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Abstract

Diffusion models have demonstrated impressive capabil-
ity of text-conditioned image synthesis, and broader appli-
cation horizons are emerging by personalizing those pre-
trained diffusion models toward generating some special-
ized target object or style. In this paper, we aim to learn
an unseen style by simply fine-tuning a pre-trained diffu-
sion model with a handful of images (e.g., less than 10),
so that the fine-tuned model can generate high-quality im-
ages of arbitrary objects in this style. Such extremely low-
shot fine-tuning is accomplished by a novel toolkit of fine-
tuning techniques, including text-to-image customized data
augmentations, a content loss to facilitate content-style dis-
entanglement, and sparse updating that focuses on only a
few time steps. Our framework, dubbed Specialist Dif-
fusion, is plug-and-play to existing diffusion model back-
bones and other personalization techniques. We demon-
strate it to outperform the latest few-shot personalization
alternatives of diffusion models such as Textual Inversion
[7] and DreamBooth [24], in terms of learning highly so-
phisticated styles with ultra-sample-efficient tuning. We
further show that Specialist Diffusion can be integrated
on top of textual inversion to boost performance further,
even on highly unusual styles. Our codes are available at:
https://github.com/Picsart-AI-Research/
Specialist-Diffusion.

1. Introduction
Image synthesis has received increasing attention, par-

tially owing to the recent breakthroughs made by diffusion
models [10, 23, 28, 30, 34]. Training a diffusion model re-
quires gradually adding random noises with a sequence of
diffusion steps, and learning to rebuild data from noises by
reversing the steps. By running the diffusion process on a
lower-dimensional latent space instead of the pixel space,
the latent diffusion model [23] achieves competitive per-

1The first two authors Lu and Tunanyan contributed equally.
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Figure 1. Comparison of fine-tuning the pre-trained Stable Dif-
fusion [23] model, using our Specialist Diffusion method versus
two other methods, from left to right columns. Three rows rep-
resent three different, rare styles (“Flat design”, “Fantasy”, and
“Food doodle”) that we hope to personalize the Stable Diffusion
model to learn, using only a handful of samples (even less than
10). All examples are generated using the same text prompt except
for the style identifier. As a method focused on representing new
objects, DreamBooth [24] performs poorly when being applied to
capturing styles. Textual inversion [7] achieves neat performance
on some styles, but fails on more unusual styles such as “Flat de-
sign”. Specialist Diffusion (rightmost) succeeds to capture those
highly unusual, specialized, and sophisticated styles via few-shot
tuning. Please see Sec. 4 for more dataset and experiment details.

formance more efficiently. Diffusion models are capable
of both unconditioned and conditioned image synthesis, the
previous one generates samples from random noise (noise-
to-image), while the latter takes a condition such as text to
guide the generation. In this paper, we will focus on text-
to-image synthesis for its broad application interests.

Diffusion models nowadays are able to synthesize high-
quality images on a wide variety of sophisticated text
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prompts. However, those models still have limited cover-
ages on what they can generate - and their generated images
are often found to miss highly specialized objects or unusual
styles [19]. Practitioners are hence motivated to personal-
ize those models on the target data of their interest. Notably,
many target domains have fine granularity, such as selfies of
one user, or a specialized design style; consequently, sam-
ples available from such target domains would be limited
and constitute few-shot scenarios.

There was little work on few-shot personalization with
diffusion models until recently. Most conditional models
focus on specific applications. Here we consider the gen-
eral case of few-shot generation for unknown classes at test
time. One naive solution is to fine-tune the model, but it can
easily go sample-costly due to the enormous model size.
For example, the training of Waifu-diffusion [15], a model
fine-tuned from Stable Diffusion v1.4 [23], took approxi-
mately 10 days on 8 Nvidia A40 GPUs with 680K text-
image pairs. Some initial attempts were made to reduce
the sample complexity. D2C [26] shows that latent space
and self-supervised learning lead to few-shot tuning with
as few as 100 samples. [8] explicitly conditions the denois-
ing diffusion dynamics on a support set of target domain
samples, and takes only 5 samples to generate images from
a new class. Despite the promise, they modified the model
architecture by injecting an unconventional set-based vision
transformer (ViT) [5] to aggregate new image patch infor-
mation. Moreover, their evaluation was on unconditional
image generation with the resolution of 32 × 32 or 64 × 64,
and it remains unclear how their method can extend to text-
to-image synthesis, or to generating high-resolution images.

