
Markerless Camera-to-Robot Pose Estimation via Self-supervised Sim-to-Real
Transfer

Jingpei Lu, Florian Richter, and Michael C. Yip
University of California, San Diego
{jil360, frichter, yip}@ucsd.edu

Abstract

Solving the camera-to-robot pose is a fundamental re-
quirement for vision-based robot control, and is a process
that takes considerable effort and cares to make accurate.
Traditional approaches require modification of the robot via
markers, and subsequent deep learning approaches enabled
markerless feature extraction. Mainstream deep learning
methods only use synthetic data and rely on Domain Ran-
domization to fill the sim-to-real gap, because acquiring
the 3D annotation is labor-intensive. In this work, we
go beyond the limitation of 3D annotations for real-world
data. We propose an end-to-end pose estimation framework
that is capable of online camera-to-robot calibration and
a self-supervised training method to scale the training to
unlabeled real-world data. Our framework combines deep
learning and geometric vision for solving the robot pose,
and the pipeline is fully differentiable. To train the Camera-
to-Robot Pose Estimation Network (CtRNet), we leverage
foreground segmentation and differentiable rendering for
image-level self-supervision. The pose prediction is visu-
alized through a renderer and the image loss with the input
image is back-propagated to train the neural network. Our
experimental results on two public real datasets confirm the
effectiveness of our approach over existing works. We also
integrate our framework into a visual servoing system to
demonstrate the promise of real-time precise robot pose es-
timation for automation tasks.

1. Introduction

The majority of modern robotic automation utilizes cam-
eras for rich sensory information about the environment
to infer tasks to be completed and provide feedback for
closed-loop control. The leading paradigm for converting
the valuable environment information to the robot’s frame
of reference for manipulation is position-based visual ser-
voing (PBVS) [4]. At a high level, PBVS converts 3D en-
vironmental information inferred from the visual data (e.g.
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Figure 1. Comparison of speed and accuracy (based on AUC met-
ric) for existing image-based robot pose estimation methods.

the pose of an object to be grasped) and transforms it to
the robot coordinate frame where all the robot geometry is
known (e.g. kinematics) using the camera-to-robot pose.
Examples of robotic automation using the PBVS range from
bin sorting [35] to tissue manipulation in surgery [31].

Calibrating camera-to-robot pose typically requires a
significant amount of care and effort. Traditionally, the
camera-to-robot pose is calibrated with externally attached
fiducial markers (e.g. Aruco Marker [14], AprilTag [38]).
The 2D location of the marker can be extracted from the im-
age and the corresponding 3D location on the robot can be
calculated with forward kinematics. Given a set 2D-3D cor-
respondence, the camera-to-robot pose can be solved using
Perspective-n-Point (PnP) methods [13, 30]. The procedure
usually requires multiple runs with different robot configu-
rations and once calibrated, the robot base and the camera
are assumed static. The incapability of online calibration
limits the potential applications for vision-based robot con-
trol in the real world, where minor bumps or simply shifting
due to repetitive use will cause calibrations to be thrown off,
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not to mention real-world environmental factors like vibra-
tion, humidity, and temperature, are non-constant. Having
flexibility on the camera and robot is more desirable so that
the robot can interact with an unstructured environment.

Deep learning, known as the current state-of-the-art ap-
proach for image feature extraction, brings promising ways
for markerless camera-to-robot calibration. Current ap-
proaches to robot pose estimation are mainly classified into
two categories: keypoint-based methods [27–29,34,43] and
rendering-based methods [16,26]. Keypoint-based methods
are the most popular approach for pose estimation because
of the fast inference speed. However, the performance is
limited to the accuracy of the keypoint detector which is
often trained in simulation such that the proposed methods
can generalize across different robotic designs. Therefore,
the performance is ultimately hampered by the sim-to-real
gap, which is a long-standing challenge in computer vision
and robotics [55].

