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Abstract

This paper introduces a robust and scalable Gaussian
process regression (GPR) model via variational learning.
This enables the application of Gaussian processes to a
wide range of real data, which are often large-scale and
contaminated by outliers. Towards this end, we employ
a mixture likelihood model where outliers are assumed to
be sampled from a uniform distribution. We next derive
a variational formulation that jointly infers the mode of
data, i.e., inlier or outlier, as well as hyperparameters by
maximizing a lower bound of the true log marginal like-
lihood. Compared to previous robust GPR, our formula-
tion approximates the exact posterior distribution. The in-
ducing variable approximation and stochastic variational
inference are further introduced to our variational frame-
work, extending our model to large-scale data. We ap-
ply our model to two challenging real-world applications,
namely feature matching and dense gene expression impu-
tation. Extensive experiments demonstrate the superiority
of our model in terms of robustness and speed. Notably,
when matching 4k feature points, its inference is completed
in milliseconds with almost no false matches. The code is at
github.com/YifanLu2000/Robust-Scalable-GPR.

1. Introduction

Gaussian processes (GPs) [31] are probably the primary
non-parametric method for inference on latent functions.
They have a wide range of applications from biology [3] to
computer vision [41]. A commonly used observation model
for Gaussian process regression (GPR) is the Normal dis-
tribution, which brings great convenience to the inference.
Unfortunately, a well-known limitation of the Gaussian ob-
servation model is its sensitivity to outliers in data. As il-
lustrated in Fig. 1 (b), a few outliers can drastically destroy
the entire posterior regression result. This hinders the real-
world applications of GPR for many domains, where out-
liers are often inevitable. This paper intends to conquer the
GPR with outlier contaminated data.

The idea of robust regression is not new. Outlier detec-
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Figure 1. Regression with our model. (a) Perform exact GPR
from 100 inliers. (b) When there are only 6 outliers in the data, the
exact GPR leads to completely wrong results. (c) By comparison,
our model is able to recover the exact posterior even facing 100
outliers. (d) The feature matching result using our model. (e) The
dense spatial gene expression imputation result using our model.

tion has been extensively and systematically described in
[6,9,10,29]. In the context of GPR, many efforts tried to re-
place the Gaussian likelihood with other distributions show-
ing heavy-tail behaviors, including Student-t [16,21,28,30],
Laplace [22, 30], Gaussian mixture [8, 22, 27], and data-
dependent noise model [17]. The challenge with these non-
Gaussian likelihoods lies in the inference, which is analyti-
cally intractable. To this end, many approximation schemes
have been applied, despite having high computational com-
plexity, e.g., Markov Chain Monte Carlo (MCMC) sam-
pling and Expectation Propagation (EP) [22].

In this paper, we propose a more effective mixture like-
lihood model, where uniform distribution accounts for the
outliers and Gaussian for inliers. In our formulation, the
outliers are independent of the GP and do not affect the
computation of the posterior GP, thereby allowing to tol-
erate more outliers. We next introduce a variational method
that jointly determines the modes of data (i.e., inlier or out-
lier) as well as hyperparameters by maximizing a lower
bound to the marginal likelihood. We highlight that the dif-
ference between our variational formulation and pervious
methods is that the modes of data now become variational
parameters and are obtained by minimizing the Kullback-
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Leibler (KL) divergence between the variational and the
true posterior distribution. Thus, the proposed formulation
is less likely to overfit and is able to approximate the exact
posterior GP only from inliers, as in Fig. 1 (c).

Inspired by [37], the sparse inducing variable approxi-
mation is integrated into our variational framework, which
retains the exact GP prior but performs posterior approx-
imation, and reduces the time complexity from O(n3) to
O(nm2). By treating the inducing variables as global vari-
ables [18], our variational model enjoys the acceleration by
Stochastic Variational Inference (SVI) [20]. It performs
stochastic optimization from natural gradient and further
decreases the time complexity to O(km2). This provides
a guarantee for our model to scale to large-scale data.

We apply our robust GPR model to two real-world ap-
plications, say feature matching and dense spatial gene ex-
pression imputation, as illustrated in the Figs. 1 (d) and (e).
Extensive experiments demonstrate the superiority of our
method on both numerical data and real applications.

To summarize, our contributions include the following.
(i) We present a robust Gaussian process regression model,
which uses variational learning to approximate the true ex-
act posterior. (ii) We leverage inducing variables and SVI
to adapt our model to large-scale data. (iii) Two applica-
tions of our model are described. Extensive experimental
validation demonstrates the superiority of our model.

2. Related Works
Robust GPR typically employs non-Gaussian likeli-

hood with heavy tails. Representatively, [22] investigated
the Student’s-t noise model. They further developed vari-
ational inference and MCMC for GPR with Student’s-t.
In [39], Laplace approximation was used to approximate the
log marginal likelihood of Student’s-t. The Laplace noise
model is also exploited in [22]. [30] introduced Expectation
Maximization (EM) algorithm for Student’s-t and Laplace.
Recently, [8] used mixtures of two Gaussians assuming a
lower variance for regular noise and a higher one for out-
liers, with EM to learn the hyperparameters. In this work,
we also use a non-Gaussian likelihood, i.e., mixture model.
The difference is that here the outliers are considered to fol-
low a uniform distribution, which is a more reasonable as-
sumption since the sampling distribution of outliers should
be independent of the true latent function. Besides, we de-
rive a variational formulation in the GPR setting, which ap-
proximates the posterior distribution.