Several latest works shed new light on the horizon of
few-shot personalization. Among them, DreamBooth [24]
fine-tunes the pre-trained diffusion model to bind a unique
identifier with an unseen object. Textual Inversion [7], in
comparison, learns to represent a new concept through a
new token “word” in the embedding space, without fine-
tuning the parameters of the pretrained model. Both meth-
ods can achieve personalization with ∼ 5 images. How-
ever, both DreamBooth and Textual inversion were mainly
demonstrated to synthesize new unknown objects (such as
a selfie) in various known styles or contexts; while their ex-
tension to the complementary side, e.g., synthesizing known
objects in new unknown styles, are under-explored and of-
ten found to be unsatisfactory, despite the apparent demands
of capturing unfamilar or personalized styles by artist users.

In this paper, we focus on fine-tuning a pre-trained text-
to-image diffusion model, to learn a highly specialized un-
seen style, using a handful of images. Our goal is to have the
fine-tuned model generate high-quality images of arbitrary
(known) objects in this (previously unknown) style. Our
proposed solution, Specialist Diffusion, is a plug-and-play
set of fine-tuning techniques that works with any diffusion

backbone without altering their architectures, and can also
be integrated with existing personalization methods such
as [7,24]. Firstly, our customized augmentations are specif-
ically designed for the text-to-image scenario, that augment
not only the images but also the text prompts with prior lan-
guage knowledge from the image augmentation. Secondly,
to prevent the model from overfitting to the target style
while losing generalization to various objects, we introduce
a content loss to preserve the ability to generate specified
content based on CLIP [21]. Besides, instead of updating
all diffusion steps, we find that updating only a sparse sub-
set of steps can significantly improve the few-shot training
efficiency, with comparable or sometimes better fine-tuning
performance. Our contributions are summarized as:

• Specialist Diffusion is a general, plug-and-play frame-
work to fine-tune pre-trained diffusion models with
few-shot samples (less than 10), to learn highly sophis-
ticated and unusual styles, without bells and whistles.

• We propose a rich set of techniques including vari-
ous customized data augmentations that augment both
text prompts and images, a content loss for disentan-
glement, and sparse diffusion step updating for both
sample and computation efficiency.

• Specialist Diffusion not only improves upon the state-
of-the-art diffusion model personalization methods
such as Textual Inversion [7] and DreamBooth [24]
(e.g., see Fig. 1), but also can be combined on top of
them to jointly boost style personalization further.

2. Related Work
2.1. Diffusion Models

Given a sample x0 from an unknown q(x0) distribution,
the goal of diffusion models [10, 28, 29] is to learn a para-
metric model pθ(x0) to approximate the original q(x0) dis-
tribution. The model q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1) grad-

ually adds noise to the input and is called forward process.
During the backward generative process, the model will ob-
tain a clean version of xt by removing the noise from the
xt+1 timestep. To approximate q(x0) with the pθ(x0), θ
can be learned by optimizing the following objective

L(θ) = Ex0∼q(x0),ϵ∼N (0,I),t

[
||ϵθ(xt, t)− ϵ||2

]
(1)

Where xt =
√
αtx0+

√
1− αtϵt and ϵθ(xt, t) is a trainable

U-Net like architecture to approximate the noise.
As the objective in Eq. (1) does not depend on any spe-

cific connections between x1, ...., xT latent variables, one
can construct a new model pθ(x0) such that the q(x0) can
be modeled with pθ without additional training. This key
idea of DDIM [29] offers a new way of deterministic diffu-
sion process that also speeds up sampling during inference.
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Training powerful DMs for high-resolution image syn-
thesis takes too many GPU days. To lower the computa-
tional demand and stablize the generalization towards high
resolution, Rombach et al. [23] applied diffusion denois-
ing operation on the latent space of a pre-trained encoder.
They used the encoder of VQGAN [6] to compress high-
resolution images into a compact latent space, and the de-
coder to reconstruct them from the denoised latent variable.
Given an image x0 in RGB space, the encoder E encodes
the x0 into a latent representation z = E(x0). The objective
then only considers the latent variable z instead of x:

Lldm(θ) = Ez∼E(x0),ϵ∼N (0,I),t

[
||ϵθ(zt, t)− ϵ||2

]
(2)

Operating DMs on smaller latent spaces significantly de-
creased the processing time for training and inference, and
delivers current state-of-the-art (SOTA) results on high-
resolution image synthesis (under the name of Stable Diffu-
sion). Therefore, throughout this paper we choose to bench-
mark all few-shot personalization methods with the latest
Stable Diffusion model [23], although they can be plugged
in other diffusion model backbones the same way.,

2.2. Few-Shot Generation

The majority of large generative models are trained on
millions or even billions of examples, which is often not
feasible to acquire for many fine-grained or proprietary im-
age domains. Few-shot image generation [13, 16, 18, 33]
targets solving this issue by using only a handful of exam-
ples to generate images. Past works in VAEs or GANs apply
fine-tuning to a pre-trained GAN generator, selecting core-
sets of training data, leveraging differentiable or adaptive
data augmentations, or applying fine-tuning weight regular-
izers [1, 3, 11, 13, 17, 22, 27, 31, 35, 36].

Few-shot diffusion models are inspired by similar ap-
proaches. Sinha et al. [26] apply self-supervised learning
with diffusion process to learn an unconditional model for
few-shot conditional image synthesis. To compensate for
the absence of conditioning during training, they train an
additional model over the latent representation of the in-
puts, which will play a guiding role during inference. Liu
et al. [14] designed a unified framework for image synthe-
sis based on reference examples and their method can be
applied into unconditional diffusion models. By explicitly
conditioning the DDPM module, Giannone et al. [8] used
a set-based Vision Transformer (ViT) [5] to extract general
information by patches from few-shot examples. lso, they
did not consider text-guided image synthesis. Blattmann
et al. [2] explored solving few-shot diffusion problem by
using the image-retrieval augmentation method. For each
particular query input xq , they retrieve a close set of exam-
ples from an external dataset by using top-k operation over
cosine similarity scores in embedding space. This subset is
used with an additional conditioning branch.

A yellow flower has a green stem

A green stalk adorns a gold blossom

A green stalk adorns a gold blossom 
with a horizontal flip transformation

Figure 2. Illustration of our customized data augmentation flow.

Two recent works made particularly notable progress
on text-to-image few-shot personalization at high resolu-
tion, both built on Stable Diffusion or equivalent. Dream-
Booth [24] designed a personalized fine-tuning procedure
by structuring the prompts with a special form “a [V] [class
noun]”, where “[V]” is a unique identifier of the subject
and “[class noun]” is the true class of it. They mainly fo-
cus on objects in their experiments, and our experiments
also observed that DreamBooth lacks effectiveness to cap-
ture few-shot styles when applied out of the box. Textual
Inversion [7] also learns to generate personalized concepts,
including objects or artistic styles, by describing them using
new “words” in the embedding space of pre-trained text-to-
image models. These can then be used in new sentences,
just like any other word. Textual Inversion makes our clos-
est competitor in few-shot style personalization; despite
its effectiveness, later in experiments we will demonstrate
it falls short of capturing some other very unusual styles,
such as “Flat Design” in Fig. 1, from few-shot demonstra-
tions. Also, since Textual Inversion does not fine-tune the
pre-trained model weight, it ispotentially complementary to
fine-tuning based options such as DreamBooth or ours.

3. Specialist Diffusion: Our Technical Toolkit
Our framework carries a novel toolkit of fine-tuning

techniques, including text-to-image customized data aug-
mentations, a content loss to facilitate content-style disen-
tanglement, and sparsely updating diffusion time steps.

3.1. Data Augmentations for Text2Image Diffusion

We separate the augmentation process into two parts:
augmentation of images and augmentation of captions.

