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Abstract

Feature invariance under different data transformations,
i.e., transformation invariance, can be regarded as a type
of self-supervision for representation learning. In this pa-
per, we present PointClustering, a new unsupervised rep-
resentation learning scheme that leverages transformation
invariance for point cloud pre-training. PointClustering
formulates the pretext task as deep clustering and employs
transformation invariance as an inductive bias, following
the philosophy that common point cloud transformation will
not change the geometric properties and semantics. Techni-
cally, PointClustering iteratively optimizes the feature clus-
ters and backbone, and delves into the transformation in-
variance as learning regularization from two perspectives:
point level and instance level. Point-level invariance learn-
ing maintains local geometric properties through gathering
point features of one instance across transformations, while
instance-level invariance learning further measures cluster-
s over the entire dataset to explore semantics of instances.
Our PointClustering is architecture-agnostic and readily
applicable to MLP-based, CNN-based and Transformer-
based backbones. We empirically demonstrate that the
models pre-learnt on the ScanNet dataset by PointClus-
tering provide superior performances on six benchmark-
s, across downstream tasks of classification and segmen-
tation. More remarkably, PointClustering achieves an ac-
curacy of 94.5% on ModelNet40 with Transformer back-
bone. Source code is available at https://github.
com/FuchenUSTC/PointClustering.

1. Introduction

3D point cloud analysis has seen tremendous progress
and made great success in industrial applications, e.g., au-
tonomous driving, augmented reality and robotics. The
achievements heavily rely on large quantities of human an-
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Figure 1. Illustration of (a) clustering learning on point cloud by
using feature invariance at (b) point level and (c) instance level.

notations for supervised learning. However, acquiring and
manual labeling 3D point cloud data is very expensive and
time-consuming, while the underlying rich data structure is
also not yet fully leveraged. In contrast, unsupervised learn-
ing leaves it on its own to characterize the underlying fea-
ture distribution completely on data itself and is therefore
an appealing way towards more generic model pre-training.

The research in unsupervised point cloud pre-training
has mainly proceeded along two dimensions with respec-
t to the formulation of pretext task: contrastive learning
[23, 65, 74] and reconstruction [34, 52, 60]. Early works of
contrastive learning generally suggest to leverage point or
scene discrimination across different views [65] or modal-
ities [1, 74] for similarity learning. Instead, the direction
of point cloud reconstruction [34, 60] formulates the learn-
ing target as shape completion from the partial points. Un-
like existing discrimination or reconstruction paradigm in a
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sample-specific manner, clustering technique estimates the
data distribution holistically for class level. We rely on
such recipe and shape a new unsupervised point cloud pre-
training scheme that capitalizes on deep clustering as the
pretext task. Technically, we iteratively optimize feature
clusters and backbone as shown in Figure 1(a), and utilize
transformation invariance as an inductive bias. We look into
the feature invariance learning across data transformations
from two aspects: point level and instance level. The ratio-
nale behind point level feature invariance is that the point
features of an identical object (e.g., points of the chair in
Figure 1(b)) should be invariant across different transfor-
mations since the geometric properties will not change with
transformations. Similar in spirit, the high-level semantics
of instances across 3D scenes (e.g., the instances of chair
in Figure 1(c)) do not vary along with the transformations.
As such, we delve into both point-level and instance-level
transformation invariance to regulate deep clustering.

By materializing the idea of transformation invariance
as regularization for deep clustering, we present a novel
PointClustering approach for unsupervised point cloud pre-
training. Specifically, we first obtain the instance masks of
objects in each 3D scene via Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [12] algorithm.
Based on the instance masks, the point features of an iden-
tical object under different transformations are clustered to-
gether to characterize geometric properties of points. The
instance-level feature of one object is then computed by
globally pooling all point features of that object. Given al-
l instance features over the entire dataset, PointClustering
further seeks the feature consistency across transformations
at instance level. We employ InfoNCE loss to optimize the
similarity between points or instances and their correspond-
ing clustering centroids (i.e., prototypes).

The main contribution of this work is a new paradigm
that leverages feature invariance under different data trans-
formations for unsupervised point cloud pre-training. The
solution also leads to the elegant view of how to explore
self-supervision from the standpoint of transformation in-
variance, and how to indicate geometric properties and se-
mantics of point cloud for unsupervised pre-training. Ex-
tensive experiments on six benchmarks over three down-
stream tasks verify that PointClustering outperforms the
state-of-the-art unsupervised pre-training models.