Scalable GPR improves the scalability of GPR while
maintaining prediction quality for big data. The seminal
work [40] adopted Nyström approximation to approximate
the kernel matrix using m sparse points. Later, the idea was
further promoted by [7,15,23,33], which approximated the
prior and performed exact inference. Unlike the prior ap-
proximations, the other line is the posterior approximations,

which retain the exact prior but perform approximate infer-
ence. The most well-known work is the elegant variational
free energy [37]. It directly approximates the posterior by
using variational inference. With the advances in variational
inference [20], SVI is introduced to GP [18], which uses
natural gradients and results in remarkable computational
efficiency. However, as the exact GPR, these scalable GPRs
are sensitive to outliers. In contrast, our model can tolerate
massive outliers while retaining highly scalability.

3. Gaussian Process Regression Revisited
Gaussian process is a collection of random variables,

for which any finite subset has a joint Gaussian distribu-
tion [31]. It is completely specified by a mean function
m(x) and a covariance function k(x,x′) where the covari-
ance function typically depends on a set of hyperparameters
φ. The GP is usually used as a prior over latent function
f(x) ∼ GP(m, k). We can combine the GP prior with ob-
served data to give a posterior over desired latent function.

Consider a regression problem, where the training data1

is D = {(xi, yi)}ni=1. Each yi is a noisy realization of the
latent function at location xi such that yi = fi + ϵi, where
ϵi ∼ N (ϵi|0, σ2) is typically assumed to be an i.i.d. Gaus-
sian noise and fi = f(xi). Denoting all training inputs as
X, all training outputs y, and all latent function values at X
as f . Placing a GP prior on the latent function f , we obtain

p(f |X,φ) ∼ N (f |m(X),Knn), (1)

where Knn is the covariance function evaluated between all
the training points. For simplicity of exposition, the mean
function is set to zero m(x) = 0. It does not reduce the
generalizability of the GP as long as the problem is correctly
transformed, e.g., by subtracting the mean of y. One can
induce a posterior distribution on f according to Bayes’ rule

p(f |D, σ2,φ) ∼ N (f |Knn(K
ϵ
nn)

−1y,Σ), (2)

which is also a multivariate normal distribution, where
Kϵ

nn = Knn + σ2I and Σ = (K−1
nn + σ−2I)−1. The pos-

terior distribution of f can help to compute the posterior
predictive distribution of f∗ at any test location X∗:

p(f∗|D,X∗) =

∫
p(f∗|f ,X∗)p(f |D)df

= N (f∗|K∗n(K
ϵ
nn)

−1y,K∗∗−K∗n(K
ϵ
nn)

−1Kn∗),

(3)

where, σ2 and φ are omitted for brevity. The above pos-
terior depends on the values of σ2 and φ, which can be
inferred by maximizing the log marginal likelihood:

log p(y|σ2,φ) = logN (y|0,Kϵ
nn), (4)

which automatically achieves the bias-variance trade-off.
1Note that the derivation in this paper extends to multiple independent

output dimensions is straightforward.
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4. Robust Gaussian Process Regression Model
In real-world scenarios, a huge discrepancy between the

model and data-generating process often occurs, leading to
outliers. However, a critical flaw of Gaussian observation
model is its non-robustness. This poses a great challenge to
GPR in practice. To this end, this section introduces a robust
GPR, which identifies the mode of data and simultaneously
approximates the posterior of the desired model.

4.1. Problem Formulation

We explicitly consider the generation process of outliers.
Since outliers are independent of the latent function, a rea-
sonable assumption is that they obey a uniform distribution
1
a , where the output space is a bounded region that cov-
ers the output y and a is a constant denoting the volume
of the region. The inliers follow a regular Gaussian noise
N (yi|fi, σ2). We then associate each data with a latent
variable zi ∈ {0, 1}, where zi = 0 indicates that the ob-
servation is generated by outlier distribution and zi = 1
inlier. The joint distribution of (yi, zi) is then a mixture of
two models:

p(yi, zi|fi,θ) = {(1− γ)
1

a
}1−zi{γN (yi|fi, σ2)}zi , (5)

where θ = (σ2, γ,φ) denotes the latent variables set and
γ = p(zi = 1) is the mixing coefficient.

Prior distributions describe beliefs about the model
variables before the inference. As a robust GPR problem,
we place a GP prior over the latent function, i.e., Eq. (1).
The variable γ controls the probability of occurrence of two
models. We suppose it follows a Beta distribution

p(γ) ∼ Beta(γ|Ba, Bb), (6)

whereBa andBb are hyperparameters. As we will see, p(γ)
is conjugate to the posterior and hence easier to handle. For
other variables (σ2,φ), we introduce noninformative prior.

