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Abstract

Camouflaged Instance Segmentation (CIS) aims at pre-
dicting the instance-level masks of camouflaged objects,
which are usually the animals in the wild adapting their ap-
pearance to match the surroundings. Previous instance seg-
mentation methods perform poorly on this task as they are
easily disturbed by the deceptive camouflage. To address
these challenges, we propose a novel De-camouflaging Net-
work (DCNet) including a pixel-level camouflage decou-
pling module and an instance-level camouflage suppression
module. The proposed DCNet enjoys several merits. First,
the pixel-level camouflage decoupling module can extract
camouflage characteristics based on the Fourier transfor-
mation. Then a difference attention mechanism is proposed
to eliminate the camouflage characteristics while reserv-
ing target object characteristics in the pixel feature. Sec-
ond, the instance-level camouflage suppression module can
aggregate rich instance information from pixels by use of
instance prototypes. To mitigate the effect of background
noise during segmentation, we introduce some reliable ref-
erence points to build a more robust similarity measure-
ment. With the aid of these two modules, our DCNet can ef-
fectively model de-camouflaging and achieve accurate seg-
mentation for camouflaged instances. Extensive experimen-
tal results on two benchmarks demonstrate that our DCNet
performs favorably against state-of-the-art CIS methods,
e.g., with more than 5% performance gains on COD10K
and NC4K datasets in average precision.

1. Introduction

In the field of biology, camouflage is defined as a strategy
that animals use to adapt their body’s appearance (e.g., color
and pattern) to match their surroundings in order to achieve
concealing and avoid being hunted by predators [37]. Cam-
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Figure 1. Illustration of our motivation. (a) We propose to ex-
tract camouflage characteristics to model explicit de-camouflaging
for CIS. (b) Pairwise similarity between prototype and pixel is al-
ways erroneous. (c) The prototype-pixel correlation is based on
the prototype-reference and pixel-reference similarity distribution,
which is more accurate.

ouflaged Instance Segmentation (CIS) [22] aims at identi-
fying the location and predicting instance-level masks of
camouflaged objects, which has attracted more and more
attention due to its widespread applications in medical im-
age analysis [11,44], search-and-rescue work [9] and recre-
ational art [7], etc.

Despite the tremendous progress in instance segmen-
tation [14, 40, 41], there are few efforts [22, 33] working
on Camouflaged Instance Segmentation, as CIS is a more
challenging task where most camouflaged instances lack
obvious contrast with the background, making general in-
stance segmentation methods work poorly on this task. Re-
cent CIS approaches [22, 33] are generally based on tradi-
tional instance segmentation models, either by naively fus-
ing various general instance segmentation models [22] to
get better representations, or by directly using global in-
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teraction [33]. However, these approaches fail to explore
the core of CIS: de-camouflaging, i.e., eliminating camou-
flage characteristics of the target object. Without explicitly
de-camouflaging, the previous methods are easily disturbed
by similar background. De-camouflaging is a challenging
problem as no image-specific camouflage information is
provided as supervision signals. Intuitively, humans have
the ability to quickly recognise objects in a highly cam-
ouflaged scene. They first repeatedly discriminate the real
target characteristics from the camouflage characteristics at
the pixel level, and then aggregate the pixel information
to discern the whole target instance from the background.
This human visual mechanism motivates us to explore de-
camouflaging strategy from the pixel level to the instance
level in a progressive manner.