Rendering-based methods can achieve better perfor-
mance by using the shape of the entire robot as observation,
which provides dense correspondence for pose estimation.
The approaches in this category usually employ an iterative
refinement process and require a reasonable initialization
for the optimization loop to converge [32]. Due to the na-
ture that iteratively render and compare is time- and energy-
consuming, rendering-based methods are more suitable for
offline estimation where the robot and camera are held sta-
tionary. In more dynamic scenarios, such as a mobile robot,
the slow computation time make the rendering-based meth-
ods impracticable to use.

In this work, we propose CtRNet, an end-to-end frame-
work for robot pose estimation which, at inference, uses
keypoints for the fast inference speed and leverages the
high performance of rendering-based methods for training
to overcome the sim-to-real gap previous keypoint-based
methods faced. Our framework contains a segmentation
module to generate a binary mask of the robot and keypoint
detection module which extracts point features for pose es-
timation. Since segmenting the robot from the background
is a simpler task than estimating the robot pose and localiz-
ing point features on robot body parts, we leverage fore-
ground segmentation to provide supervision for the pose
estimation. Toward this direction, we first pretrained the
network on synthetic data, which should have acquired es-
sential knowledge about segmenting the robot. Then, a
self-supervised training pipeline is proposed to transfer our
model to the real world without manual labels. We connect
the pose estimation to foreground segmentation with a dif-
ferentiable renderer [24,33]. The renderer generates a robot
silhouette image of the estimated pose and directly com-
pares it to the segmentation result. Since the entire frame-
work is differentiable, the parameters of the neural network
can be optimized by back-propagating the image loss.

Contributions. Our main contribution is the novel
framework for image-based robot pose estimation together
with a scalable self-training pipeline that utilizes unlim-
ited real-world data to further improve the performance
without any manual annotations. Since the keypoint de-
tector is trained with image-level supervision, we effec-
tively encompass the benefits from both keypoint-based and
rendering-based methods, where previous methods were di-
vided. As illustrated in the Fig. 1, our method maintains
high inference speed while matching the performance of the
rendering-based methods. Moreover, we integrate the CtR-
Net into a robotic system for PBVS and demonstrate the
effectiveness on real-time robot pose estimation.

2. Related Works
2.1. Camera-to-Robot Pose Estimation

The classical way to calibrate the camera-to-robot pose
is to attach the fiducial markers [14, 38] to known locations
along the robot kinematic chain. The marker is detected
in the image frame and their 3D position in the robot base
frame can be calculated with forward kinematics. With the
geometrical constraints, the robot pose can be then derived
by solving an optimization problem [11, 20, 22, 39].

Early works on markerless articulated pose tracking uti-
lize a depth camera for 3D observation [10, 37, 41, 45]. For
a high degree-of-freedom articulated robot, Bohg et al. [1]
proposed a pose estimation method by first classifying the
pixels in depth image to robot parts, and then a voting
scheme is applied to estimate the robot pose relative to the
camera. This method is further improved in [52] by directly
training a Random Forest to regress joint angles instead of
part label. However, these methods are not suitable for our
scenario where only single RGB image is available.

More recently, as deep learning becomes popular in fea-
ture extraction, many works have been employing deep neu-
ral networks for robot pose estimation. Instead of using
markers, a neural network is utilized for keypoint detection,
and the robot pose is estimated through an optimizer (e.g.
PnP solver) [28, 29, 34, 56]. To further improve the perfor-
mance, the segmentation mask and edges are utilized to re-
fine the robot pose [16,27]. Labbé et al. [26] also introduces
the render&compare method to estimate the robot pose by
matching the robot shape. These methods mainly rely on
synthetically generated data for training and hope the net-
work can generalize to the real world by increasing the vari-
ance in data generation. Our method explicitly deals with
the sim-to-real transfer by directly training on real-world
data with self-supervision.