Full joint distribution is obtained by incorporating the
above prior distributions as follows:

p(D, f ,θ) ∝ p(f |X)p(γ)

n∏
i=1

p(yi, zi|fi, σ2, γ), (7)

where θ = (σ2, γ,Z,φ) and Z ∈ {0, 1}n is the indi-
cator variable vector. Our goal is to obtain the posterior
p(f ,θ|D), which can be induced from p(D, f ,θ). Nev-
ertheless, as there are two possibilities for each observa-
tion, i.e., inlier and outlier, it will generate 2n combina-
tions to be evaluated. Thus, the exact estimation is analyti-
cally intractable and approximation is needed. Next, we use
the variational inference to approximate the exact posterior.
Once the variational distribution is obtained, the posterior
predictive distribution can be determined.

4.2. Variational Inference

We wish to directly approximate the posterior p(f ,θ|D)
using a variational posterior q(f ,θ) such that the KL di-
vergence between p(f ,θ|D) and q(f ,θ) is minimized. The
minimization is equivalently expressed as maximization of
lower bound for the true log marginal likelihood:

L(f ,θ) =
∫
q(f ,θ) log

(
p(f ,θ,D)

q(f ,θ)

)
dfdθ. (8)

The maximization is, however, intractable since the optimal
solution is q̂(f ,θ) = p(f ,θ|D). To this end, we consider
instead a restricted distribution of q(f ,θ).

Mean-field factorization supposes q(f ,θ) can be par-
titioned into disjoint groups. Considering the ease of cal-
culation, we factorize q(f ,θ)= q1(f)q2(γ)q3(Z)q4(σ2,φ).
Besides, we assume q4 is Dirac delta function, i.e., it has
a point mass at (σ2,φ). With this factorization, the max-
imization of Eq. (8) is obtained by optimizing each of the
factors. For qi, the minimization becomes

q̂i = argmin
qi

∫
qi log

(
expEj ̸=i [log p(f ,θ,D)]

qi

)
dθi,

(9)
where Ej ̸=i[·] denotes the expectation over qj for j ̸= i.
Note that Eq. (9) is the negative KL divergence between qi
and Ej ̸=i [log p(f ,θ,D)]. Thus, the optimal qi is given by

log q̂i = Ej ̸=i [log p(f ,θ,D)] + const. (10)

4.3. Sparse Inducing Variable Approximation

The variational posterior approximation presented above
can easily integrate sparse inducing variables [37], which
allows the reduction of time complexity of GPR from
O(n3) to O(nm2). Introducing m pseudo-inputs Xm with
inducing variables fm, our goal is to use fm to approxi-
mate q(f), where fm akin to f follows the same GP prior
that p(fm) ∼ N (0,Kmm). We suppose fm is a suffi-
cient statistic for f , i.e., for any value u, p(u|f , fm) =
p(u|fm) holds [37]. In this setting, the augmented varia-
tional posterior q(f , fm) = p(f |fm)ϕ(fm) and augmented
latent variables set θ = (γ, σ2,Z,φ,Xm) with factor-
ization q(f , fm,θ) = q1(f , fm)q2(γ)q3(Z)q4(σ

2,φ,Xm).
The bound (8) becomes

L =

∫
q(f , fm,θ) log

(
p(fm)p(γ)p(y,Z|f)

ϕ(fm)q2−4

)
dfdfmdθ,

(11)
where the term p(f |fm) inside the log is eliminated. In what
follows, we maximize the bound analytically by solving the
optimal choice of the variational distribution q(f , fm,θ).

4.4. Maximize Lower Bound

To optimize the bound (11) in mean-field factorization, a
common approach is to use the coordinate ascent technique,
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i.e., optimizing one factor qi while keeping the others qj ̸=i

fixed, and cycling through these factors in turn. Conver-
gence is guaranteed because the bound is convex and mono-
tonically increasing with respect to each factor [5]. Next,
we give closed-form expressions for factor updates without
detailed derivations, which can be found in suppl. material.

Updating q1(f , fm) means finding the optimal posterior
GP given q2, q3, and q4. We denote pi = E[zi] and P =
diag(p1, p2, · · · , pn). Integrating over f , (11) becomes

L =

∫
ϕ(fm) log

(
p(fm)Q(fm,y)

ϕ(fm)

)
dfm + const., (12)

where

logQ(fm,y)=logN (y|µf |fm , σ
2P−1)− 1

2σ2
tr(PKf |fm),

(13)
µf |fm =KnmK−1

mmfm, Kf |fm = Knn − KnmK−1
mmKmn

are the expectation and covariance of p(f |fm), respectively.
With some linear algebraic manipulation, the optimal ϕ̂(fm)
is given by a multivariate Gaussian distribution

ϕ̂(fm) ∝ p(fm)Q(fm,y)

= N (fm|µm,Am),
(14)

where µm = σ−2KmmΣKmnPy, Am = KmmΣKmm,
and Σ = (Kmm + σ−2KmnPKnm)−1. Note that we
can always recover q(f) from q(f , fm) = p(f |fm)ϕ(fm)
by marginalizing out fm, which gives optimal q̂(f) =
N (f |µf ,A), where µf = KnmK−1

mmµm and A =
Kf |fm +KnmΣKmn.