2. Related Work
3D Architecture Design. Rapid development of deep

architectures to analyze 3D point cloud [10, 11, 16, 17, 22,
25, 26, 42, 43, 45, 54] has been witnessed in recent years.
Related works can be grouped into three categories: CNN-
based [9, 16], MLP-based [39, 43, 44, 48] and Transformer-
based [29, 75] architectures. CNN-based methods [9, 16]
transform the irregular point clouds to regular 3D voxels

for the operation of sparse convolution. Nevertheless, the
quantization in voxelization may result in the loss of geo-
metric information and limit the model capacity. By directly
processing the irregular points without quantization, MLP-
based networks [43,44] obtain fairly well accuracy on point
cloud classification task. Inspired by the success of self-
attention in NLP and visual understanding, Transformer-
based point cloud backbones [29, 75] start to emerge. The
attention mechanism that is invariant to input permutation
is applicable to point cloud modeling. In this paper, we
conduct experiments on all the three kinds of backbones to
verify our unsupervised pre-training scheme.

Unsupervised Model Pre-training. Model pre-training
on image [4, 7, 20, 21, 31] or video [13, 32, 35–38, 46, 47,
55,61,68] data without human annotations is a fundamental
research topic. The key point is how to formulate a pretext
task for model optimization. There are various directions to
mine self-supervision from images or videos, e.g., rotation
prediction [15], reconstruction [20,55], colorization [30,59,
72] and contrastive learning [7, 8, 21, 32, 57, 63]. Great suc-
cess of unsupervised pre-training has been achieved by even
showing better downstream performances [7,20] against su-
pervised pre-training.

More recently, unsupervised model pre-training for 3D
point cloud data [18,19,23,49,50,52,60,65,67] begins to be
investigated. Xie et al. [65] first demonstrate the effective-
ness of the point-level contrastive learning among differen-
t views. To alleviate the cost of view alignment, Depth-
Contrast [74] is further designed for single view but multi-
modality 3D contrastive learning. Getting inspiration from
the masked image modeling [20], Liu et al. [34] train the
point Transformer through the pretext task of shape com-
pletion. Despite having these innovations, the feature in-
variance of point cloud across different data transformations
is seldom explored for unsupervised model pre-training.

Learning to Cluster. Employing deep models to learn
clustering-friendly feature embedding [5,6,64,71] has been
widely studied in image domain. During the cluster learn-
ing, feature vectors of images from the entire dataset are
first grouped by K-means to assign pseudo label to each
sample, and then the networks are trained on the pseudo
labels. Such iterative optimization between clustering and
networks training enhances feature embedding to account
for high-level visual similarity. In our work, we capitalize
on deep clustering and formulate it as the pretext task for
unsupervised point cloud pre-training.

In short, our work mainly focuses on a new unsupervised
point cloud pre-training scheme that exploits deep cluster-
ing as the pretext task. The proposal of PointClustering con-
tributes by studying not only modeling feature invariance
under different transformations in clustering learning, but
also how geometric properties and semantics of point cloud
can be leveraged to improve representation.
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Figure 2. Illustration of deep clustering learning for (a) images
and (b) point clouds in our proposal.

3. PointClustering

In this section, we introduce our newly-minted Point-
Clustering for unsupervised point cloud pre-training. The
main idea is to formulate the pretext task as deep cluster-
ing and regulate the learning procedure by transformation
invariance. We investigate the transformation invariance
learning from two aspects, i.e., point level and instance
level, which aims to characterize the geometric properties
and semantics of point clouds, respectively. Point-level in-
variance learning emphasizes the point feature consisten-
cy across different data transformations, and instance-level
feature invariance learning explores the semantics of in-
stances over the entire dataset to strengthen representation.

3.1. Preliminaries: Deep Clustering

Prior works [5, 6] on image unsupervised representation
learning formulate the pretext task as deep feature cluster-
ing. The goal is to train deep models for clustering images
into different groups that could partition semantics. The
problem is not trivial due to the lack of semantic supervi-
sion. To alleviate this issue, Caron et al. [5] propose an
iterative learning paradigm where feature clusters and net-
works are jointly optimized to estimate class-level data dis-
tribution. We proceed along this direction and formulate the
pretext task of point cloud pre-training as deep clustering.
The transformation invariance is further leveraged as an in-
ductive bias to regulate the clustering learning.