2.2. Domain Adaptation for Sim-to-Real Transfer

In computer vision and robotics, Domain Randomiza-
tion (DR) [48] is the most widely used method for sim-
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to-real transfer due to its simplicity and effectiveness. The
idea is to randomize some simulation parameters (e.g. cam-
era position, lighting, background, etc.) and hope that the
randomization captures the distribution of the real-world
data. This technique has been applied to object detec-
tion and grasping [2, 18, 21, 47, 49], and pose estima-
tion [26, 28, 29, 34, 36, 46, 50, 56]. The randomization is
usually tuned empirically hence it is not efficient.

Another popular technique for domain transfer is Do-
main Adaptation (DA), which is to find the feature spaces
that share a similar distribution between the source and tar-
get domains [51]. This technique has shown recent suc-
cess in computer vision [7, 19, 44] and robotic applica-
tions [3, 15, 23]. In this work, instead of finding the la-
tent space and modeling the distribution between the sim-
ulation and the real world, we perform sim-to-real transfer
by directly training on the real-world data via a self-training
pipeline.

3. Methods

In this paper, we introduce an end-to-end framework for
robot pose estimation and a scalable training pipeline to im-
prove pose estimation accuracy on real-world data without
the need for any manual annotation. We first explain the
self-supervised training pipeline for sim-to-real transfer in
Sec. 3.1 given a pretrained CtRNet on synthetic data which
both segments the robot and estimates its pose from images.
Then, we detail the camera-to-robot pose estimation net-
work in Sec. 3.2 which utilizes a keypoint detector and a
PnP solver to estimate the pose of the robot from image
data in real-time.

3.1. Self-supervised Training for Sim-to-Real
Transfer

The most effective way to adapt the neural network to
the real world is directly training the network on real sen-
sor data. We propose a self-supervised training pipeline for
sim-to-real transfer to facilitate the training without 3D an-
notations. To conduct the self-supervised training, we em-
ploy foreground segmentation to generate a mask of the
robot, fseg , alongside the pose estimation, fpose. Given an
input RGB image from the physical world, I, and the robot
joint angles, q, fpose estimates the robot pose which is then
transformed to a silhouette image through a differentiable
renderer. Our self-supervised objective is to optimize neural
network parameters by minimizing the difference between
the rendered silhouette image and the mask image. We for-
mulate the optimization problem as:

θbb, θkp, θseg = argmin
θbb,θkp,θseg

L[fseg(I|θbb, θseg),

R(fpose(I|q, θbb, θkp)|K)] (1)

where θbb, θkp, θseg denote the parameters of the backbone,
keypoint, and segmentation layers of the neural network.
R is the differentiable renderer with camera parameters K,
and L(.) is the objective loss function capturing the image
difference.

We pretrained CtRNet’s parameters which makes up fseg
and fpose, with synthetic data where the keypoint and seg-
mentation labels are obtained freely (details in Supplemen-
tary Materials). During the self-training phase, where CtR-
Net learns with real data, the objective loss in (1) captures
the difference between the segmentation result and the ren-
dered image. The loss is iteratively back-propagated to, Θ,
where each iteration fseg and fpose take turns learning from
each other to overcome the sim-to-real gap.

Overview. The overview of the self-supervised training
pipeline is shown in the Fig. 2. The segmentation module,
fseg , simply takes in a robot image and outputs its mask.
The pose estimation module, fpose, consists of a keypoint
detector and a PnP solver to estimate the robot pose us-
ing the 2D-3D point correspondence, as shown in Fig. 3.
Given the input robot image and joint angles, our camera-
to-robot pose estimation network outputs a robot mask and
the robot pose with respect to the camera frame. Mathemat-
ically, these functions are denoted as

M = fseg(I|θbb, θseg) Tc
b = fpose(I|q, θbb, θkp) (2)

where M is the robot mask and Tc
b ∈ SE(3) is the 6-DOF

robot pose. Finally, the self-supervised objective loss in (1)
is realized through a differentiable renderer, R, which gen-
erates a silhouette image of the robot given its pose, Tc

b.
Differentiable Rendering. To render the robot silhou-

ette image, we utilize the PyTorch3D differentiable ren-
der [42]. We initialize a perspective camera with intrinsic
parameters K and a silhouette renderer, which does not ap-
ply any lighting nor shading, is constructed with a rasterizer
and a shader. The rasterizer applies the fast rasterization
method [42] which selects the k nearest mesh triangles that
effects each pixel and weights their influence according to
the distance along the z-axis. Finally, the SoftSilhouette-
Shader is applied to compute pixel values of the rendered
image using the sigmoid blending method [33].