Remark 1 With the optimal ϕ̂(fm), we obtain ⟨Ni⟩ =
exp(E[logNi]) as follows

⟨Ni⟩ = N (yi|µfi, σ
2) exp(− 1

2σ2
Aii), (15)

where Ni denotes N (yi|fi, σ2), µfi is the i-th element of
µf , and Aii is the i-th diagonal element of A.

Updating q2(γ) indicates updating the inlier ratio or
mixture. Suppose q1, q3, and q4 are given and note n̂ =
tr(P). According to Eq. (10), we conclude that q̂2(γ) again
follows a Beta distribution

q̂2(γ) = Beta(γ|Ba + n̂, Bb + n− n̂). (16)

Remark 2 With the optimal q̂2(γ), according to the prop-
erties of Beta distribution, we obtain ⟨γ⟩ = exp(E[log γ])
and ⟨1− γ⟩ = exp(E[log(1− γ)]) as follows

⟨γ⟩=exp(ψ(Ba + n̂)−ψ(Ba +Bb + n)),

⟨1− γ⟩=exp(ψ(Bb + n− n̂)−ψ(Ba +Bb + n)),
(17)

where ψ(·) is the digamma function.

Updating q3(Z) represents determining the probability
of each data being an inlier given q1, q2, and q4. It encodes
the mode of each data point. From Eq. (10), it leads to a

further factorization q̂3(Z) =
∏n

i=1 q̂
[i]
3 (zi) and q̂[i]3 (zi) is

shown to follow a Bernoulli distribution:
q̂
[i]
3 (zi) = (1− pi)

1−zipzii , (18)

where pi =
⟨γ⟩⟨Ni⟩

⟨1− γ⟩/a+ ⟨γ⟩⟨Ni⟩
. (19)

Remark 3 pi shows the posterior probability of the i-th
data being an inlier. It depends on both the deviation be-
tween yi and the posterior mean µfi, and the term con-
taining the posterior variance Aii. The importance of this
variance term is that it encodes the uncertainty of the latent
function at xi, which means if we are uncertain about that
data, then we cannot identify it as an inlier, even though yi
and µfi are close. This is helpful to avoid overfitting.

Updating q4(σ
2,φ,Xm) involves the optimization of

hyperparameters. Specifically, σ2 controls the noise level,
φ represents the shape of the kernel function, and Xm is
the location of the pseudo-inputs. As assumed previously,
q4(σ

2,φ,Xm) obeys the Dirac delta distribution, which
means we directly maximize the lower bound (11) with re-
spect to (σ2,φ,Xm), rather than using Eq. (10).

Given q1, q2, and q3, taking derivative of (11) over σ2

and setting to zero, we obtain a closed-form expression

σ̂2 =
1

n̂
(y − µf )

⊤P(y − µf ) +
1

n̂
tr(PA), (20)

where tr(·) is the trace. The lower bound (11) is, how-
ever, difficult to optimize for the remaining hyperparame-
ters (φ,Xm) since the integral is intractable. To this end,
we use the reverse Jensen’s inequality and obtain

L2 :=logN (y|0,Ky)−
1

2σ2
tr(PKf |fm)+const.≤L, (21)

where Ky=σ
2P−1+KnmK−1

mmKmn. To set the optimized
hyperparameters (φ,Xm), we seek partial derivatives of L2

with respect to them. Thereafter, the standard gradient de-
scent algorithm provides the value that maximizes L2.

4.5. Stochastic Variational Inference

Modern applications often involve handling massive
data. However, the GPR equipped with variational infer-
ence does not easily scale to big data, even with inducing
variables. This is because we need to go through the entire
training data at each coordinate update. As the training data
size grows, the computational overhead becomes larger.

An alternative to coordinate ascent is to use SVI [20],
which is similar to stochastic gradient descent (SGD), that
performs stochastic optimization from the noisy but cheap-
to-compute estimates of the gradient. It iterates between
subsampling a subset of data and adjusting the hidden struc-
ture solely based on the subset. Thus, SVI is much more
efficient than conventional variational inference. To apply
SVI to the probabilistic model, a set of global variables is

21953



needed [18]. In our robust GPR setting, the inducing vari-
ables fm and mixing coefficient variable γ fill this role.