Here we introduce the preliminary knowledge of image
deep clustering as depicted in Figure 2(a) and then extend
this method for point cloud representation learning. For-

mally, given a set of unlabeled images {xi}N−1
i=0 , we first

extract the image features {fi}N−1
i=0 from the deep model φ.

Next, K-means algorithm is employed to group the image
features into K clusters. We denote the corresponding clus-
tering centroids (prototypes) as u = {uj}K−1

j=0 and cluster
assignments (labels) as y = {yi}N−1

i=0 , respectively. Instead
of projecting the image features via a learnable classifier [5]
for classification, we propose a clustering loss Lc to opti-
mize the similarity between images and the clustering pro-
totypes via InfoNCE [57]. That avoids involving additional
parameters in training. For the i-th image with label yi, the
image feature fi is optimized by Lc as follows:

Lc(fi,u,y) = − log
exp (fi · uyi/τ)∑K−1
j=0 exp (fi · uj/τ)

, (1)

where uyi
is the prototype with clustering label yi, and τ de-

notes the temperature hyper-parameter. The extracted fea-
ture clustering and similarity optimization are executed it-
eratively in each training epoch to explore image semantics.

We exploit the recipe and extend the image deep clus-
tering for point cloud feature learning as shown in Figure
2(b). One natural extension is to directly replace the im-
age feature fi in Eq.(1) with the global point cloud feature.
However, such solution ignores the inherent geometry of
point cloud thus may limit the model capacity. To better
consolidate deep clustering on point cloud data, we pro-
pose to employ the feature invariance under different data
transformations (e.g., rotation) as an inductive bias in opti-
mization. The learning objective is devised to maintain the
feature invariance regardless of data transformation during
clustering. Compared to solely relying on data itself, in-
volving this kind of regularization will facilitate clustering
construction. Moreover, we integrate the exploitation of ge-
ometric properties and semantics on point cloud data into
deep clustering by considering feature invariance from two
aspects, i.e., point level and instance level, respectively.

3.2. Point-level Invariance Learning

Different from the image data, point clouds typical-
ly contain plenty of geometric details. Several advances
[28, 33, 66] demonstrate that involving transformation in-
variance (e.g., rotation invariance) into the design of local
point descriptor is helpful to build a robust system for point
cloud understanding. The common data transformations do
not influence the geometric properties of the objects or 3D
scenes. Therefore, we introduce to leverage the feature in-
variance at point level as a regularization term for cluster-
ing learning. The features of points from the same instance
under different data transformations are expected to group
together to reflect the geometric properties .

Figure 3 details the pipeline of point cloud feature clus-
tering learning by using feature invariance at point lev-
el. Technically, given a single 3D scene, we first cluster
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Figure 3. Pipeline of point-level invariance learning in clustering
for a single 3D scene.

the point cloud coordinates into different groups through
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [12] algorithm, which has been validated
for point cloud analysis [2]. We take the clustering results
as the instance masks of objects. Meanwhile, we feed the
pair of the 3D scene with and without data transformation
into the backbone θ for point feature extraction. We regard
such two inputs as the data of two views, and the instance
masks are same in each view. Conditioned on the instance
masks, the feature of one instance is obtained by globally
pooling all point features of that instance. Next, we collec-
t all instance features in the scene as clustering prototypes
and form the point prototype sets uP1 and uP2 for the two
views. The corresponding cluster assignments are taken as
point label sets yP1 and yP2 for each view. Given the ex-
tracted point features fP1

i and fP2
i of the i-th point in the

3D scene across two views, the inner-view point clustering
loss Lp

ine for point level feature clustering optimization is
computed by:

LP
ine = Lc(f

P1
i ,uP1 ,yP1) + Lc(f

P2
i ,uP2 ,yP2), (2)

where Lc(·, ·, ·) denotes the clustering loss defined by E-
q.(1). In addition to the inner-view clustering learning
which solely depends on point cloud data in its own view,
the point features should be invariant across different data
transformations. Therefore, we make an alignment of the
learnt clusters across the two views to achieve the feature
invariance during clustering, and adopt the cross-view point
clustering loss Lp

cro as:

LP
cro = Lc(f

P1
i ,uP2 ,yP2) + Lc(f

P2
i ,uP1 ,yP1). (3)

By doing so, the feature of the point in one view can be
learnt close to the prototype of the same point in the other
view. Thus, the corresponding two clusters will be in close
proximity. Finally, the objective for clustering learning by
using feature invariance at point level is the combination of
inner-view and cross-view point clustering losses:

LP = LP
ine + LP

cro. (4)
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Figure 4. Pipeline of instance-level invariance learning in cluster-
ing for all 3D scenes over the entire dataset.

