLIP-T(C) [25] SWIN-T+DH+F O365,GOLDG 1.43M 24.9 17.7 / 19.5 / 31.0

GLIP-T [25] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 26.0 20.8 / 21.4 / 31.0

K-LITE [38] SWIN-T O365 0.66M 21.3 14.8 / 18.6 / 24.8

K-LITE [38] SWIN-T O365,GOLDG 1.43M 26.1 17.2 / 24.6 / 29.0

GLIPV2-T [46] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 29.0 - / - / -

DETCLIP-T(A) [41] SWIN-T O365 0.66M 28.8 26.0 / 28.0 / 30.0

DETCLIP-T(B) [41] SWIN-T O365, GOLDG 1.43M 34.4 26.9 / 33.9 / 36.3

DETCLIP-T(C)* [41] SWIN-T O365, VG 0.73M 31.5 27.5 / 30.6 / 33.0

CAPDET (OURS) SWIN-T O365, VG 0.73M 33.8 29.6 / 32.8 / 35.5

Table 1. Zero-shot performance on LVIS [13] MiniVal5k datasets. APr / APc / APf indicate the AP values for rare, common, and frequent

categories, respectively. “DH” and “F” in GLIP [25] baselines stand for the dynamic head [3] and cross-modal fusion, respectively.

Baselines with * are implemented with our code base. GoldG+ denotes the GoldG plus the COCO [27] caption dataset.

3.3. Dense Captioning

The open-world object detection pre-training ensures

CapDet gains the capacity to detect under given an arbitrary

category list. However, when the given category list is not

complete enough to cover the potential classes on a new do-

main data, the detector will perform worse on the categories

which are not in the given list. Considering such limitation,

we propose a dense captioning head ΦC to generate seman-

tically rich concepts with natural language for the predicted

proposals. In the dense captioning task, the model receives

an image and produces a set of regions and the correspond-

ing captions. The dense captioning head is a cross-modal

decoder that takes the c predicted regions features O gen-

erated by the image encoder as input. The captioning (i.e.,

language modeling ) loss is calculated by:

Lcap = − log p(yit|Φc(yi(τ<t), Oi)), (3)

where yit means the t token in caption yi corresponding to

region feature Oi, and yi(τ<t) means tokens before t in cap-

tion yi. The overall pre-training loss can be written as:

L = wdLdet + wcLcap, (4)

where wd, wc denote the weighting factor of Ldet and Lcap.

To minimize the gap in the type of bounding boxes be-

tween the detection data and dense captioning data, we pro-

pose a simple way to transform our detector as a class-

agnostic detector and only select the top k regions based

on the centeredness scores to adapt to the dense captioning

task. We can fine-tune our CapDet on the dense captioning

data to achieve better performance. Specifically, we pro-

pose ”object” as the foreground concept and ”background”

as the background concept. The text encoder Φl outputs

the concept embeddings W ′ ∈ R
2×D. Then the alignment

scores S′ ∈ R
K×2 is calculated by Eqn. 1. The captioning

head takes the top k most confident proposal embeddings

based on centeredness scores as input to predict the region-

grounded captions.

4. Experiment

Implementation Details. For the image encoder,

we adopt the Swin-T backbone proposed in Swin-

Transformer [28] which is pre-trained on ImageNet-1K [4].

We use 12 layers 8 heads transformer as our text encoder

and load a base model checkpoint released by FILIP [42],

in order to make a fair comparison with DetCLIP [41]. The

structure of the dense captioning head is consistent with

that in the text encoder but trained from scratch for a fair

comparison. We employ AdamW [21] optimizer and set

the batch size to 32. The learning rate is set to 1.4 × 10−4

for the parameters of the image encoder and detection head,

and 1.4 × 10−5 for the text encoder and dense captioning

head. When fine-tuning the VG dataset to do the dense

captioning task, we set the learning rate to 1.4 × 10−4.

Without otherwise specified, all models are trained with

12 epochs and the learning rate is decayed with a factor

of 0.1 at the 8-th and the 11-th epoch. The context token
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Figure 3. Qualitative visualizations between GLIP-T, DetCLIP-T(C) and CapDet. From top to down, the three rows of images show the

LVIS zero-shot detection results of GLIP-T, DetCLIP-T(C), and CapDet respectively. All models are pre-trained on O365 and VG.

length for input text is set to 20. We set the number of input

captions to 150, and the number of the region features N

is determined by the feature map. The loss weight factor

wc and wd are both set to 1.0. We build our model on

MMDetection [2] code base.