Natural Gradient. In gradient-based optimization, the
natural gradient accounts for the geometric structure of
probability parameters and is used in SVI to replace the
Euclidean gradient. In exponential families, it is given by
premultiplying the usual gradient by the inverse Fisher in-
formation matrix G(η)−1, where η is the canonical pa-
rameter of the exponential families. Since both ϕ(fm)
and q(γ) are exponential family distributions, they enjoy
simple natural gradients [19] of the bound (11) such that
g(η) = E[η] − η, where g(·) denotes the natural gradient.
For Gaussian distribution ϕ(fm), its canonical parameter is
[A−1

m µm,− 1
2A

−1
m ]. For Beta distribution q(γ), its canoni-

cal parameter is [Ba+ n̂, Bb+n− n̂]. Thereafter, we obtain
the update rule using natural gradient with a step size ϵt

ηt = ηt−1 + εtg(η
t−1) = (1− εt)η

t−1 + εtE[η]. (22)

Note that when the step size εt = 1, we recover the original
variational update in Eq. (14) and Eq. (16). Now, the noisy
natural gradient can be easily computed by sampling either
individual or mini-batch of the data.

4.6. Making Predictions

So far we have described how to infer the approximate
posterior of the latent variables. To make predictions, we
use the predictive distribution similar to Eq. (3):

p(f∗|D,X∗) =

∫
p(f∗|fm)p(f |fm)ϕ(fm)dfmdf

= N (f∗|K∗mK−1
mmµm,Kf∗|fm +K∗mΣKm∗),

(23)

where Kf∗|fm = K∗∗ −K∗mK−1
mmKm∗.

5. Applications
In this section, we describe how to use the proposed

GPR model to deal with real-world tasks, including feature
matching and dense gene expression imputation.

5.1. Feature Matching

Feature matching aims at establishing reliable feature
point correspondences. To solve the matching problem in
a regression manner, we first construct a putative corre-
spondence set P = {(xi,x

′
i)}ni=1 by nearest neighbor (NN)

matching, where xi and x′
i represent the coordinates of fea-

ture points. The putative set is then converted to motion
vector set, i.e., D = {(xi,yi)}ni=1, where yi = x′

i−xi. The
motion of an object projected on the image plane is known
to be slow-and-smooth [38], which is well described by GP.
Thus, the motion vectors of inliers can be seen as sampling
on the underlying model f , while the outliers are spuriously
distributed. Our goal is to determine the correctness of each
data. The task, however, is non-trivial as there are often

massive outliers (even up to 90%). Moreover, the feature
points in each image can reach several thousands, which re-
quires high computational efficiency. As we will see, our
model is robust and fast enough to handle such cases.

Inference Setting. To apply our model to feature match-
ing, some special considerations need to be set. The feature
coordinates are first normalized. For the covariance kernel,
we choose the squared exponential (SE) kernel k(x,x′) =
λ−1 exp(−β∥x−x′∥2). We find that fixed hyperparameters
work well for most situations, which are empirically set to
λ = 4 and β = 0.1. The positions of the inducing variables
are randomly selected from the training data and kept fixed
during inference. The ratio information is also considered
as a prior. The mini-batch size is set to max{n

8 , 200}. After
inference convergences, the i-th data is decided to be inlier
if pi > τ , where τ is a threshold and is set to τ = 0.75.

Predictions. One of the attractive properties of our
model for this task is that when the training is completed,
the resulting posterior GP is able to predict the motion vec-
tor of each feature point. Combined with the descriptors’
information, we can yield much more correct correspon-
dences rather than being limited to putative set. More cor-
rect correspondences are crucial for downstream tasks, as
they can significantly improve the accuracy.

5.2. Dense Gene Expression Imputation

Recently, technological advances have made it possible
to measure spatially resolved transcriptome-wide mRNA
expressions with spatial information in tissue samples. GPR
is thus utilized to infer gene expression in discrete sam-
ples, generating dense gene expression in 2D, 3D, and even
spatiotemporal [3]. Unfortunately, due to equipment mal-
functions and process disturbances, the readout data may
contain bad spots. In this case, a vanilla GPR may lead to
completely wrong results and thus mislead the subsequent
analysis. By comparison, the robust GPR developed in this
paper copes well with outliers and is able to give meaningful
imputation results. For this application, the implementation
is simple and requires little extra consideration.

6. Experiments
In this section, we first conduct numerical experiments to

evaluate the performance in a fully controlled environment.
After that, we apply our model to tackle feature matching
problem and compare it with many state-of-the-art methods
tailored for feature matching. In the end, the evaluation of
gene expression imputation is performed. All experiments
are conducted on a desktop with Intel i7-10700 CPU, 16 GB
memory with MATLAB except deep learning methods.

6.1. Numerical Experiments

We study two datasets, i.e., Neal dataset [28] and Fried-
man dataset [14]. The Neal dataset is one-dimensional data,
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Figure 2. Visual examples on Neal data. Our model approxi-
mates the exact posterior GP using only inliers, even with massive
outliers. The legend is shown in the bottom.

where the input x is drawn from a uniform distribution
within [−2.5, 2.5]. The target value is calculated as:

f(x) = 0.3 + 0.4x+ 0.5 sin(2.7x) + 1.1/(1 + x2).

