
GeoLayoutLM: Geometric Pre-training for Visual Information Extraction

Chuwei Luo∗, Changxu Cheng∗, Qi Zheng, Cong Yao
DAMO Academy, Alibaba Group

{luochuwei,ccx0127,zhengqisjtu,yaocong2010}@gmail.com

Abstract

Visual information extraction (VIE) plays an important
role in Document Intelligence. Generally, it is divided
into two tasks: semantic entity recognition (SER) and rela-
tion extraction (RE). Recently, pre-trained models for doc-
uments have achieved substantial progress in VIE, partic-
ularly in SER. However, most of the existing models learn
the geometric representation in an implicit way, which has
been found insufficient for the RE task since geometric in-
formation is especially crucial for RE. Moreover, we reveal
another factor that limits the performance of RE lies in the
objective gap between the pre-training phase and the fine-
tuning phase for RE. To tackle these issues, we propose
in this paper a multi-modal framework, named GeoLay-
outLM, for VIE. GeoLayoutLM explicitly models the geo-
metric relations in pre-training, which we call geometric
pre-training. Geometric pre-training is achieved by three
specially designed geometry-related pre-training tasks. Ad-
ditionally, novel relation heads, which are pre-trained by
the geometric pre-training tasks and fine-tuned for RE, are
elaborately designed to enrich and enhance the feature rep-
resentation. According to extensive experiments on stan-
dard VIE benchmarks, GeoLayoutLM achieves highly com-
petitive scores in the SER task and significantly outperforms
the previous state-of-the-arts for RE (e.g., the F1 score of
RE on FUNSD is boosted from 80.35% to 89.45%) 1.

1. Introduction
Visual information extraction (VIE) is a critical part in

Document AI [3, 29, 47]. It has attracted more and more at-
tention from both the academic and industrial community.
VIE involves semantic entity recognition (SER, a.k.a. en-
tity labeling) and relation extraction (RE, a.k.a. entity link-
ing) from visually-rich documents (VrDs) such as forms
and receipts [3, 17, 22, 35, 39, 41, 45, 46]. Recent years have
witnessed the great power of pre-trained multi-modal mod-
els [1, 7, 8, 12, 15, 20–22, 30, 38, 40, 41, 43] in VIE tasks,

*Both authors contributed equally to this work.
1https://github.com/AlibabaResearch/AdvancedLiterateMachinery
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Figure 1. Incorrect relation predictions by the previous state-of-
the-art model LayoutLMv3 [15]. (a) LayoutLMv3 tends to link
two entities relying more on their semantics than the geometric
layout, i.e., the entity “212-450-4785” is linked to “Fax Number”
regardless of their relationship in layout. (b) LayoutLMv3 suc-
cessfully predicts the link in the upper half part but misses the link
below, although both links are similar in geometric layout. These
two examples clearly show the importance of geometric infor-
mation in relation extraction (RE).

Precision Recall F1
LayoutLMv3 75.82 85.45 80.35
+ geometric constraint 79.87 85.45 82.57

Table 1. The RE performance improvement by introducing a sim-
ple geometric restriction (on the FUNSD dataset).

especially the SER task. Compared with SER, the RE task,
which aims at predicting the relation between semantic en-
tities in documents, has not been fully explored and remains
a challenging problem [12, 22]. RE is essential to provide
additional structural information closer to human compre-
hension of the VrDs [45]. It makes the open-layout infor-
mation extraction possible, e.g., for open-layout key-value
linking and form-like items grouping.

It is widely accepted that document layout understand-
ing is crucial for VIE [1, 7, 8, 15, 21, 22, 30, 38, 40, 41, 43],
especially for RE [12, 22]. The geometric relationships, a
specific form for describing document layout, are impor-
tant for document layout representations [22, 27, 31]. Most
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previous pre-trained models for VrDs learn layout represen-
tations implicitly by adding coordinates into the model in-
puts, combining the relative position encoding or supervis-
ing by alignment-related pre-training tasks like text-image
alignment [15, 30, 43] and masked vision language model-
ing [1,7,12,15,21,22,22,40,41,43]. However, it is not guar-
anteed that the geometric layout information is well learned
in these models. Taking the state-of-the-art model Lay-
outLMv3 as an example, we find it would make mistakes
in certain relatively simple scenarios, where the geometric
relations between entities are not complicated. As shown in
Fig. 1, LayoutLMv3 seems to link two entities depending
more on the semantics than the geometric layout. This in-
dicates that its layout understanding is not sufficiently dis-
criminative. To further verify our conjecture, we conduct
an experiment by filtering the false positive relations using
a simple geometric restriction (the linkings between entities
should not point up beyond a certain distance), the precision
would increase by a large margin (more than 4 points) while
the recall is controlled unchanged, as detailed in Tab. 1.
This experiment proves that LayoutLMv3 does not fully
exploit the useful geometric relationship information. Be-
sides, most existing methods did not directly take the rela-
tion modeling into consideration in pre-training. They usu-
ally adopt token/segment-level classification or regression,
which might underperform on downstream tasks related to
relation modeling. Therefore, it is necessary to learn a bet-
ter layout representation for document pre-trained models
by modeling the geometric relationships between entities
explicitly during pre-training.