3.3. Instance-level Invariance Learning

Point-level invariance learning for clustering probes ge-
ometric properties of points to discriminate different in-
stances in a 3D scene. The robust learning of point cloud
feature also necessitates exploring high-level semantics of
instances across different scenes. In image analysis, seman-
tic mining through clustering [5, 6] is the core idea to boost
unsupervised representation learning. To further estimate
category level distributions of point clouds through cluster-
ing, we propose to employ the feature invariance at instance
level to regulate clustering optimization, which is executed
on all instances across different 3D scenes over the entire
dataset for similarity learning.

Similarly, the design of instance-level invariance learn-
ing in clustering is to group the features of similar instances
together irrespective of data transformation. Figure 4 illus-
trates the learning procedure of clustering across scenes un-
der the constraint of feature invariance at instance level. As
mentioned in Section 3.2, we first obtain the instance fea-
tures through globally pooling point features based on the
instance masks. For the input data of two views (original
and transformed data), we collect the instance features of
all scenes over the entire dataset for each view, respective-
ly. After that, K-means algorithm is utilized to cluster all
instance features in each view into KI groups, respectively,
and two instance prototype sets, uI1 and uI2 , are generated.
We take the corresponding cluster assignments of each view
as instance label sets yI1 and yI2 . Given the i-th instance
of the dataset, the obtained instance features f I1

i and f I2
i

across two views will be optimized via the inner-view in-
stance clustering loss LI

ine and cross-view instance cluster-
ing loss LI

cro. The inner-view instance clustering objective
LI
ine is formulated as follows:

LI
ine = Lc(f

I1
i ,uI1 ,yI1) + Lc(f

I2
i ,uI2 ,yI2). (5)

Meanwhile, the alignment of instance clusters across two
views is to maintain feature invariance under different data
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Table 1. The statistics of six datasets for downstream tasks, and the
performance gains by using PointClustering against scratch train-
ing with PointViT [34] backbone for model pre-training.

Dataset Statistic Task Gain

ModelNet40 [62] 9.8K train, 2.5K val Object Cls. +3.0% Acc
ScanObjectNN [56] 11.4K train, 2.9K val Object Cls. +10.1% Acc

ShapeNetPart [69] 14.0K train, 2.9K val Part Seg. +1.6% mIoU
PartNet [40] 17.1K train, 2.5K val Part Seg. +4.3% mIoU

S3DIS [3] 199 train, 67 val Semantic Seg. +6.7% mIoU
ScanNetV2 [10] 1.2K train, 312 val Semantic Seg. +5.7% mIoU

transformations. Similar to the rationale behind point-level
invariance learning, LI

cro is calculated by

LI
cro = Lc(f

I1
i ,uI2 ,yI2) + Lc(f

I2
i ,uI1 ,yI1). (6)

The objective for clustering learning by employing feature
invariance at instance level is

LI = LI
ine + LI

cro. (7)

In the training stage, we iteratively measure feature clus-
ters and optimize backbone as in DeepCluster [5] from the
aspects of both point and instance level. The overall training
objective of PointClustering integrates LP and LI as

Lov = LP + LI . (8)

Here, we empirically treat each loss term equally.

4. Experiments
We adopt the standard unsupervised pre-training + su-

pervised fine-tuning protocol [60, 65, 74] to verify the merit
of our PointClustering. The backbone is first pre-trained by
PointClustering on the ScanNet [10] dataset and then evalu-
ated on a variety of downstream tasks, including object clas-
sification, part segmentation and semantic segmentation.

4.1. Datasets and Implementation Details

Datasets. The ScanNet [10] dataset for pre-training con-
tains 2.5 million RGB-D scaning frames from more than
1, 500 indoor scenes. We employ similar data pre process-
ing as in DepthContrast [74] and extract around 190K 3D
scans from about 1, 200 depth video sequences in the train-
ing set. For each scan, we sample 8, 192 points for point
cloud pre-training without any 3D registration operation.