The Gaussian noise is added to the target value with zero
mean and variance of 0.1. Next, outliers are injected into the
training data, where the value is drawn from uniform distri-
bution within [−5, 5]. The Friedman is 10-dimensional data
and the function value depends on the first five dimensions
f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

while the remaining dimensions complicate the task by
adding a feature selection process. The input x is sam-
pled uniformly within [0, 1]10. Gaussian noise N (0, 0.01)
is added and random outliers are distributed among [5, 25].

We fix the inlier number to 100 and change the outlier ra-
tio. GPR with Student’s-t (St) [32], Laplace (Lap) [32], and
Gaussian mixture distribution (MEM) [8], as well as vari-
ational free energy (VEF) [37], are chosen as competitors.
Some intuitive examples on Neal data are shown in Fig. 2,
where outlier ratio increases from 0 to 80%. We see that the
prediction by our model almost exactly reproduces the full
GP prediction using only inliers. In contrast, GPR-St and
-Lap give poor approximations. GPR-MEM is able to give
a better answer, yet still not as good as ours, especially at
extremely high outlier ratios.

To statistically verify performance, we select mean ab-
solute error (MAE, m), root mean square error (RMSE, r),
and negative log of predictive probability (NLP, n) as met-
rics. 1000 testing points are generated in equal intervals.
The statistical results on Neal and Friedman in Table 1 sug-
gest that our method outperforms other alternatives in terms
of robustness and accuracy. More results including KL and
statistical variance are provided in suppl. material.

6.2. Feature Matching

We collect three large and diverse feature matching
datasets with three different vision tasks, say YFCC100M

Table 1. Quantitative results on Neal and Friedman data with
different outlier ratios. Bold indicates the best.

Neal [28]

Method 10% 50% 80%
m r n m r n m r n

GPR-VFE [37] 0.18 0.21 0.73 0.58 0.77 1.75 0.76 1.08 1.96
GPR-St [32] 0.03 0.03 -0.41 0.09 0.19 0.39 0.77 1.15 1.66
GPR-Lap [32] 0.03 0.07 -1.17 0.42 0.56 1.62 0.35 0.72 2.03
GPR-MEM [8] 0.04 0.08 -1.36 0.06 0.12 -0.66 0.77 1.52 2.04
Ours 0.01 0.02 -1.38 0.03 0.04 -1.25 0.03 0.03 -0.89

Friedman [14]

Method 20% 30% 50%
m r n m r n m r n

GPR-VFE [37] 1.12 1.24 2.28 1.47 1.62 3.08 2.88 3.16 6.93
GPR-St [32] 0.04 0.04 -0.08 0.91 1.10 3.59 1.47 2.18 7.16
GPR-Lap [32] 0.23 0.29 0.37 0.46 0.61 0.94 2.03 2.23 3.29
GPR-MEM [8] 0.11 0.21 -0.99 0.13 0.24 -0.66 2.13 2.32 2.98
Ours 0.04 0.06 -1.46 0.06 0.08 -0.35 0.10 0.14 0.55

Figure 3. Qualitative illustration of relative pose estimation.
We show the true positive in blue and false positive in red. Best
viewed in color with 200% zoom in.

dataset [36] (4000 pairs) for relative pose estimation, CPC
dataset [42] (1000 pairs) for fundamental matrix estima-
tion, and HPatches dataset [1] (580 pairs) for homography
estimation. Six state-of-the-arts from handcrafted to deep
learning are chosen for comparison, namely, MAGSAC++
[2], LPM [26], MCDM [25], CRC [12], PointCN [43], and
OANet [44], with baseline ratio test. Briefly, MAGSAC++
is resampling-based method, LPM is a heuristic method that
preserves local structure of feature points, CRC interpo-
lates a smooth vector field using Fourier bases, PointCN
uses deep neural networks with context normalization to en-
code global contextual information, OANet further captures
local contextual information by clustering unordered cor-
respondences. Note that we assess currently other robust
GPR methods are not capable to handle the feature match-
ing problem, thus none of them are chosen for comparison.

6.2.1 Relative Pose Estimation

Following [44], Yahoo’s YFCC100M dataset [36] generates
4000 testing image pairs. SIFT [24] with NN matching is
adopted to establish putative correspondences. The maxi-
mum number of keypoints for each image is limited to 4000.
RANSAC [13] is used to estimate the relative camera pose.
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Table 2. Quantitative comparison for relative pose estimation.
Bold indicates the best and underline ranks the second.

YFCC100M [36]

Method AUC P R F
@5◦ @10◦ @20◦

Ratio test 28.8 39.2 52.1 24.3 55.3 32.8
MSC++ [2] 24.9 33.7 45.7 24.3 55.3 32.8
PointCN [43] 45.1 54.6 65.0 47.2 73.4 54.9
OANet [44] 53.6 64.1 75.8 51.2 87.0 61.7
LPM [26] 38.6 48.8 59.7 51.4 43.6 45.9
MCDM [25] 47.8 59.4 70.7 63.0 46.5 52.7
CRC [12] 38.1 48.2 58.6 41.2 57.8 44.5
Ours 53.8 63.7 73.8 85.3 54.0 63.7

Figure 4. Visual examples of homography and fundamental
matrix estimation. We show the true positive in blue and false
positive in red. Best viewed in color with 200% zoom in.