In order to model de-camouflage at both the pixel and
instance levels, a series of issues need to be considered.
(1) The pixel level de-camouflage. In essence, each pixel
feature of a camouflaged image contains the camouflage
characteristics and the target object characteristics. Note
that our goal is to remove camouflage characteristics and
maintain target object information, thus a question natu-
rally arises: How to decouple these two pieces of informa-
tion at the pixel level? (2) The instance level segmentation.
Based on the de-camouflaged pixels, we can naturally ag-
gregate the pixel information and infer the mask of the tar-
get instance. Currently, the transformer-based models [5,6]
have achieved leading performance for instance segmenta-
tion, where instance-specific prototypes are learned by con-
stantly interacting with pixel features for final segmenta-
tion. However, directly applying the transformer to CIS is
not trivial, as the prototypes would frequently absorb decep-
tive background information that has high similarity with
the objects during the interaction, thus failing to discover
desired targets accurately. As proved in Figure 1(b), the pro-
totype fish is more similar to background pixels than target
pixels in the camouflaged image. Therefore, we inevitably
face another question: How to focus on camouflaged in-
stances to achieve de-camouflaging?

Motivated by the above discussions, we propose an
end-to-end De-camouflaging Network (DCNet) by jointly
modeling pixel-level camouflage decoupling and instance-
level camouflage suppression for CIS. In the Pixel-level
Camouflage Decoupling module (PCD), we focus on de-
coupling camouflage characteristics and target information
fused in the pixel feature. First, we extract camouflage
characteristics with the assistance of frequency domain in-
formation. The Fourier spectrum amplitude contains low-
level statistics [34, 42] (e.g., color and texture of the en-
vironment, see Figure 5) that accords with the camouflage
characteristics. Based on the obtained description of cam-
ouflage characteristics, we propose a novel difference at-
tention mechanism to acquire de-camouflaged pixel fea-

tures. In this mechanism, we calculate the discrepancy be-
tween features of the original image and camouflage char-
acteristics (see Figure 1(a)), thereby decoupling the camou-
flage characteristics and valuable target information while
filtering out the background interference. In the Instance-
level Camouflage Suppression module (ICS), we aggre-
gate the de-camouflaged pixels to achieve final segmenta-
tion and meanwhile mitigate the effect of background noise
in prototype-pixel interactions. Specifically, we introduce a
set of instance prototypes to capture each camouflaged in-
stance through long-range context-aware interactions. To
constrain the interactions to favor target pixels over back-
ground pixels, we design a novel reference attention mecha-
nism, where we select de-camouflaged pixels with high con-
tribution to prototypes as reference points (see Figure 1(c)).
Then we calculate the similarity of prototype-reference and
pixel-reference, respectively, thereby obtaining similarity
distributions serving as soft multilabel to measure correla-
tions between prototypes and pixels. Highly similar pix-
els and prototypes must have consistent similarity distri-
butions. In this way, the soft multilabel-based correlation
is more accurate than the normal pairwise correlation, as
it benefits from consensus among reliable reference points
with a global receptive field. As a result, the correlation
noise brought by deceptive background can be suppressed
and more effective prototypes that contain rich instance in-
formation can be obtained.

The contributions of our method could be summarized as
follows: (1) We propose a novel De-camouflaging Network
(DCNet) by jointly modeling pixel-level camouflage decou-
pling and instance-level camouflage suppression for CIS.
(2) We propose two effective designs in DCNet, i.e., dif-
ference attention mechanism and reference attention mech-
anism, which can highlight target information and suppress
background interference. (3) Extensive experimental results
on two benchmark datasets demonstrate the effectiveness of
the proposed method, e.g., with more than 5% performance
gains on COD10K and NC4K datasets in average precision.

2. Related Work
Since camouflaged instance segmentation is a new

emerging task with very few papers, we mainly focus on
introducing several lines of research in camouflaged object
detection and instance segmentation.