Dataset. Our CapDet is trained with two types of data,

including detection data and caption data. Following Det-

CLIP [41], we use Object365 [36] (it will be abbreviated

as O365 in the following paper) as detection data, and

sample 0.66M data from O365 v2 for training. Following

GLIP [25] and DetCLIP [41], LVIS [13] MiniVal5k (de-

fined in [19]) which has 5000 images is used for detection

evaluation. Moreover, we remove the training samples con-

tained in the LVIS dataset for fair zero-transfer evaluation.

For dense captioning data, we mainly conduct our experi-

ments on VG [22] V1.2 and VG-COCO (defined in [37]).

Following [37], we allocate 77398 images for training and

5000 images for validation and testing on VG. As demon-

strated in [22], the ground-truth bounding boxes of VG are

much denser than the other object detection datasets, i.e.,

the average number of per sample in MS COCO [27] is only

7.1 vs. 35.4 in VG. Then an intersection of VG V1.2 and MS

COCO is proposed by [37] and is denoted as VG-COCO,

which has 38080 images for training, 2489 for validation,

and 2476 for testing.

Benchmark Settings. We mainly evaluate our method

on open-vocabulary object detection and dense captioning

task. For open-vocabulary object detection, we evaluate the

direct domain transfer on LVIS [13] which contains 1203

categories. Following [25, 41], we metric the zero-shot

detection performance by the Average Precision (AP) on

a 5k subset. The annotations of LVIS data are split into

three folds, i.e., rare, common, and frequency, based on the

number of categories. Since there is almost no overlap be-

tween the rare classes and the classes of training dataset

Objects365 [36], the AP of the rare classes shows a valu-

able zero-shot detection performance. For the dense cap-

tioning task, we follow the setting of [17] to evaluate the

VG and VG-COCO. The evaluation metric we adopt is the

mean Average Precision proposed by [17] which is calcu-

lated across a range of thresholds for both localization and

language accuracy, i.e., the intersection over union (IOU)

thresholds .3, .4, .5, .6, .7 are used for localization and the

METEOR score’ thresholds 0, .05, .1, .15, .2, .25 is adopted

for evaluating the language generation.

4.1. Open­world Detection Results

Table 1 shows our zero-shot object detection perfor-

mance on LVIS. We mainly train our CapDet with the back-

bone Swin-T [28] on the detection data Objects365 [36] and

dense captioning data (VG [22]). Since DetCLIP does not

report the performance on O365 and VG, we train DetCLIP

on the two datasets under the same settings and denote it

as DetCLIP-T(C) for a fair comparison. Comparing the

11th row and 12th row, our CapDet outperforms DetCLIP-

T(C) on the same data scale and backbone with an extra

simple caption head. Moreover, our model’s zero-shot per-

formance even surpasses the fully-supervised model with

the same backbone by a large margin on rare classes, i.e.,

CapDet outperforms ATSS by 9.9%.

Qualitative Visualizations Figure. 3 illustrates the detec-

tion results on LVIS [22] dataset from GLIP-T, DetCLIP-

T(C), and CapDet. All three models are trained on O365
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JIVC

CapDet
  w/ ft

CapDet
 w/o ft

Figure 4. Qualitative visualizations between JIVC and CapDet. “w/o ft” means do caption without finetune, while “w/ ft” means with

finetune.

and VG, and details are given in Section 4.3. Given a cat-

egory list, the rare classes are detected more precisely by

our CapDet, e.g., “kitchen table” in the first column, “horse

buggy” in the third column, and “fishbowl” in the sixth col-

umn that our model CapDet detects correctly but the other

two not.

4.2. Dense Captioning Results

Due to the target bounding boxes in dense captioning

data containing lots of local structures of objects and being

much denser than the bounding boxes in object detection

data, we do not regress the bounding box in the pre-training

stage. The previous works directly train on the dense cap-

tioning data and generate captions on the top k proposals

ranking by a confidence score. When fine-tuning our model

on the VG dataset for the dense captioning tasks, we trans-

form our CapDet into a class-agnostic detector. Specifically,

we propose “object” as the foreground concept and “back-

ground” as the background concept for computing align-

ment scores. The scores are used as proposal confidences to

predict the region-grounded captions.

Table 2 and Table 3 show CapDet significantly outper-

forms the latest work TDC [37] by 2.5% on mAP on VG

and TDC+ROCSU [37] by 2.08%, respectively. It is worth

noticing that, even against given the ground-truth bound-

ing boxes with the previous method COCG [26] denoted

Method mAP(%)

FCLN [17] 5.16

JIVC [40] 9.96

ImgG [26] 9.68

COCD [26] 9.75

COCG [26] 10.39

CAG-Net [43] 10.51

TDC [37] 11.90

CapDet (Ours) 15.44

Table 2. Comparison of mAP (%) performance on dense caption-

ing benchmark on the VG V1.2 dataset.

as COCOG&GT, our CapDet still gains a 43.80% mAP in-

crease and achieves state-of-the-art. One important reason

is that the excellent detection performance of our model as-

sists the localization ability of dense captioning tasks.