Image Augmentation - Image augmentation continues

14269



to be an integral part of solutions to many computer vision
problems. Yet when applied to generative problems such as
image synthesis, the majority of the functions of geometric
transformations or other heavy modifications of inputs lead
to a known problem called “augmentation leakage” [11,36].
The generative model often memorizes the training exam-
ples and their augmented versions and generates similar im-
ages during inference. For example, while many rotated im-
ages could be legitimated natural photos, their occurrence
in natural image collections has lower probabilities. Hence
applying too many rotations in training is observed to bias
the chance of generating more rotated objects which are un-
tended. To minimize the augmentation leakage, we skip
heavier image augmentations such as AugMix [9] and Ran-
dAug [4], and select a set of mild augmentation functions
that do not aggressively distort the input image such as ran-
domly flipping or AutoContrast. A full list of our image
augmentations can be found in the Supplementary.

Figure 3. An example to show the risk of losing semantic object
knowledge when personalizing to a new style. Images are gener-
ated with text prompt “two people sitting on a bench in the park”,
and the target style is “Flat design”. Left: original image; middle:
tuned for 100 epochs; right: tuned for 1000 epochs.

Text Prompt Augmentation - Many known augmenta-
tion methods are designed for images only and the text con-
ditioning part remains untouched, leaving a unique open op-
portunity. Instead of having one description of an image
as a caption, we give different interpretations of the same
caption by replacing their words with their synonyms. An
extension of this approach is to replace the whole sentence
with another retrieved one, which is semantically similar to
the original caption. We also modify each caption to corre-
spond to the randomly chosen image augmentation method
by extending the text with a description of the selected func-
tion. Our multiple levels of caption augmentations, caption-
retrieval augmentation, synonym augmentation, and dou-
bled augmentation, are illustrated in Fig. 2 and introduced
next. The ablation comparison can be found in Sec. 4.5.

Caption Retrieval Augmentation - First, we replace the
whole caption of an image with another description, with-
out changing its semantic meaning. To find similar descrip-
tions for each caption, we compare the caption of an input
image, and the texts from the external LAION [25] text set
(72 million sentences), using their cosine similarity score in
the embedding space of the CLIP [21] text encoder. For all

similar external sentences passing cosine similarity thresh-
old (we used an ad-hoc threshold of 0.7 for all), we ran-
domly choose from them as caption augmentations.

Synonym Augmentation - Another effective method to
augment text is to randomly replace a word with one of
its synonyms. For text-guided image synthesis, it helps
the model to interpret an image in different yet equivalent
ways. This approach diversifies the representations of cap-
tions and generalizes well for a few-shot diffusion scenario.
It does not increase the training time visibly, because we
use a predefined synonym correspondence for each word
we have in the few-shot examples.

Doubled Augmentation - When images are augmented
leaving their captions unchanged, the diffusion model relies
on images more than their descriptions, which means cap-
tions become less informative. We believe that each image
modification should follow its caption modification as well.
This technique will help reduce augmentation leakage. To
correspond to proper augmentation for the captions, we ex-
tend them by adding a small description of a randomly cho-
sen augmentation. Those descriptions push the text repre-
sentations to be discriminative in the embedding space and
better attached to those augmentation attributes.

3.2. Content Loss
As the training continues, it is observed that the model

gradually loses the semantic knowledge to generate outputs
that meet the input text condition such as objects. For ex-
ample in Fig. 3, when overly tuned, the image start produc-
ing wrong semantics such as confused human bodies and
ungrounded trees, and missing the park context. To over-
come this issue, an additional content loss is introduced to
disentangle the knowledge of content (inherited from pre-
trained model) and style (learned from few-shot examples),
and help preserve the model ability to understand the se-
mantics in condition while learning a new style.