We conduct experiments on downstream tasks over six
datasets, including two point cloud object classification
datasets of ModelNet40 [62] and ScanObjectNN [56], two
part segmentation datasets of ShapeNetPart [69] and Part-
Net [40], and two semantic segmentation datasets of S3DIS
[3] and ScanNetV2 [10]. Table 1 summarizes the statistic-
s of the six datasets and performance improvements by us-
ing PointClustering over scratch training with PointViT [34]
backbone for unsupervised point cloud pre-training.

Backbones. For the fair comparisons with the re-
cent unsupervised learning approaches, we experiment on

Table 2. Top-1 accuracy on ModelNet40 and ScanObjectNN.
Gains over scratch training are indicated in the bracket.

Approach Backbone ModelNet40 ScanObjectNN

Scratch PointNet++ 90.7 77.9
DepthContrast [74] PointNet++ 91.3 -
GLR [50] PointNet++ 93.0 -
ReSp [52] DGCNN 92.4 -
OcCo [60] DGCNN 93.0 -
PointClustering PointNet++ 94.1 (+3.4) 84.5 (+6.6)

Scratch SR-UNet 90.1 76.2
PointContrast [65] SR-UNet 91.2 -
PointClustering SR-UNet 93.6 (+3.5) 83.7 (+7.5)

Scratch PointViT 91.5 77.2
Point-BERT [70] PointViT 93.2 83.1
MaskPoint [34] PointViT 93.8 84.3
Point-MAE [41] PointViT 93.8 85.2
MaskSurf [73] PointViT 93.4 85.8
PointClustering PointViT 94.5 (+3.0) 87.3 (+10.1)

three kinds of backbones, i.e., MLP-based (PointNet++
[44]), CNN-based (SR-UNet [65]) and Transformer-based
(PointViT [34]) networks. PointNet++ consists of three lay-
ers for feature extraction and three layers for feature aggre-
gation. The network takes irregular 3D points as the input
and exploits the multi-scale grouping strategy. SR-UNet
is a 34-layer U-Net [51] architecture that includes an en-
coder of 21 convolution layers and a decoder of 13 convo-
lution/deconvolution layers. The input to SR-UNet is 3D
voxel by setting the voxel size as 2cm. PointViT is a stan-
dard point Transformer by taking points as the inputs and
has 12-layer encoder and a single layer decoder. In the at-
tention block, the hidden dimension is set as 384 and the
number of heads is 6. The expansion ratio of feed forward
layer is 4 with the 0.1 drop rate of stochastic depth.

Network Training. We implement our PointClustering
approach on PyTorch framework. The data transformations
include random rotation and scaling. In each training epoch,
the clusters are calculated with mini-batch K-means [53]
accelerated by GPUs using FAISS [27] library. The point
feature dimension for clustering learning is 32. We employ
max pooling on point features to generate instance feature,
and set the instance clustering number KI as 32 by cross
validation. The mini-batch Stochastic Gradient Descent (S-
GD) algorithm is employed for optimization. We set the
base learning rate as 0.001 for PointNet++ and PointViT,
and 0.01 for SR-UNet. The maximum training epoch num-
ber is 128. The mini-batch size is 32 and the weight decay
parameter is set as 0.0001. For the training stage of su-
pervised fine-tuning, we provide full implementation details
and settings in the supplementary material.

4.2. Evaluation on Object Classification

We first conduct supervised fine-tuning of object classi-
fication on ModelNet40 and ScanObjectNN. Note that we
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Table 3. Few-shot evaluation on ModelNet40. Average top-1 ac-
curacy and standard deviation of 10 independent runs are reported.

Approach 5-way 10-way

10-shot 20-shot 10-shot 20-shot

Scratch (PointViT) 87.8 ± 5.3 93.3 ± 4.5 84.6 ± 5.5 89.4 ± 6.3
Point-BERT [70] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
MaskPoint [34] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
PointClustering 95.8 ± 3.0 97.6 ± 0.9 92.8 ± 3.2 93.8 ± 3.4

sample 1, 024 points of each sample in ModelNet40 for
training and validation. For the ScanObjectNN dataset,
there are three commonly adopted [34,41,56,70] data splits:
OBJ-ONLY (object only), OBJ-BG (with background) and
PB-T50-RS (with background and manual perturbations).
Here, we take the most challenging setting PB-T50-RS as
the evaluation. The top-1 accuracy is reported on the vali-
dation set of the two datasets for performance comparison.