We measure the maximum of rotation and translation errors
in degree and report the approximate Area Under the Curve
(AUC) with thresholds 5, 10, and 20 degrees. Precision,
recall, and F1-score before RANSAC with respect to the
ground-truth inliers are also presented. See suppl. material
for a detailed description of the dataset and the metrics.

Some visualized examples are demonstrated in Fig. 3.
Statistics results are comprehensively reported in Table 2.
Since deep learning methods such as PointCN and OANet
are trained in such dataset with geometric loss, they can cap-
ture geometric information and therefore have higher AUC
compared to other handcrafted methods. By comparison,
our method achieves comparable results to these deep learn-
ing methods with much higher precision and F1-score.

6.2.2 Homography & Fundamental Matrix Estimation

Homography and fundamental matrix estimation are criti-
cal parts in computer vision. The maximum keypoints for
HPatches and CPC are limited to 4000. For evaluation met-
rics, we choose the precision, recall, and F1-score as well as
the accuracy of the estimation. For homography estimation,
we adopt homography error defined in [11], and for funda-
mental matrix, we follow [4] and use normalized symmetric
geometry distance (NSGD) as the metrics. An estimate is
classified as accurate or not by a threshold, which is set to 4
pixels for homography error and 0.05 for the NSGD [4].

Table 3. Statistical results for homography and fundamental
matrix estimation. Bold ranks the first, underline the second.

Method HPatches [1] CPC [42]
Acc. P R F Acc. P R F

Ratio test 71.7 71.6 51.6 63.0 17.0 12.7 63.9 20.5
MSC++ [2] 74.4 87.3 92.4 86.0 6.9 19.7 29.6 19.4
PointCN [43] 73.1 76.9 85.7 78.6 29.3 19.8 70.2 28.8
OANet [44] 70.0 73.5 77.2 72.1 47.0 34.6 81.0 45.4
LPM [26] 60.6 72.5 50.5 52.3 23.8 21.9 48.9 26.1
MCDM [25] 77.7 62.9 91.0 73.0 34.8 23.0 61.0 32.5
CRC [12] 71.7 75.5 92.5 80.4 28.7 24.8 47.2 30.4
Ours 78.1 89.9 94.3 91.5 49.6 61.5 59.3 57.2
Ours* 82.4 73.9 109.6 - 51.9 39.2 97.3 -

Table 4. Ablation studies on feature matching. Bold is the best.
Method Prec. Recall F1 Time
CRC [12] 50.7 67.8 54.9 68.1
OANet (on GPU) [44] 47.9 75.2 56.0 41.2

RS-GPR

No SVI 76.3 66.1 70.0 47.1
No inducing variables 72.6 69.0 69.5 1.6e5
Opt. Hyperparameters 85.0 61.2 67.7 1556
EM optimization 67.6 69.8 65.5 43.7
Default 88.0 68.2 75.6 9.8

Several visual examples are provided in Fig. 4. Note
that our predictive model is also presented and indicated by
the superscript “*”. It establishes significantly more correct
correspondences compared to other methods. Table 3 re-
ports the statistical results. As it indicates, our method out-
performs all other methods in the two tasks. When using the
predictive model, it can even produce more correct corre-
spondences than the putative set (e.g., the recall in HPatches
is higher than 100), thus further improving accuracy.

6.2.3 Ablation Studies of Feature Matching

To measure performance, especially runtime, in different
settings, we conduct ablation studies on 100 image pairs
from YFCC100M. It mainly includes four choices, i.e., not
using SVI, not using inducing variables, optimizing the ker-
nel hyperparameters, and using EM optimization instead of
variational inference. We also include the CRC and OANet
to compare the runtime. The results are reported in Table 4,
where we see that our method performs the best with the de-
fault setting described in Sect. 5.1. In particular, the running
time is much faster compared to other settings and methods.

6.3. Dense Gene Expression Imputation

We collect two spatial transcriptomics datasets from
mouse olfactory bulb and human breast cancer biopsies
[34], respectively. Briefly, the spatial transcriptomics gene
expression data is measured from thin tissue sections placed
on an array with ploy probes and spatially resolved DNA
barcodes. These create a grid of circular spots where the
mRNA abundance of each spot is measured using probes
with the barcodes encoding the spatial locations. The mouse
olfactory bulb and human breast cancer biopsies datasets
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Figure 5. Visualization of dense spatial gene expression impu-
tation. The spatial transcriptomics data is plotted on the top row.
The bottom row shows the imputation results of different meth-
ods. We stack the spatial transcriptomics (shown as dots) on the
imputated results to show the quality of the imputation.

Table 5. Statistical results of dense gene expression imputation.
Bold indicates the best.