We construct the ready-to-render robot mesh by connect-
ing the CAD model for each robot body part using its for-
ward kinematics and transforming them to the camera frame
with the estimated robot pose Tc

b from fpose. Let vn ∈ R3

be a mesh vertex on the n-th robot link. Each vertex is trans-
formed to the camera frame, hence ready-to-render, by

vc = Tc
bT

b
n(q)v

n (3)

where · represents the homogeneous representation of a
point (e.g. v = [v, 1]T ), and Tb

n(q) is the coordinate frame
transformation obtained from the forward kinematics [8].
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Figure 2. The overview of our proposed self-supervised training framework for sim-to-real transfer. The CtRNet contains a foreground
segmentation module and a pose estimation module, which output a robot mask and a camera-to-robot pose respectively. The output pose
is transformed into a silhouette image through a differentiable renderer. The image loss is back-propagated to train the keypoint detector
and fine-tune the segmentation.

Objective loss function. The objective loss in (1) is iter-
atively minimized where fseg and fpose take turns supervis-
ing each other on real data to overcome the sim-to-real gap
faced by keypoint detection networks. To optimize fpose,
the L2 image loss is used since the segmentation network’s
accuracy, within the context of estimating robot poses, has
been shown to effectively transfer from simulation to the
real world [26]. Mathematically the loss is expressed as

Lmask =

H∑
i=1

W∑
j=1

(S(i, j)−M(i, j))
2 (4)

where H and W is the height and width of the image, and
S is the rendered silhouette image.

Although the pretrained robot segmentation, fseg , al-
ready performs well on real-world datasets, it is still de-
sirable to refine it through self-supervised training to better
extract fine details of corners and boundaries. To prevent the
foreground segmentation layers from receiving noisy train-
ing signals, we apply the weighted Binary Cross Entropy
Loss so that the high-quality rendering image can be used
to further refine the foreground segmentation:

Lseg = − w

H ∗W

H∑
i=1

W∑
j=1

[M(i, j) log S(i, j)

+ (1−M(i, j)) log(1− S(i, j))]. (5)

where w is the weight for the given training sample. For
PnP solvers, the optimal solution should minimize the point
reprojection error. Therefore, we assign the weight for each
training sample according to the reprojection error:

w = exp (−sO(o,p,K,Tc
b)) (6)

Figure 3. The diagram of the camera-to-robot pose estimation net-
work (CtRNet) which describes the inference process of network.
Given an input RGB image, the neural network generates a robot
mask and a set of keypoint. Given the associated robot joint an-
gles, a set of corresponding 3D keypoints are computed with for-
ward kinematics. The camera-to-robot pose is estimated by a PnP
solver with provided 2D-3D keypoint pairs.

where s is a scaling constant, O is the reprojection loss in
the PnP solver (explained in Sec. 3.2), {oi|oi ∈ R2}ni=1

and {pi|pi ∈ R3}ni=1 are the 2D-3D keypoints inputted
into the PnP solver. The exponential function is applied to
the weight such that training samples with poor PnP con-
vergence are weighted exponentially lower than good PnP
convergence thereby stabilizing the training.