Table 2 summarizes the performances across different
unsupervised pre-training approaches. Scratch is the run,
where the model is trained from scratch with parameter
random initialization. Overall, PointClustering consistent-
ly achieves better performances than other baselines across
three backbones and two datasets. In particular, PointClus-
tering with SR-UNet leads to the highest performance gain
of 3.5% over Scratch among the three backbones on Mod-
elNet40. Though voxelization may result in the loss of
geometric information in CNN-based SR-UNet backbone,
PointClustering alleviates this downside via characterizing
geometric properties by regulating point-level invariance
in clustering. Similar performance improvements are al-
so observed on the more challenging ScanObjectNN which
contains more data noise. PointClustering with PointViT
backbone obtains 87.3% top-1 accuracy, surpassing the best
competitor MaskSurf by 1.5%. The result basically indi-
cates the advantage of exploring transformation invariance
in clustering for unsupervised point cloud pre-training.

To better validate model generalization ability, we follow
the previous works [34, 70] and evaluate PointClustering
(PointViT as backbone) under the setting of few-shot learn-
ing on ModelNet40. The typical setting is the “K-way N -
shot” which randomly chooses K classes with N+20 sam-
ples per class. The N samples of each class are utilized for
training, and the rest 20 samples are used for testing. Table
3 lists the performances under the settings of K ∈ {5, 10}
and N ∈ {10, 20}. PointClustering constantly exhibits bet-
ter accuracy than other models across the four settings and
shows the smallest standard deviations. Even fine-tuning
with 10 samples, PointClustering still manifests the strong
transferability for point cloud understanding.

4.3. Evaluation on Part Segmentation

Part segmentation is a fine-grained classification task
that classifies each point of one known object into part label
(e.g., the leg of chair). We adopt the standard data split [44]

Table 4. Instance mIoU on ShapeNetPart and PartNet datasets.
Performance gain over scratch training is shown in the bracket.

Approach Backbone ShapeNetPart PartNet

Scratch PointNet++ 84.9 42.5
OcCo [60] DGCNN 85.0 -
ReSp [52] DGCNN 85.3 -
PointClustering PointNet++ 85.9 (+1.0) 47.0 (+4.5)

Scratch SR-UNet 84.7 38.9
PointContrast [65] SR-UNet 85.1 41.5
PointClustering SR-UNet 86.0 (+1.3) 42.1 (+3.2)

Scratch PointViT 85.1 45.8
Point-BERT [70] PointViT 85.6 -
MaskPoint [34] PointViT 86.0 -
MaskSurf [73] PointViT 86.1 -
Point-MAE [41] PointViT 86.1 -
PointClustering PointViT 86.7 (+1.6) 50.1 (+4.3)

Table 5. Performance of mIoU on S3DIS and ScanNetV2 datasets.
Performance gain over scratch training is shown in the bracket.

Approach Backbone S3DIS ScanNetV2

Scratch PointNet++ 55.3 57.9
OcCo [60] DGCNN 58.0 -
PointClustering PointNet++ 61.2 (+5.9) 62.6 (+4.7)

Scratch SR-UNet 68.2 70.3
DepthContrast [74] SR-UNet 71.5 71.2
CSC [23] SR-UNet 72.2 73.8
PointContrast [65] SR-UNet 70.9 74.1
PointClustering SR-UNet 73.2 (+5.0) 75.5 (+5.2)

Scratch PointViT 58.9 60.1
Point-MAE [41] PointViT 60.0 -
MaskSurf [73] PointViT 61.6 -
PointClustering PointViT 65.6 (+6.7) 65.8 (+5.7)

of ShapeNetPart and the fine-grained level annotations [40]
of PartNet for evaluation. Table 4 details the instance mean
Intersection over Union (mIoU) on two datasets. As indicat-
ed by the results, PointClustering outperforms all baselines
and particularly attains 86.7% instance mIoU with PointViT
backbone on ShapeNetPart. Despite having strong back-
bone of Transformer, PointClustering still leads to 1.6%
mIoU gain and such improvement again verifies the pow-
erful generalization ability of our proposal. Similar perfor-
mance trend is also shown on the PartNet dataset.