As Specialist Diffusion attempts to learn an abstract style
that is applicable to arbitrary content afterward, we want
to ensure that the images generated with a text prompt t
will fit the content described in t. As our inspiration, Style-
CLIP [20] proposed a CLIP-based approach on text-driven
image generation. With an image generation network G,
the optimal latent w w.r.t the text prompt t is defined with

argmin
w∈w+

DCLIP (G(w), t) +R (3)

where DCLIP is the cosine distance between the CLIP [21]
embeddings of the image and the text, and R denotes other
regularization terms (omitted). While this approach neatly
exploits the ability of CLIP to link images to the text se-
mantics, precise text prompts of the training samples are
not available in our task. As described in Sec. 3.1 and
Sec. 4.1, our text prompts will be generated by image cap-
tioning and decorated during the augmentation. In specific,
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given a training text-image pair (t∗, I), an image I∗ will
be synthesized by the current model with the text prompt
t∗. Then, instead of directly calculating DCLIP (I

∗, t∗), the
embedding of the input image I will be used:

Lcontent(θ) = DCLIP (I
∗, I) (4)

The final loss function will be the weighted sum of LDM
loss (Eq. 2) and content loss (λc is a hyperparameter):

L(θ) = Lldm(θ) + λc · Lcontent (5)

We used λc = 0.001 in all our experiments.

3.3. Sparse Updating

In diffusion models, each processing path (forward and
backward) takes T timesteps to gradually add or remove
noise. To get high-quality results, one often takes a suf-
ficiently larger T , such as T = 1000. However, large T
causes expensive training and inference. In our few-shot
case, we conjecture that not all those steps are unnecessary.

Instead of updating all timesteps during training, we pro-
pose to update only a small part of them: 10% or even 1%.
We perform sampling from significantly smaller sets, such
as S1 = {10, 20, ..., 1000} or S2 = {100, 200, ..., 1000}.
That will significantly accelerate training and convergence
in the first place. Furthermore, we find that by sparse updat-
ing, no performance degradation was observed; and some-
times, the visual quality even improves, e.g., preserving
more object or background details (see Fig. 8), presumably
owing to the regularization effect of sparsity [3].

4. Experiment
4.1. Data Preparation

We collect three few-shot style datasets, that are moti-
vated by real-world applications. Specifically, each dataset
is created or collected by our in-house graph designers and
represents a unique artwork style that is popular for vi-
sual content creation and re-mixing among social media
users, hence “personalizing” those styles to users’ own art-
work makes appealing demands. The examples in each
dataset are hand-curated by our expert artists, since mas-
sive production of high-quality artwork examples in those
categories is infeasible practically, constituting the need of
“few-shot”. Fig. 4 shows a few examples from them.

• Flat design (25 images): 2D flat icon style that gener-
ally omits shadows and textures.

• Fantasy (15 images): exaggerated color and contrast
with fictional feels, that are popular for rendering me-
dieval paintings, digital or sci-fi illustrations.

• Food doodle (9 images): hand-drawn cartoon style
with certain amounts of shadows and details, which is
the most popular for plotting food and drinks.

Flat design

Food doodle

Fantasy

Figure 4. Samples from three meticulously selected datasets: “Flat
design”, “Fantasy”, and “Food doodle”.

For all images, we use BLIP [12] to generate text captions
and manually inspect their quality with artists. For exam-
ple, the first example from the dataset “Fantasy” in Fig. 4 is
captioned “boats floating in front of a cityscape”.

4.2. Implementation

All the models mentioned in this paper are fine-tuned
from Stable Diffusion [23] v1.4 implemented by Diffusers
[32]. The method has been tested at both 256 × 256 and
512 × 512 resolution. If not specifically stated, the train-
ing steps are randomly sampled from a 10% uniform sparse
subset of the original 1000 diffusion steps with DDPM [10]
scheduler. A default learning rate of 1.0e − 5 gives good
results on all datasets tested. Only the parameters of the U-
Net will be updated, except the embedding of the additional
“word” when combined with Textual inversion [7]. Our
method is trained efficiently on a single Nvidia RTX A6000
GPU, with 256× 256 and 512× 512 input resolutions. We
did not add our new augmentations to Dreambooth/Textual-
Inversion since those belong to our holistic innovations, and
we revealed their incremental gains in ablation study. Base-
line hyperparameters are tuned to our best effort.