3.2. Camera-to-Robot Pose Estimation Network

The overview of the proposed Camera-to-Robot Pose Es-
timation Network, CtRNet, is shown in Fig. 3. Given an
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input RGB image, we employ ResNet50 [17] as the back-
bone network to extract the latent features. The latent fea-
tures are then passed through the Atrous Spatial Pyramid
Pooling layers [6] to form the segmentation mask of in-
put resolution. The keypoint detector, sharing the backbone
network with the foreground segmentation, upsamples the
feature maps through transposed convolutional layers and
forms the heatmaps with n channels. Then, we apply the
spatial softmax operator [12] on the heatmaps, which com-
putes the expected 2D location of the points of maximal
activation for each channel and results in a set of keypoints
[o1, ...,on] for all n channels. For simplicity, we define the
set of keypoints at each joint location of the robot. Given
the joint angles, the corresponding 3D keypoint location pi

can be calculated with robot forward kinematics:

pi = Tb
i (q)t, for i = 1, ..., n (7)

where t = [0, 0, 0]. With the 2D and 3D corresponding
keypoints, we can then apply a PnP solver [30] to estimate
the robot pose with respect to the camera frame.

Back-propagation for PnP Solver. A PnP solver is
usually self-contained and not differentiable as the gradi-
ent with respect to the input cannot be derived explicitly.
Inspired by [5], the implicit function theorem [25] is ap-
plied to obtain the gradient through implicit differentiation.
Let the PnP solver be denoted as followed in the form of a
non-linear function g:

Tc∗
b = g(o,p,K) (8)

where Tc∗
b is output pose from the PnP solver. In order

to back-propagate through the PnP solver for training the
keypoint detector, we are interested in finding the gradient
of the output pose Tc∗

b with respect to the input 2D points
o. Note that, the objective of the PnP solver is to minimize
the reprojection error, such that:

Tc∗
b = argmin

Tc
b

O(o,p,K,Tc
b) (9)

with

O(Tc
b,p,K,Tc

b) =

n∑
i=1

||oi − π(pi|Tc
b,K)||22 (10)

=

n∑
i=1

||ri||22 (11)

where π(.) is the projection operator. Since the optimal so-
lution Tc∗

b is a local minimum for the objective function
O(o,p,Tc

b,K), a stationary constraint of the optimization
process can be constructed by taking the first order deriva-
tive of the objective function with respect to Tc

b:

∂O

∂Tc
b

(o,p,K,Tc
b)|Tc

b=Tc∗
b

= 0. (12)

Following [5], we construct a constrain function F to em-
ploy the implicit function theorem:

F (o,p,K,Tc
b) =

∂O

∂Tc
b

(o,p,K,Tc∗
b ) = 0. (13)

Substituting the Eq. (10) and Eq. (11) to Eq. (13), we can
derive the constraint function as:

F (o,p,K,Tc
b) =

n∑
i=1

∂||ri||22
∂Tc

b

(14)

= −2

n∑
i=1

rTi
∂π

∂Tc
b

(pi|Tc∗
b ,K). (15)

Finally, we back-propagate through the PnP solver with the
implicit differentiation. The gradient of the output pose
with respect to the input 2D points is the Jacobian matrix:

∂g

∂o
(o,p,K)

= −
(

∂F

∂Tc
b

(o,p,K,Tc
b)

)−1 (
∂F

∂o
(o,p,K,Tc

b)

)
.

(16)

4. Experiments
We first evaluate our method on two public real-world

datasets for robot pose estimation and compare it against
several state-of-the-art image-based robot pose estimation
algorithms. We then conduct an ablation study on the pre-
training procedure and explore how the number of pre-
training samples could affect the performance of the self-
supervised training. Finally, we integrate the camera-to-
robot pose estimation framework into a visual servoing sys-
tem to demonstrate the effectiveness of our method on real
robot applications.

4.1. Datasets and Evaluation Metrics

DREAM-real Dataset. The DREAM-real dataset [29]
is a real-world robot dataset collected with 3 different cam-
eras: Azure Kinect (AK), XBOX 360 Kinect (XK), and
RealSense (RS). This dataset contains around 50K RGB
images of Franka Emika Panda arm and is recorded at
(640 × 480) resolution. The ground-truth camera-to-robot
pose is provided for every image frame. The accuracy is
evaluated with average distance (ADD) metric [54],

ADD =
1

n

n∑
i=1

||T̃c
bpi −Tc

bpi||2 (17)

where T̃c
b indicates the ground-truth camera-to-robot pose.