2.1. Camouflaged Object Detection

Camouflaged Object Detection (COD), aiming at local-
izing camouflaged objects from its background, has a long
history in biology and art [10, 23]. Early works [18, 31, 36]
in this field focus on distinguishing objects in their camou-
flaging environment by utilizing handcrafted features, such
as texture, boundary, and intensity features. With the sig-
nificant advances in deep learning (DL), DL-based meth-
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Figure 2. Illustration of the proposed DCNet. Our framework mainly consists of two components: a pixel-level camouflage decoupling
module and an instance-level camouflage suppression module. (1) The pixel-level camouflage decoupling module aims at extracting cam-
ouflaged characteristics and eliminating camouflaged characteristics while reserving target object characteristics to obtain de-camouflaged
pixel features. (2) The instance-level camouflage suppression module is responsible for aggregating instance prototypes to achieve instance
segmentation meanwhile suppressing the background noise in prototype-pixel interactions.

ods [16, 19, 29, 32, 43, 45, 46] have significantly improved
the COD performance through end-to-end learning. Mei
et al. [29] developed a distraction mining strategy to ben-
efit the accurate segmentation of the camouflaged object.
Pang et al. [32] proposed a mixed-scale triplet network,
ZoomNet, to capture objects in complex scenes at differ-
ent “zoom” scales. Zhong et al. [45] was the first to claim
the COD task should go beyond the RGB domain and in-
troduced frequency clues to better detect camouflaged ob-
jects. Despite the large progress in camouflaged object de-
tection, camouflaged instance segmentation is a rarely stud-
ied task. In this paper, inspired by [34, 42, 45], we intro-
duce frequency domain transform to model the camouflage
characteristics and then achieve de-camouflaging for cam-
ouflaged instance segmentation. To the best of our knowl-
edge, we are the first to explore explicit de-camouflaging
for camouflaged instance segmentation.

2.2. Instance Segmentation

Instance segmentation is a challenging task as it requires
both pixel-level and instance-level mask prediction. Exist-
ing instance segmentation approaches can be broadly sep-
arated into two paradigms: two-stage methods [14, 17, 21]
and one-stage methods [1, 40, 41]. Two-stage methods gen-
erally utilize object detectors to generate proposal regions
and then segment the mask of each detected object. Based
on Faster R-CNN [35], Mask R-CNN [14] generates region-

of-interests (ROIs) in the first stage and utilizes an ex-
tra mask head to acquire the instance segmentation mask.
The following works continue to improve the performance
for this task in the two-stage manner. Recently, one-stage
methods have emerged and driven a new trend in this field.
YOLACT [1] combines the prototypes with the mask coeffi-
cients to produce instance masks without the detection step.
SOLOv2 [41], evolved from SOLO [40], directly decou-
ples the original mask prediction into kernel learning and
feature learning to generate final instance segmentation re-
sults. Currently, the transformer-based methods [5, 6] in-
troduce instance-specific prototypes to constantly interact
with pixel features with the help of some attention mech-
anisms for final instance segmentation, achieving leading
performance. However, the general instance segmentation
methods can not directly apply to CIS, as the camouflaged
objects present high similarity with the background. There-
fore, we base on the one-stage transformer-based paradigm
to design an end-to-end De-camouflaging Network, where
we introduce reliable reference points to build accurate sim-
ilarity measurement that is robust to deceptive backgrounds.

3. Our Method

In this section, we first present the overall architecture of
the proposed De-camouflage Network (DCNet), and then
describe each module in detail.
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3.1. Overall Architecture

Our DCNet mainly consists of two modules. (1) The
pixel-level camouflage decoupling module aims at extract-
ing camouflage characteristics based on the amplitude in-
formation of Fourier spectrum, and eliminating camouflage
characteristics via a difference attention mechanism. (2)
The instance-level camouflage suppression module is re-
sponsible for learning instance prototypes from interactions
with pixel features, through a reference attention mecha-
nism to suppress the erroneous correlations caused by de-
ceptive background.

3.2. Pixel-level Camouflage Decoupling

In order to decouple camouflage characteristics and tar-
get information fused in the pixel feature, we first model
the representation of camouflage characteristics by explor-
ing Fourier frequency domain. Then we design a difference
attention mechanism to remove camouflage characteristics
while maintaining target information.