4.4. Evaluation on Semantic Segmentation

We further evaluate PointClustering on point cloud se-
mantic segmentation task which is to categorize the points
in the 3D scenes into different classes. Here, we experi-
ment with model fine-tuning on the S3DIS and ScanNetV2
datasets based on the standard settings [9, 65]. The mIoU
performances across different approaches are summarized
in Table 5. PointClustering shows substantial performance
boosts (4.7%∼6.7%) compared to scratch training. The re-
sults verify that PointClustering benefits from instance level
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Figure 5. Performances of PointClustering on ModelNet40 and
ScanObjectNN by varying instance clustering number KI .

Table 6. Performance contribution of each kind of invariance
learning in PointClustering on ModelNet40 and ScanObjectNN.

Model ModelNet40 ScanObjectNNpoint-level inv. instance-level inv.

Scratch 90.7 77.9
SceneClustering 91.0 78.1
PointClustering− 91.5 80.1

X 93.0 82.6
X 93.4 83.1

X X 94.1 84.5

invariance learning to leverage semantics in point cloud da-
ta and naturally endows the networks more power for se-
mantic segmentation. Notably, with SR-UNet backbone,
PointClustering achieves the highest 75.5% mIoU on Scan-
NetV2 and outperforms the recent deliberately designed C-
NN based architecture BPNet [24] by 0.6%.

4.5. Analysis of PointClustering

In this section, we perform a series of studies to delve
into the point cloud representation learning of our proposed
PointClustering. Note that all the experiments here are con-
ducted with the backbone of PointNet++.

Invariance Learning. We first investigate how each
kind of invariance learning in our PointClustering influ-
ences the model generalization ability. Table 6 summarizes
the top-1 accuracy of different variants of PointClustering
by fine-tuning on ModelNet40 and ScanObjectNN dataset-
s. SceneClustering is the run that measures clustering on
global scene level features, and PointClustering− is a de-
graded version of PointClustering without using any invari-
ance learning. SceneClustering obtains comparable per-
formances with scratch training. This somewhat reveals
the weakness of SceneClustering, where directly applying
deep clustering on 3D scenes will not lead to apparent im-
provement when not taking the inherent geometry of point
cloud into account. Through deriving the spatial density
of point cloud from DBSCAN, PointClustering− is supe-
rior to SceneClustering. By further considering point lev-
el invariance learning in clustering, the performance is in-
creased from 91.5% to 93.0% on ModelNet40. Similarly,
solely learning clusters with the regularization of instance

Objects in ModelNet40 

Scenes in ScanNet

high

low

high

low

Figure 6. Visualization of point features of 3D scenes in ScanNet
and objects in ModelNet40. We colour the points based on the
channel activation value of the features learnt by PointClustering.

level feature invariance improves the accuracy to 93.4%.
PointClustering by simultaneously leveraging the invari-
ance from both perspectives to explore geometric properties
and semantics finally reaches 94.1% and 84.5% on the two
datasets, respectively.

Instance Clustering Number KI . Next, we study the
impact of KI for the feature clustering at instance level.
The top-1 accuracies of the fine-tuned models on Model-
Net40 and ScanObjectNN datasets are reported. We vary
KI on a logarithmic scale and Figure 5 shows the per-
formances. On both of the two datasets, the best perfor-
mances are obtained when KI = 32. Given the fact that the
backbone is pre-trained by PointClustering on the ScanNet
dataset which contains 20 object categories, it is expected
that setting KI to around 20 would yield the best perfor-
mances, but seemingly some amount for over segmentation
is potentially more helpful.

Point-level Feature Discrimination. The point level in-
variance learning of our PointClustering aims for grouping
point features of an identical object together across different
data transformations. Such objective could be interpreted as
two learning dimensions. One is to gather point features of
one object in the scene to enhance the capability for instance
discrimination. The other is the feature consistency learn-
ing on the same points across different transformations, fa-
cilitating the model to characterize geometric properties of
objects. As a result, PointClustering is expected to be able
to distinguish points of different instances in the scene or
different geometric parts of the object. To verify our claim,
Figure 6 visualizes the point features of 3D scenes from S-
canNet and objects from ModelNet40. We colour the points
based on the channel activation value of the features learnt
by PointClustering. As depicted in the figure, PointCluster-
ing nicely differentiates the instances (e.g., chairs) in one
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DeepCluster* PointClustering

Figure 7. Visualization of the learnt point feature distribution on
ScanNetV2. We depict the t-SNE [58] visualization of point fea-
tures learnt by DeepCluster∗ and PointClustering.