We also report the area-under-the-curve (AUC) value,
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Method Category Backbone Panda 3CAM-AK Panda 3CAM-XK Panda 3CAM-RS Panda ORB All

AUC ↑ Mean (m) ↓ AUC ↑ Mean (m) ↓ AUC ↑ Mean (m) ↓ AUC ↑ Mean (m) ↓ AUC ↑ Mean (m) ↓
DREAM-F [29] Keypoint VGG19 68.912 11.413 24.359 491.911 76.130 2.077 61.930 95.319 60.740 113.029
DREAM-Q [29] Keypoint VGG19 52.382 78.089 37.471 54.178 77.984 0.027 57.087 67.248 56.988 59.284
DREAM-H [29] Keypoint ResNet101 60.520 0.056 64.005 7.382 78.825 0.024 69.054 25.685 68.584 17.477
RoboPose [26] Rendering ResNet34 76.497 0.024 85.926 0.014 76.863 0.023 80.504 0.019 80.094 0.020
CtRNet Keypoint ResNet50 89.928 0.013 79.465 0.032 90.789 0.010 85.289 0.021 85.962 0.020

Table 1. Comparison of our methods with the state-of-the-art methods on DREAM-real datasets using ADD metric. We report the mean
and AUC of the ADD on each dataset and the overall accuracy.

Method Category PCK (2D) Mean 2D Err. ADD (3D) Mean 3D Err.

@50 pixel ↑ AUC ↑ (pixel) ↓ @100 mm ↑ AUC ↑ (mm) ↓
Aruco Marker [14] Keypoint 0.49 57.15 286.98 0.30 43.45 2447.34
DREAM-Q [29] Keypoint 0.33 44.01 1277.33 0.32 40.63 386.17
Opt. Keypoints [34] Keypoint 0.69 75.46 49.51 0.47 65.66 141.05
Diff. Rendering Rendering 0.74 78.60 42.30 0.78 81.15 74.95
CtRNet Keypoint 0.99 93.94 11.62 0.88 83.93 63.81

Table 2. Comparison of our methods with the state-of-the-art methods on Baxter dataset.

which integrates the percentage of ADD over different
thresholds. A higher AUC value indicates more predictions
with less error.

Baxter Dataset. The Baxter dataset [34] contains 100
RGB images of the left arm of Rethink Baxter collected
with Azure Kinect camera at (2048×1526) resolution. The
2D and 3D ground-truth end-effector position with respect
to the camera frame is provided. We evaluate the perfor-
mance with the ADD metric for the end-effector. We also
evaluate the end-effector reprojection error using the per-
centage of correct keypoints (PCK) metric [34].

4.2. Implementation details

The entire pipeline is implemented in PyTorch [40]. We
initialize the backbone network with ImageNet [9] pre-
trained weights, and we train separate networks for differ-
ent robots. The number of keypoints n is set to the num-
ber of robot links and the keypoints are defined at the robot
joint locations. The neural network is pretrained on syn-
thetic data for foreground segmentation and keypoint detec-
tion for 1000 epochs with 1e-5 learning rate. We reduce the
learning rate by a factor of 10 once learning stagnates for 5
epochs. The Adam optimizer is applied to optimize the net-
work parameters with the momentum set to 0.9. For self-
supervised training on real-world data, we run the training
for 500 epochs with 1e-6 learning rate. The same learn-
ing rate decay strategy and Adam optimizer is applied here
similar to the pretraining. To make the training more sta-
ble, we clip the gradient of the network parameters at 10.
The scaling factor in Eq. (6) is set to 0.1 for DREAM-real
dataset and 0.01 for Baxter dataset, mainly accounting for

the difference in resolution.