Camouflage Characteristics Extraction. Generally,
the camouflage characteristics are mainly comprised of
color and texture information [10, 22]. On the other hand,
in the frequency domain, it is known that the amplitude
component of Fourier spectrum preserves low-level statis-
tics information. Therefore, we can utilize the amplitude
of Fourier spectrum to represent background information in
the camouflaged image. Specifically, given a camouflaged
image x ∈ RH×W×3, its Fourier transformation F(x) is
formulated as:

F(x)u,v =

H−1∑
i=0

W−1∑
j=0

xi,je
−J2π( i

H u+ j
W v), (1)

where J refers to the imaginary unit and each channel of
the image is computed independently. The amplitude and
phase components are then respectively expressed as:

A(x)u,v =
[
R2(x)u,v + I2(x)u,v

]1/2
P(x)u,v = arctan

[
I(x)u,v
R(x)u,v

]
,

(2)

where R(x) and I(x) represent the real and imaginary part
of F(x), respectively. To represent the camouflaged back-
ground, we fix the phase to a constant b (e.g., average value)
and reconstruct the image with the amplitude information as

x̃ = F−1[A(x)u,ve
−Jb], (3)

where F−1 indicates the inverse Fourier transformation.
Then, we feed the reconstructed image x̃ into a light-weight
CNN (e.g., ResNet-18 [15]) with global average pooling
layer to obtain the global camouflage characteristics g of
the original image.

Difference Attention Mechanism. Given image fea-
tures F ∈ Rh×w×c extracted from a backbone network
(e.g., ResNet-50 [15]), we remove the camouflage charac-
teristics g while retaining valuable target information by a
novel difference attention mechanism. In specific, we first
utilize two 1 × 1 convolution layers to map F and g to the
same dimension C, resulting in F̂ ∈ Rh×w×C and ĝ ∈ RC ,
respectively. The discrepancy between image features and
camouflage characteristics indicates the saliency informa-
tion of the target objects, helping to highlight the target in-
formation. Thus, we integrate the difference on all channels
for each pixel to obtain a difference map D ∈ Rh×w:

Di,j =

C∑
k=1

(F̂i,j,k − ĝk)
2, (4)

where i, j, and k are the index of height, width, and chan-
nel, respectively. By multiplying the original image features
with the difference map D, we can get the de-camouflaged
pixel features Fd as

Fd = F ◦D, (5)

where ◦ refers to the Hadamard product and D is broad-
casted to the same dimension as F. In addition, we fol-
low [33] to use a deformable self-attention layer [47] to fur-
ther incorporate context information from other pixels.

Fusion Layer. To acquire fine-grained target informa-
tion for more accurate segmentation, we use multi-scale
features from different stages of the backbone. Specifi-
cally, we first obtain the features from different stages of
the backbone network, and then obtain the corresponding
de-camouflaged features through the difference attention
mechanism. Finally, we fuse the processed features with
the FPN [24] network to generate the high-resolution pixel-
level feature E, which is used for subsequent instance seg-
mentation.

3.3. Instance-level Camouflage Suppression

In order to capture different camouflaged instances, we
learn a set of instance prototypes P = {pi}Ni=1, and each
pi ∈ R1×L is responsible for identifying whether each pixel
belongs to a camouflaged instance. To eliminate the back-
ground interference for prototype learning, we design refer-
ence attention to aggregate target information.

Reference Attention Mechanism. Given the de-
camouflaged pixel feature Fd derived from the pixel-level
camouflage decoupling module, we first obtain the queries
Q = [q1; q2; ...; qN ] from instance prototypes P, keys
K = [k1;k2; ...;khw] and values V = [v1;v2; ...;vhw]
from pixel features Fd = [f1;f2; ...;fhw] as

qi = piW
q,kj = f jW

k,vj = f jW
v, (6)
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where i ∈ 1, 2, ..., N, j ∈ 1, 2, ..., hw, and Wq ∈
RL×L,Wk,Wv ∈ Rc×L are linear projections. With the
prototype queries, we can compute the correlation between
each query-key pair independently as

si,j =
d (qi,kj)√

L
, (7)

where d(·, ·) denotes the distance metric which is the dot
product similarity in [39], and