Table 7. Evaluation on unsupervised point cloud semantic seg-
mentation. Performances on the ScanNetV2 dataset are reported.

Approach Accuracy mIoU

supervised model 66.3 57.9

K-means 10.6 5.7
DeepCluster∗ 19.8 10.1

PointClustering (w/o tuning) 42.2 18.3

scene and some specific parts (e.g., the legs of the chair)
of one object. For the extreme cases of objects which do
not appear in the pre-training ScanNet dataset, such as air-
plane, PointClustering also describes the patterns of wings
well. The results again confirm the impact of exploring geo-
metric properties of point cloud in clustering to obtain good
point level feature discrimination.

Instance-level Semantic Exploration. The invariance
learning at instance level in our PointClustering concen-
trates on semantic exploration for unsupervised model pre-
training. The goal is to cluster the features of instances
which share similar semantics together. By aligning the
learnt clusters with object labels, we additionally probe and
examine the learnt instance level semantics on the unsuper-
vised point cloud semantic segmentation task. Empirically,
we experiment with PointClustering on ScanNetV2 dataset.

Following the unsupervised image semantic segmenta-
tion protocol [14], we adopt Hungarian matching algorithm
to align the clusters on instance features with the ground-
truth object categories. Note that we choose the instance-
level clustering number KI = 20 to match the number of
semantic labels in this setting. Two more runs of K-means
and DeepCluster∗ are devised and included for comparison-
s. K-means directly clusters point cloud coordinates into 20
categories and DeepCluster∗ is a variant of DeepCluster [5]
by learning clusters on point level features of 3D scenes.
Table 7 compares the accuracy and mean IoU performances
on the ScanNetV2 dataset. Note that because K-means sole-
ly exploits coordinates for clustering and completely disre-
gards the semantics of point cloud data, it is not surprising
that K-means performs the worst. Instead, DeepCluster∗

probes into the semantic distributions of points by using
deep models for point clustering and achieves 10.1% mIoU.
Our PointClustering also derives the spirit of deep cluster-
ing, but further regulates the training procedure with trans-
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Figure 8. Four visual examples of unsupervised semantic segmen-
tation by DeepCluster∗ and our PointClustering on ScanNetV2.

formation invariance, enhancing the learning of high-level
semantics. The results verify the effectiveness of our Point-
Clustering, as evidenced by a performance boost of mIoU
from 10.1% to 18.3%. We visualize the distribution of the
point features learnt by DeepCluster∗ and PointClustering
in Figure 7 through t-SNE [58]. Compared to DeepCluster∗,
PointClustering apparently separates the point features from
different categories better. Figure 8 also showcases four un-
supervised semantic segmentation results from ScanNetV2
by the two approaches. As illustrated in the figure, Point-
Clustering successfully segments the major objects (e.g.,
floor) and performs well on splitting several small objects
(e.g., chair) in 3D scenes, validating the exploration of rich
semantics by instance level clustering.

5. Conclusions and Discussions
This paper explores deep clustering for unsupervised

point cloud pre-training. Particularly, we study the prob-
lem from a novel viewpoint of leveraging feature invariance
under different data transformations as an inductive bias for
clustering learning. To materialize our idea, we have de-
vised PointClustering, which characterizes the geometric
properties and semantics of point cloud data by consider-
ing feature invariance learning from two perspectives: point
level and instance level. The point-level features of an iden-
tical object across different transformations are expected to
group together, and the feature consistency at instance level
is further maintained during clustering optimization. Ex-
periments conducted on six datasets over three downstream
tasks demonstrate the superiority of PointClustering. Fur-
thermore, our work indicates that clustering is potentially a
new paradigm for unsupervised point cloud pre-training.

Broader Impact. The unsupervised model pre-training
scheme of our work can require storage of huge datasets
or energy-consuming training of large models. Associated
resources can have a negative environmental impact.
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