4.3. Robot Pose Estimation on Real-world Datasets

Evaluation on DREAM-real Dataset. The proposed
CtRNet is trained at (320×240) resolution and evaluated at
the original resolution by scaling up the keypoints by a fac-
tor of 2. Some qualitative results for foreground segmenta-
tion and pose estimation are shown in the Fig. 4a. We com-
pared our method with the state-of-the-art keypoint-based
method DREAM [29] and the rendering-based method
RoboPose [26]. The results for DREAM and RoboPose
are compiled from the implementation provided by [26].
In Tab. 1, we report the AUC and mean ADD results on
DREAM-real dataset with 3 different camera settings and
the overall results combining all the test samples. Our
method has a significantly better performance compared
to the method in the same category and achieves compa-
rable performance with the rendering-based method. We
outperform DREAM on all settings and outperform Robo-
Pose on the majority of the dataset. Overall on DREAM-
real dataset, we achieve higher AUC (+17.378 compared to
DREAM, +5.868 compared to RoboPose), and lower error
compared to DREAM (-17.457).

Evaluation on Baxter Dataset. For the Baxter dataset,
we trained the CtRNet at (640 × 480) resolution and
evaluate at the original resolution, and Fig. 4b shows
some of the qualitative results. We compared our method
with several keypoint-based methods (Aruco Marker [14],
DREAM [29], Optimized Keypoints [34]). We also im-
plemented Differentiable Rendering for robot pose estima-
tion, where the robot masks are generated with the pre-

21301



(a) (b)

Figure 4. Qualitative results of CtRNet foreground segmentation and pose estimation on (a) DREAM-real dataset and (b) Baxter dataset.
The first row shows the input RGB image, the second row shows the foreground segmentation, and the third row shows the projected robot
skeleton based on the estimated robot pose.

trained foreground segmentation. The 2D PCK results and
3D ADD results are reported in Tab. 2. Our method out-
performs all other methods on both 2D and 3D evaluations.
For 2D evaluation, we achieve 93.94 AUC for PCK with
an average reprojection error of 11.62 pixels. For 3D eval-
uation, we achieve 83.93 AUC for ADD with an average
ADD of 63.81mm. Notably, 99 percent of our estimation
has less than 50 pixel reprojection error, which is less than
2 percent of the image resolution, and 88 percent of our esti-
mation has less than 100mm distance error when localizing
the end-effector.

4.4. Ablation Study

We study how the number of pretraining samples affects
the convergence and performance of the self-supervised
training empirically on the Baxter dataset. We pretrain
the neural network with different numbers of synthetic
data samples Npretrain = {500, 1000, 2000, 4000, 8000},
and examine the convergence of the self-supervised train-
ing process. Fig. 5 shows the plot of self-training loss
(Lmask + Lseg) vs. the number of epochs for networks
pretrianed with different number of synthetic data. We ob-
serve that doubling the size of pretraining dataset signifi-
cantly improves the convergence of the self-training process
at the beginning. However, the improvement gets smaller as
the pretrainig size increase. For the Baxter dataset, the im-
provement saturates after having more than 2000 pretrain-
ing samples. Continuing double the training size results in
very marginal improvement. Noted that the Baxter dataset
captures 20 different robot poses from a fixed camera po-
sition. The required number of pretraining samples might

0 50 100 150 200
0

10

20

30

Epochs

L
os

s

500 1000 2000 4000 8000

Figure 5. The training loss vs. number of epochs for the self-
supervised training with different numbers of pretraining samples.
More pretraining samples results in better convergence. The im-
provement saturates after having more than 2000 pretraining sam-
ples as only marginal improvement by adding more samples.

vary according to the complexity of the environment.
We further evaluate the resulting neural networks with

the ground-truth labels on the Baxter dataset. We report
the mean ADD and AUC ADD for the pose estimation in
Tab. 3. The result verifies our observation on the conver-
gence analysis. Having more pretraining samples improves
the performance of pose estimation at the beginning, but
the improvement stagnates after having more than 2000 pre-
training samples.