Mouse olfactory bulb

Method Pattern 1 Pattern 2
m r n m r n

GPR-Exact 0.46 0.59 1.25 0.33 0.40 1.10
GPR-St [32] 0.07 0.14 -0.57 0.02 0.04 -1.33
GPR-Lap [32] 0.20 0.27 0.33 0.48 0.54 0.94
Ours 0.03 0.05 -1.99 0.02 0.04 -2.21

Breast cancer tissue

Method Pattern 1 Pattern 2
m r n m r n

GPR-Exact 0.24 0.35 1.44 0.23 0.33 1.15
GPR-St [32] 0.19 0.32 0.37 0.18 0.30 0.22
GPR-Lap [32] 0.25 0.36 0.56 0.25 0.37 0.53
Ours 0.12 0.16 -0.54 0.11 0.17 -0.39

contain 14859 and 12856 measured genes, respectively. To
identify spatially variable genes, we adopt SpatialDE [35]
and select two patterns for each dataset. We next add 5 ran-
dom outliers to each identified pattern to simulate the outlier
scenario. In the end, different GPR methods are applied to
impute dense spatial gene expression.

Two visual examples are presented in Fig. 5, where in
each example, the second row shows the imputed results.
As can be seen, our method accurately infers the correct
gene expression regardless of the outliers. To give quantita-
tive results, we randomly split each dataset into 80% train-
ing data and 20% test data. As mentioned above, we use
the MAE, RMSE, and NLP to measure the performance,
and report the statistical results in Table 5. We see that our
method always has the lowest error.

7. Analysis
Optimization Process. We visualize the intermediate

results of the optimization process on Neal data with 50%
outliers and present it in the top row of Fig. 6. We see that
the field of p in Eq. (19) gradually converges to the inliers.
After convergence, the posterior mean and variance func-
tions are very close to the ground truth, and the inducing
variables are restricted to the interval of the inliers.

The Role of Term Aii. We remove the term containing
Aii in Eq. (15) and show the results in the bottom of Fig. 6.

Figure 6. Intermediate results of the optimization process. The
top row shows the full model while the bottom removes term Aii.
We visualize the field of p, which indicates the inlier probability at
any location. The deeper the blue color, the higher the probability.

Figure 7. Our model deal with different non-uniform outliers.

Figure 8. The inference time of each GPR method. Our model
with SVI can easily handle big data.

Without variance term, the regression tends to overfit.
Non-uniform Outliers. Different types of non-uniform

outliers are tested in Fig. 7. More detailed results are given
in suppl. material. Our model exhibits strong generaliza-
tion and robustness. The reason is that uniform distribution
is a very weak assumption with high flexibility. It accom-
modates many outlier distributions.

Scalability. We test the runtime towards different prob-
lem sizes on Neal data with 50% outliers. Other methods as
well as ours w. and w/o. SVI are included. The number of
inducing variables is set to 15 for our method in both two
settings. As plotted in Fig. 8, our method can easily scale to
large-scale data, especially when equipped with SVI.

8. Conclusion
This paper presents a robust and scalable GPR using

variational learning. It uses an outlier robust mixture like-
lihood model, where the uniform distribution accounts for
the outliers. A variational formulation is introduced to learn
the mode of data and hyperparameters by minimizing the
KL divergence between the true posterior distribution and
the approximate one. Its most attractive property is that it
can rigorously approximate the exact posterior. Inducing
variable approximation and SVI further extend our model
to big data. We apply our model to feature matching and
dense gene expression imputation. Extensive results show
the significant improvement over existing robust GPRs.
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mark, José Fernández Navarro, Jens Magnusson, Stefania
Giacomello, Michaela Asp, Jakub O Westholm, Mikael
Huss, et al. Visualization and analysis of gene expres-
sion in tissue sections by spatial transcriptomics. Science,
353(6294):78–82, 2016. 7

[35] Valentine Svensson, Sarah A Teichmann, and Oliver Stegle.
Spatialde: identification of spatially variable genes. Nature
Methods, 15(5):343–346, 2018. 8

[36] Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016. 6, 7

[37] Michalis Titsias. Variational learning of inducing variables
in sparse gaussian processes. In Proceedings of the Artificial
Intelligence and Statistics, pages 567–574, 2009. 2, 3, 6

[38] Shimon Ullman. The interpretation of structure from mo-
tion. Proceedings of the Royal Society of London. Series B.
Biological Sciences, 203(1153):405–426, 1979. 5

[39] Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian
process regression with student-t likelihood. Advances in
Neural Information Processing Systems, 22, 2009. 2

[40] Christopher Williams and Matthias Seeger. Using the
nyström method to speed up kernel machines. Advances in
Neural Information Processing Systems, 13, 2000. 2

[41] Oliver Williams and Andrew Fitzgibbon. Gaussian process
implicit surfaces. In Gaussian Processes in Practice, 2006.
1

[42] Kyle Wilson and Noah Snavely. Robust global translations
with 1dsfm. In Proceedings of the European Conference on
Computer Vision, pages 61–75, 2014. 6, 7

[43] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2666–
2674, 2018. 6, 7

[44] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hon-
gen Liao. Learning two-view correspondences and geome-
try using order-aware network. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5845–
5854, 2019. 6, 7

21959