√
L is a scaling factor. As the

camouflaged object presents high similarity with the sur-
rounding backgrounds, the prototype-pixel correlation rep-
resented by si,j is susceptible to background pixel interfer-
ence, resulting in erroneous segmentation. Intuitively, hu-
mans are able to identify camouflaged instances by repeat-
edly comparing the target with the surrounding reference
areas. Motivated by this, we first use an adaptive selection
process to select some reliable pixels from de-camouflaged
pixels Fd as references. In specific, to measure the reliabil-
ity of each pixel, we define and calculate the total contribu-
tion of each pixel with regard to all the prototypes, which is
formulated as:

uj =

N∑
i=1

si,j , j ∈ 1, 2, ..., hw. (8)

Then we select top-K pixels with the largest correla-
tions with the prototypes as reference points R ∈ RK×L.
In this way, we can pick out reliable reference points that
are adaptive to the instance prototypes. Based on reference
points, we first calculate the prototype-reference and pixel-
reference similarity as

sqi = ϕ1(qiR
⊤), skj = ϕ2(kjR

⊤), (9)

where ϕ1 and ϕ2 are feed-forward networks (FFN) contain-
ing two fully connected layers. sqi and skj can serve as soft
multilabel to measure the correlation between the i-th pro-
totype and the j-th pixel:

sqki,j = d(qi,kj ;R) = sqi (s
k
j )

⊤. (10)

Compared to si,j , sqki,j leverages the consensus among re-
liable reference points, thus suppressing the background
noises and leading to fewer erroneous correlations. Given
the correlation sqki,j , we can extract and purify target infor-
mation from pixel features to update instance prototypes as

p̃i =

hw∑
j=1

ai,jvj , ai,j =
exp(sqki,j)∑hw
j=1 exp(s

qk
i,j)

. (11)

Note that we have omitted the scaling factor and the multi-
head mechanism for notation simplicity.

Given the high-resolution pixel-level feature embedding
E and the learned instance prototypes p̃i, we can obtain N
mask predictions and according scores by

mi = sigmoid(Ep̃⊤
i ), yi = h(p̃i | σ), (12)

where h(· | σ) is a classifier parameterized by σ to predict
the confidence score. Following [6], we match a ground
truth label (including “no object”) for each predicted seg-
ment by the Hungarian matching algorithm. For training,
we use a cross-entropy loss to constrain the instance score
yi, and a linear combination of a focal loss [25] and a dice
loss [30] to constrain the mask prediction mi.

4. Experiment
4.1. Experiment Setup

Datasets. We evaluate our method on two datasets:
COD10K [10] and NC4K [28]. COD10K contains 5086
camouflaged images with high-quality instance-level anno-
tations, which are divided into 3040 training images and
2026 testing images. NC4K contains 4121 test camouflaged
images to evaluate the generalization ability of CIS mod-
els. Following the standard benchmark [33], we use the
instance-level annotations in COD10K to train our DCNet
and evaluate it on the test set of COD10K and NC4K.
Evaluation Metrics. We adopt AP50, AP75 and AP scores
as evaluation metrics to quantify the effectiveness of our
method. A true positive is counted if the intersection over
union (IoU) between the ground truth and the segmentation
is at least 50% or 75%, and the AP score is an overall metric
that combines different IoU thresholds.
Implementation Details. For fair comparisons, the feature
extractor is implemented by ResNet-50 [15] which is pre-
trained on ImageNet [8]. During our training, our model is
trained with batch size of 2, using the Adam optimizer [27]
with an initial learning rate of 0.0001 for 90,000 iterations.
We set the channel dimension C = L = 256. In the
instance-level camouflage suppression module, we set the
number of prototypes N as 10, and the number of reference
points K as 64, which turns out to generate the best seg-
mentation during our experiments as shown in Figure 4.