4.5. Visual Servoing Experiment

We integrate the proposed CtRNet into a robotic system
for position-based visual servoing (PBVS) with eye-to-hand
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Npretrain Mean ADD (mm) ↓ AUC ADD ↑
500 2167.30 47.62
1000 92.91 76.65
2000 67.51 82.98
4000 63.00 84.12
8000 63.81 83.93

Table 3. Ablation study for the number of pretraining samples.

Method Loop Rate Trans. Err. (m) Rot. Err. (rad)

DREAM [29] 30Hz 0.235 ± 0.313 0.300 ± 0.544
Diff. Rendering 1Hz 0.046 ± 0.062 0.036 ± 0.066
CtRNet 30Hz 0.002 ± 0.001 0.002 ± 0.001

Table 4. Mean and standard deviation of the translational error and
rotational error for the visual servoing experiment.

configuration. We conduct the experiment on a Baxter robot
and the details of the PBVS are described in the Supplemen-
tary Materials. The PBVS is purely based on RGB images
from a single camera and the goal is to control the robot
end-effector reaching a target pose defined in the camera
frame. Specifically, we first set a target pose with respect to
the camera frame. The target pose is then transformed into
the robot base frame through the estimated camera-to-robot
transformation. The robot controller calculates the desired
robot configuration with inverse kinematics and a control
law is applied to move the robot end-effector toward the
target pose.

For comparison, we also implemented DREAM [29] and
a Differentiable Renderer for PBVS. For DREAM, the pre-
trained model for Baxter is applied. For Differentiable Ren-
derer, we use the foreground segmentation of CtRNet to
generate a robot mask. The optimizing loop for the renderer
takes the last estimation as initialization and performs 10
updates at each callback to ensure convergence and main-
tain 1Hz loop rate. In the experiment, we randomly set the
target pose and the position of the camera, and the robotic
system applies PBVS to reach the target pose from an arbi-
trary initialization, as shown in the Fig. 6. We ran the ex-
periment for 10 trails with different robot pose estimation
methods, and the translational (Euclidean distance) and ro-
tational errors (Euler angles) of the end-effector are reported
in Tab. 4. The experimental results show that our proposed
method significantly improves the stability and accuracy of
the PBVS, achieving 0.002m averaged translational error
and 0.002rad rotational error on the end-effector.

We also plot the end-effector distance-to-goal over time
for a selected trail in Fig. 7. In this selected trial, the system
could not converge with DREAM because the poor robot
pose estimation confuses the controller by giving the wrong
target pose in the robot base frame, which is unreachable.

Figure 6. Snapshots of PBVS. The goal is to move the end-effector
to the target pose (green). The figure on the right shows the robot
configuration upon the convergence of PBVS.
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Figure 7. The plot of end-effector distance-to-goal over time on a
selected PBVS trail.

With the differentiable renderer, the servoing system takes
more than 10 seconds to converge and oscillate due to the
low loop rate. With our proposed CtRNet, the servoing sys-
tem converges much faster (≤ 5 seconds), thanks to the fast
and robust robot pose estimation. We show more qualitative
results in the Supplementary Materials.

5. Conclusion
We present the CtRNet, an end-to-end image-based robot

pose estimation framework, and a self-supervised training
pipeline that utilizes unlabelled real-world data for sim-
to-real transfer. The CtRNet, using a keypoint detector
for pose estimation while employing a rendering method
for training, achieves state-of-the-art performance on robot
pose estimation while maintaining high-speed inference.
The Fig. 1 illustrates the advantages of CtRNet over existing
methods, where the AUC values are normalized across two
evaluation datasets by taking DREAM and CtRNet as refer-
ences. We further experiment with different robot pose esti-
mation methods by applying them to PBVS, which demon-
strates CtRNet’s fast and accurate robot pose estimation en-
abling stability when using single-frame robot pose estima-
tion for feedback. Therefore, CtRNet supports real-time
markerless camera-to-robot pose estimation which has been
utilized for surgical robotic manipulation [43] and mobile
robot manipulators [53]. For future work, we would like to
extend our method to more robots and explore vision-based
control in an unstructured environment.
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