4.3. Main Results

A prompt for a classic latent diffusion model can be
very complex and specific. For example, here is a sam-
ple text prompt for Stable Diffusion [23]: ultrarealistic,
(native american old woman ) portrait, cinematic lighting,
award-winning photo, no color, 80mm lense. This prompt
contains information about lightning, colors, and camera
lenses. However, just as the above prompt does not apply to
the style specified by the dataset “Flat design”, and we ob-
serve that arbitrarily adding descriptions about details could
be invalid or even conflict with the desired style. A valid
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“a sandwich”
“a cat wearing 

sunglasses”
“a castle beside a 

lake”
“two people sitting on 
a bench in the park”

Flat design

Fantasy

Food doodle

“two school buses”
“a bird flying over a 

bridge”

Figure 5. Samples generated by models fine-tuned on the three datasets. The left column shows the dataset on which the model is trained
on, and the top row shows the text prompt used to generate the image.

prompt for a style-specific image generation model is sup-
posed to focus more on the intended content. Therefore, the
prompts we use for evaluation will be concerned only with
the content rather than stylistic details. More discussions
about choosing prompts are in the Supplementary.

Fig. 5 shows a collection of generation results to illus-
trate how our methods learn different unseen styles with
extremely low-shot data. Text prompts at different levels
of complexity ranging from a single object to a composited
scenario have been used. regardless of whether the desired
content is complex or close to the distribution of the train-
ing data, models fine-tuned with our method successfully
generate results satisfying the text condition in target styles.

We also compared our method with other state-of-the-
art few-shot methods: DreamBooth [24] and Textual inver-
sion [7]. Fig. 1 and Fig. 6 show the results obtained by
applying different methods on the same datasets. The class
token is omitted in the figures for easier understanding. For
instance, the actual input for our method is “a castle beside a
lake in the style of flat” in the top row of Fig. 1, for Dream-
Booth and Textual inversion it is “a castle beside a lake in
the style of [V]”. While adapting DreamBooth to styles
does not yield promising results (totally ignoring the style
or imprecisely presenting), textual inversion capture some
styles to a certain extent, but fails catastrophically on some
others such as the castle in the Flat design style (Fig. 1) or
the bird in Fantasy style (Fig. 6). In comparison, Special-
ist Diffusion succeeds to capture all those highly unusual,
specialized, and sophisticated styles with a few examples.

Style\Method DB TextInv Ours Ours+Inv

Fantasy 437.254 452.150 399.351 352.650
Flat design 445.089 460.252 421.410 363.362

Food doodle 491.302 451.466 441.640 409.607

Table 1. FIDs on different styles × different methods

As of the time of this paper, there is not a universally rec-
ognized quantitative metric for assessing the performance
of learning a style using a diffusion model. We prompted
to generate a hundred images per dataset and compute the
following: (1) FID averaged across different styles and all
images, in Table 1, although it is important to note that cal-
culating FID on a small number of samples is not always
reliable; (2) style loss in image stylization that estimates the
distance between two images based on styles. We treat ev-
ery sample in each training set as a style reference. Table 2
lists the style loss, averaged over all pairs between {each
generated image in this style, each style reference}. (3) user
study comparing three different models for all datasets, in
Figure 9. For each dataset, four subjects voted for the three
methods’ generated images, based on their style alignment
with their source reference dataset.

Style\Method DB TextInv Ours Ours+Inv

Fantasy 1.087 0.202 0.202 0.147
Flat design 0.839 0.276 0.116 0.098

Food doodle 0.492 0.104 0.046 0.037

Table 2. Average style loss (VGG-based) between generated im-
ages & corresponding training examples. Numbers scaled by 102.
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DreamBooth Textual inversion Our method

Flat design

Fantasy

Food doodle

Prompt: “a cat wearing sunglasses”

DreamBooth Textual inversion Our method

Flat design

Fantasy

Food doodle

Prompt: “a bird flying over a bridge”

Figure 6. Continued comparison of our model and other SOTA methods. Random seed is fixed for generation in this figure and Fig. 1.

prompt: a castle beside a lake prompt: two people sitting on a bench in 
the park prompt: a cat wearing sunglasses

Flat design Fantasy Flat designFantasyFood doodle Food doodle

Textual 
inversion

Ours

Textual 
inversion+ours

Figure 7. Combination of our model and textual inversion. Text prompts used for generation are listed top, styles of the corresponding
datasets are listed under, and the methods for training the models are listed left.