4.2. Comparison with State-of-the-arts

Quantitative results. Considering that CIS is a newly
emerging task, we also compare some general instance
segmentation methods besides the previous CIS methods
and all the methods adopt ResNet-50 [15] backbone for
fair comparisons. As demonstrated in Table 1, the pro-
posed DCNet consistently outperforms the state-of-the-art
methods by a large margin on both datasets. (1) On the
COD10K [10], our method outperforms the previous best
method OSFormer [33] by 4.3% in AP, indicating that our
DCNet is able to acquire more accurate segmentation of
camouflaged targets. (2) On the NC4K [28], Our model
yields an accuracy of 52.8% in AP, making an obvious per-
formance improvement by 7.0% in AP compared to the
second best performing method Mask2Former [5]. Since
the model is trained on the COD10K training set, the high
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Table 1. Comparisons of existing CIS methods and general instance approaches on COD10K [10] and NC4K [28] testing set, where all the
methods use ResNet-50 as feature extractor. The best results are shown in bold.

Methods COD10K-Test NC4K-Test Params(M) GFLOPsAP AP50 AP75 AP AP50 AP75

Mask R-CNN [14] 25.0 55.5 20.4 27.7 58.6 22.7 43.9 186.3
MS R-CNN [17] 30.1 57.2 28.7 31.0 58.7 29.4 60.0 198.5
Cascade R-CNN [2] 25.3 56.1 21.3 29.5 60.8 24.8 71.7 334.1
HTC [4] 28.1 56.3 25.1 29.8 59.0 26.6 76.9 331.7
BlendMask [3] 28.2 56.4 25.2 27.7 56.7 24.2 35.8 233.8
Mask Transfiner [20] 28.7 56.3 26.4 29.4 56.7 27.2 44.3 185.1
YOLACT [1] 24.3 53.3 19.7 32.1 65.3 27.9 - -
CondInst [38] 30.6 63.6 26.1 33.4 67.4 29.4 34.1 200.1
QueryInst [12] 28.5 60.1 23.1 33.0 66.7 29.4 - -
SOTR [13] 27.9 58.7 24.1 29.3 61.0 25.6 63.1 476.7
SOLOv2 [41] 32.5 63.2 29.9 34.4 65.9 31.9 46.2 318.7
MaskFormer [6] 38.2 65.1 37.9 44.6 71.9 45.8 45.0 174.2
Mask2Former [5] 39.4 67.7 38.5 45.8 73.6 47.5 43.9 241.0
OSFormer [33] 41.0 71.1 40.8 42.5 72.5 42.3 46.6 324.7
DCNet (ours) 45.3 70.7 47.5 52.8 77.1 56.5 53.4 207.0

Table 2. Comparison of the different components in pixel-level
camouflage decoupling module in terms of AP scores.

COD10K NC4K
PCD (ours) 45.3 52.8
−camouflage attribute extractor 43.1(−2.2) 48.1(−4.7)

−difference attention mechanism 44.1(−1.2) 51.3(−1.5)

−both 2 components above 40.2(−5.1) 46.4(−6.4)

performance on NC4K indicates that our method also has
better generalization ability. Notice that our method does
not achieve the highest performance on AP50 metric for the
NC4K because different from the previous CIS method, we
do not use additional Non-maximum suppression (NMS)
post-processing to remove redundant predictions. For AP50,
our more accurate segmentation results cannot increase the
number of true positive (TP) under the 50% IoU thresh-
old, while redundant predictions will increase the number
of false positive (FP), thus our method has no obvious ad-
vantages. For AP75, our high precision segmentation will
increase TP with a large margin. The overall metric AP
reflects the superiority of our method over other methods.
There is a similar trend on NC4K. In addition, the lower
GFLOPs of our DCNet compared to state-of-the-art meth-
ods indicates that our model achieves high segmentation
ability while maintaining high computation efficiency.
Qualitative Results. As shown in Figure 3, our proposed
method is capable of de-camouflaging by using the differ-
ence attention mechanism at the pixel level, and also able
to identify the accurate locations of target camouflaged ob-
jects at the instance level. Compared to previous methods,

Table 3. Comparisons of different attention mechanisms in the
instance-level camouflage suppression module in terms of AP
scores.