Qualitative Visualizations. Figure 4 shows a qualita-

tive visualization comparison between JIVC [40] and our

CapDet. The three image rows from top to bottom are

the visualization of JIVC, CapDet without fine-tuning, and

CapDet with finetuning. In the second row, CapDet can lo-

cate more objects than JIVC, owing to our model’s superior

localization performance. After finetuning, CapDet can fur-

ther describe a region rather than a single object such as
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Method mAP(%)

FCLN [17] 4.23

JIVC [40] 7.85

Max Pooling [26] 7.86

ImgG [26] 7.81

COCD [26] 7.92

COCG [26] 8.90

COCG-LocSiz [26] 8.76

COCG&GT [26] 9.79

TDC+ROCSU [37] 11.9

CapDet (Ours) 13.98

Table 3. Comparison of mAP (%) performance on the dense cap-

tioning benchmark on the VG-COCO Dataset.

MODEL DC HEAD
LVIS

AP APr / APc / APf

GLIP-T ✗ 30.4 22.5 / 29.0 / 33.0

GLIP-T ✓ 33.1 27.0 / 32.1 / 35.0

DETCLIP-T ✗ 31.5 27.5 / 30.6 / 33.0

DETCLIP-T ✓ 33.8 29.6 / 32.8 / 35.5

Table 4. Ablations on integrating our dense captioning head into

different baselines.

Pre-training Data Fine-tune DCap mAP(%) Box mAP(%)

VG ✗ 12.86 27.65

O365,VG ✗ 4.72 9.65

VG ✓ 13.83 28.58

O365,VG ✓ 15.44 30.61

Table 5. Ablations on incorporating data from different sources.

“DCap” stands for the dense caption mAP.

“two women in a kitchen” in the 5-th column.

4.3. Ablation Studies

4.3.1 Ablations for Unified Pre-training

Effect on different baselines. Table 4 investigates the ad-

vantages of dense captioning heads on different baselines.

We integrate our dense captioning head with GLIP-T or

DetCLIP-T. The GLIP-T is implemented with parallel text

encoding without external knowledge following the setting

as ablations in [38] on our code base. All the results are

pre-trained on Objects365 and VG. The results show that

our dense captioning head is able to boost the generaliza-

tion and model-agnostic.

Effect of dense captioning data. Table 1 shows the effi-

ciency of incorporating dense captioning data. Specifically,

only 0.07M data added, the DetCLIP-T(C) gains +2.7%

overall AP and +1.5% APr on LVIS compared to DetCLIP-

T(A). The performance of DetCLP-T(A) on rare categories

also outperforms DetCLIP-T(C) train on Objects365 and

GOLDG, while the data size is 1.43M vs. 0.73M.

4.3.2 Ablations for dense captioning

We investigate the impact of training policy and data from

different sources on the dense captioning task. As shown

in row1 in Table 5, our CapDet still achieves a significant

performance which is directly trained on VG outperforms

the previous task (i.e., TDC [37] in Table 2). Row2 is our

CapDet and is pre-trained on Objects365 and VG, while

only the bounding box in the Objects365 is regressed, and

then transformed on a dense captioning task. Since the type

of bounding boxes in dense captioning is different from the

detection data, the result of the direct transforming to dense

captioning is worse. However, we’ve proved that our model

still keeps the dense captioning capacity on the salient ob-

jects in Figure 4. The results in row3 and row4 indicate that

pre-training on the detection data Objects365 is also bene-

ficial to the dense captioning task.

5. Limitations

These are a few issues that we need to improve in the fu-

ture: (1) Although our unification training paradigm works

well on open-vocabulary object detection and dense cap-

tioning task, the training of dense captioning generation

costs lots of time. (2) In addition, existing dense caption-

ing data is high-cost to collect. We will research how to

collect large-scale dense captioning data by auto annotation

and get better performance with the scaled-up data.

6. Conclusion

In this paper, we propose a novel open-world object de-

tection method named CapDet. Our CapDet is more practi-

cal in the open world and real scenes. Specifically, CapDet

introduces a unification training framework including open-

world object detection pre-training and dense captioning.

The unification enables our CapDet to localize and recog-

nize concepts in an arbitrary given category list or directly

generate textual captions for predicted new concept objects.

Experiments show that the design of unification is both ben-

eficial to open-world object detection tasks and dense cap-

tioning tasks. In the future, our CapDet can be easily in-

jected into any open world and real scenes tasks. The uni-

fication framework can also be integrated into any other

OWD/OVD methods to generate semantic-rich concepts for

unknown/novel objects.
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