4.4. Combining with Textual Inversion
Since Textual inversion does not exploit fine-tuning, it

is natural to consider how our method could be combined
with it: first fine-tuning the pre-trained model using Spe-
cialist Diffusion, then generating the style word token using
textual inversion from the tuned model, to be used in the
prompt for synthesizing new style images. That essentially
allows us to iteratively optimize the model and the prompt.

We verified this cascaded pipeline experimentally in Fig. 7.
By integrating textual inversion with our method, the results
capture even richer details without losing the style.

4.5. Ablation Study

Overall Method - The combination of all three contri-
butions delivers our best performance. All proposed meth-
ods, such as Prompt Augmentation (double, synonym, and
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(a) (b) (d)(c) (e) (f)

(1)

(2)

Figure 8. Ablation study of the method. Images are generated with dataset “flat design”. Text prompts for each group: (1) “young brown
woman walking her dog in a park at night with a full moon”; (2) “a castle beside a lake”. Methods for each group: (a) Stable Diffusion;
(b) fined-tuned model by our full method; (c) our method w/o caption-retrieval augmentation; (d) our method w/o synonym and caption-
retrieval augmentations; (e) our method w/o content loss; (f) our method w/o sparse updating.

Food Doodle Flat Design Fantasy
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Figure 9. User study with the question: “which one of the three
generated images aligns best with the reference image in style?”

caption-retrieval), Content Loss, and Sparse Updating com-
plement each other well to provide high-quality few-shot
image synthesis. As can be seen from Fig. 8 (b), it contains
richer details about the environment, such as trees, stars in
the sky, and well-structured bodies of two objects.

Text Prompt Augmentations - Conditioning diversifi-
cation plays an important role in the generalization. With-
out those caption augmentations, the model starts to miss
many image details and struggles to generalize well for dif-
ferent prompts. For example, Fig. 8 (c) shows that when the
caption-retrieval augmentation is dropped, some structures
are missed or distorted, such as the moon (upper row) or the
peak of the castle (lower). If we further drop both synonym
and caption-retrieval augmentations, more objects start to
be generated problematically, such as the woman’s face and
the dog, as well as multiple moons in the sky (upper).

Content Loss - The content loss ensures context preser-
vation during style extraction from few-shot examples.
Fig. 8 (e) (upper) supplies good evidence of how the model
starts to forget about the main context of the prompt. The
word “park” is strictly mentioned in the prompt, but the
model misses that information during image synthesis.

Sparse Updating - Lastly, updating full timesteps can
overfit few-shot examples too. In many of our cases, the
sparse updating expresses the style images better. For exam-
ple, Fig. 8 (f) (upper) contains a visualization of a parkway,
however, misses the trees, which are important features of
the park. More results at different sparsity levels can be
found in this supplementary.

Besides the above visual results, we design a quantitative
metric by computing the logits-per-image similarity score
between {generated image, text prompt} in the CLIP fea-
ture space, averaged across all generated images mentioned
in Sec. 4.3. A higher score indicates better-preserving se-
mantics. For results in Fig. 8, such text-image content
scores are: 34.7965 (column b), 34.3004 (c), 32.3135 (d),
34.1156 (e), and 33.4526 (f). Those numbers align with our
visual impression. Tables 1 and 2 (both last columns) fur-
ther show the gain from combining Text Inversion and ours.

5. Conclusion
In this work, we presented Specialist Diffusion, a plug-

and-play fine-tuning framework to personalize large diffu-
sion models on an unseen style domain with only a small
number of images. By introducing customized data aug-
mentation, content loss and sparse updating, Specialist Dif-
fusion reaches both sample and computation efficiency in
diffusion model fine-tuning. Experiments have shown that,
aside from outperforming SOTA methods, Specialist Diffu-
sion can be combined with them for further improvement.
While our work mainly targets artistic and creative editing
for benign purposes, it is possible that our method, just like
every other generative model, might be abused to gener-
ate fake or hateful visual contents. Detecting and rejecting
those contents makes important future research.
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