Attention Mechanism COD10K NC4K
cross-attention [39] 42.4 49.5
masked attention [5] 44.7 51.7
reference attention (ours) 45.3 52.8

our DCNet performs better at boundaries of camouflage
instances (see the first 4 columns), suppresses distracting
background regions (see 5th to 6th columns), and distin-
guishes multiple instances well (see the last 2 columns).

4.3. Ablation Study

We conduct comprehensive ablation studies on COD10K
and NC4K to verify the effectiveness of our modules.
Effectiveness of the Pixel-level Camouflage Decoupling
Module. The pixel-level camouflage decoupling module
mainly consists of a camouflage attribute extractor and a
difference attention mechanism. We validate the impor-
tance of each component by removing them one at a time.
As shown in Table 2, we replace the proposed camouflage
attribute extractor with a learnable vector, and the perfor-
mance drops by an average of 3.5% across two datasets. It
indicates that the Fourier spectrum amplitude is effective
in modeling the camouflage characteristics, verifying that it
is hard to learn de-camouflage without image-specific cam-
ouflage information supervision. Then we replace the dif-
ference attention mechanism with general subtraction op-
erations. The reduced performance indicates that our pro-
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Figure 3. Qualitative results of DCNet compared with state-of-the-art methods. Different colored masks represent different instances.

Table 4. Comparison of using different scales of features in terms
of AP scores.

COD10K NC4K
single scale (1/32) 45.2 52.5
single scale (1/16) 44.8 51.6
single scale (1/8) 45.1 52.2
multiple scales 45.3 52.8

posed mechanism can well model the discrepancy between
image features and camouflage characteristics. Removing
both of the components leads to huge performance degra-
dation, showing that the combination of them is essential in
improving the camouflaged object segmentation.
Effectiveness of the Instance-level Camouflage Suppres-
sion Module. As shown in Table 3, the reference atten-
tion mechanism in our instance-level camouflage suppres-
sion module has the highest AP score on both datasets.
Compared to vanilla cross-attention [39], our proposed ref-
erence points can effectively suppress the noise brought by
background pixels in the prototype-pixel interaction, thus
obtaining significant improvement for accurate segmenta-
tion. Meanwhile, our method is superior to existing cross-
attention variants, such as the masked attention [5] in the
segmentation field.
Effectiveness of Hierarchical Features To explore de-
camouflage at multiple feature levels, we feed 3 scales of
features (i.e., stride of 32, 16, and 8) into the difference at-
tention mechanism, respectively. As shown in Table 4, low-
resolution features exceed other scales. This may attribute

Table 5. Comparisons with OSFormer [33] of different backbones
on COD10K [10] and NC4K [28] in terms of AP scores.

Method Backbone COD10K NC4K
OSFormer

R50
41.0 42.5

DCNet (ours) 45.3 52.8
OSFormer

R101
42.0 44.4

DCNet (ours) 46.8 53.5
OSFormer

Swin-T
47.7 50.2

DCNet (ours) 50.3 56.3
OSFormer

Swin-S
52.1 56.7

DCNet (ours) 52.3 58.4

49.8

52.2
51.5

52.8
51.8 52.0

43.0

44.7 44.5

45.3
45.1

44.0

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

2 5 8 10 12 20

NC4K COD10K

51.9
52.2

52.4
52.8

52.0

45.1
45.5

44.6

45.3 45.2

44.0 

44.5 

45.0 

45.5 

46.0 

46.5 

47.0 

50.5 

51.0 

51.5 

52.0 

52.5 

53.0 

8 16 32 64 128

NC4K COD10K 

AP AP AP AP

(a) Number of prototypes (b) Number of reference points

Figure 4. Comparisons of performance with different numbers of
prototypes and reference points on COD10K [10] and NC4K [28].

to the retention of object semantic information. The highest
performance in this experiment shows that the contribution
of each scale is complementary to each other. Using single-
scale features alone is not enough to model the target infor-
mation, thus combining them together can further boost the
performance.
Compatibility for Feature Extractor. We equip our DC-
Net with different feature extractor backbones, i.e., ResNet-
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Figure 5. Illustration of the amplitude images and difference maps
in our proposed difference attention.

50 [15], ResNet-101 [15], Swin-T [26], and Swin-S [26].
All of them are pre-trained on ImageNet-1K [8]. As shown
in Table 5, our method performs the best in all cases on both
datasets, proving that our approach has tremendous poten-
tial for further improvement.
Analysis of Hyperparameters. In the instance-level cam-
ouflage suppression module, prototypes play an important
role in capturing instances by aggregating object pixels. As
shown in Figure 4(a), we conduct quantitative experiments
to analyze how many prototypes are suitable for instance
segmentation. It can be seen that too many or too few pro-
totypes will damage the AP metric. In fact, the number of
prototypes N should be larger than the count of instances in
an image to avoid instance fusion error. While superabun-
dant prototypes will cause many prototypes to match “no
object” during training. We choose N = 10 by balancing
the performance on both datasets. Besides, in the reference
attention mechanism, the number of reference points K in-
fluences the similarity distributions between prototypes and
pixels. As shown in Figure 4(b), we can observe that the
performance on NC4K continues to grow until K = 64,
which means that it is sufficient for building appropriate
prototype-pixel correction.

4.4. Visualizations

Visualization of Difference Map. As shown in Figure 5,
the 2nd row exhibits the amplitude images that are gener-
ated through Fourier transformation, which can be consid-
ered as camouflage characteristics. With the help of the dif-
ference attention mechanism, our network can remove the
confusing background and localize the accurate salient ar-
eas (see 3rd row), which turn out to be the correct regions
of camouflaged instances.
Visualization of Reference Attention. To explore the ref-
erence attention mechanism’s ability to suppress the back-
ground noise, we make qualitative visualization to compare

(a) Camouflaged
Image

(b) Cross-
Attention

(c) Masked
Attention

(d) Reference
Attention

(e) Ground
Truth

Figure 6. Visualizations of the activation map with different atten-
tion mechanisms.

different attention mechanisms. As shown in Figure 6 (d),
with the proposed reference attention, the high response is
clustered in the foreground area and the prototype pays lit-
tle attention to the background area. In contrast, in Figure 6
(b), prototypes with the cross-attention [39] tend to absorb
pixels from the non-target region. And in in Figure 6 (c),
with the masked attention [5], most background pixels are
masked, while some foreground pixels are also suppressed,
leading to sub-optimal performance. Thus, the reference
mechanism plays an important role in mitigating the effect
of background noise in prototype-pixel interactions, which
helps to achieve more accurate segmentation.

5. Conclusion
In this paper, we propose an end-to-end De-

camouflaging Network (DCNet) by jointly modeling
pixel-level camouflage decoupling and instance-level
camouflage suppression for camouflaged instance segmen-
tation. We design a Pixel-level Camouflage Decoupling
module to model and further eliminate the camouflage
characteristics based on the frequency domain informa-
tion. Besides, an Instance-level Camouflage Suppression
module is proposed to achieve prototype-based instance
segmentation and mitigate the effect of background noise
by introducing reference points. Extensive experimen-
tal results on two benchmark datasets demonstrate the
effectiveness of the proposed method.
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