During RE fine-tuning, previous works usually learn a
task head like a single linear or bilinear layer [12, 22] from
scratch. On the one hand, since the higher-level pair re-
lationship features, which are beyond the token or text-
segment features in documents, are complex, we argue that
a single linear or bilinear layer is not always adequate to
make full use of the encoded features for RE. On the other
hand, the RE task head initialized randomly is prone to
overfitting with limited fine-tuning data. Since the pre-
trained backbone has shown tremendous potential [4, 5],
why not pre-train the task head in some way simultane-
ously? Several works [10, 14, 26] have proved that smaller
gap between pre-training and fine-tuning leads to better per-
formance for downstream tasks. Hence, there is still consid-
erable room for the design and usage of the RE task head.

Based on the above observations, we establish a multi-
modal pre-trained framework (termed as GeoLayoutLM)
for VIE, in which a geometric pre-training strategy is de-
signed to explicitly utilize the geometric relationships be-
tween text-segments, and elaborately-designed RE heads
are introduced to mitigate the gap between pre-training
and fine-tuning on the downstream relation extraction task.
Specifically, three geometric relations are defined: the re-

lation between two text-segments (GeoPair), that among
multiple text-segment pairs (GeoMPair), and that among
three text-segments (GeoTriplet). Correspondingly, three
self-supervised pre-training tasks are proposed. GeoPair re-
lation is modeled by the Direction and Distance Modeling
(DDM) task in which GeoLayoutLM needs to tell the di-
rection of a directed pair and identify whether a segment is
the nearest to another one in the direction. Furthermore, we
design a brand-new pre-training objective called Detection
of Direction Exceptions (DDE) for GeoMPair, enabling our
model to capture the common pattern of directions among
segment pairs, enhance the pair feature representation and
discover the detached ones. For GeoTriplet, we propose
a Collinearity Identification of Triplet (CIT) task to iden-
tify whether three segments are collinear, which takes a step
forward to the modeling of multi-segments relations. It is
important for non-local layout feature learning especially
in form-like documents. Additionally, novel relation heads
are proposed to learn better relation features, which are pre-
trained by the geometric pre-training tasks to absorb prior
knowledge about geometry, thus mitigating the gap between
pre-training and fine-tuning. Extensive experiments on five
public benchmarks demonstrate the effectiveness of the pro-
posed GeoLayoutLM.

Our contributions are summarized as follows:

1) This paper introduces three geometric relations in dif-
ferent levels and designs three brand-new geometric
pre-training tasks correspondingly for learning the ge-
ometric layout representation explicitly. To the best
of our knowledge, GeoLayoutLM is the first to ex-
plore the geometric relations of multi-pair and multi-
segments in document pre-training.

2) Novel relation heads are proposed to benefit the re-
lation modeling. Besides, the relation heads are pre-
trained by the proposed geometric tasks and fine-tuned
for RE, thus mitigating the object gap between pre-
training and fine-tuning.

3) Experimental results on visual information extraction
tasks including key-value linking as relation extrac-
tion, entity grouping as relation extraction, and seman-
tic entity recognition show that the proposed GeoLay-
outLM significantly outperforms previous state-of-the-
arts with good interpretability. Moreover, our model
has notable advantages in few-shot RE learning.

2. Related Works
Visual information extraction Visual information extrac-
tion (VIE) aims at extracting entities from visually-rich doc-
ument images, typically including semantic entity recog-
nition (SER) and relation extraction (RE) [12, 17, 22, 42].
Early works based on graph neural networks [18,27,31,33,
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34, 36, 44] learned node features of text and layout in the
downstream VIE tasks directly. Recently, pre-training tech-
niques have boosted the performance on document under-
standing. Various pre-training tasks are designed to learn
better text/image features and their alignment for stronger
multimodal document representation [1, 7, 8, 15, 21, 22, 25,
30, 38, 40, 41, 43]. Although they have achieved significant
improvement on SER, RE remains largely underexplored
and is also a challenging task [12, 16, 22, 45]. BROS [12]
encoded the relative spatial positions of texts into BERT [4]
to learn the layout representation better. In this paper, we
focus on adopting pre-training to obtain better features.
Geometric information Geometric information is an im-
portant clue to represent the document layout. Liu et al. [27]
utilized relative 2D positions in GNN. GraphNEMR [31]
incorporated the 8-geometry neighbours and geometry dis-
tance information in document modeling for SER. SPADE
[16] re-formulated the self-attention layer by introducing a
relative spatial vector which is composed of relative coordi-
nates, distance and angle embeddings. StrucText [22] pro-
posed a Paired Boxes Direction task to model the geometric
direction of text-segments in pre-training. However, these
works only explored pair-level geometric relations. We ex-
pand geometric relation to more than two segments: the re-
lations of multi-pairs and triplets are fully explored.
Pre-training / Fine-tuning Recent studies on pre-training
also focused on alleviating the gap between the pre-training
stage and the downstream fine-tuning stage [2, 9, 10, 13, 14,
26]. Hu et al. [14] identified and studied the training schema
gap and the task knowledge gap, and converted the down-
stream ranking task into a pre-training schema. Prompt-
based models were proposed to adapt to various scenarios
by converting downstream tasks to proper prompts which
are consistent with the schema in pre-training [26]. Inspired
by these works, we pre-train our elaborately-designed rela-
tion heads using the geometric tasks to absorb geometric
knowledge adequately and improve its generalization in re-
lation representation from the large-scale pre-training data.

3. GeoLayoutLM
GeoLayoutLM is a multi-modal framework for VIE. Ge-

ometric information is explicitly encoded and utilized by
the novel geometry-based pre-training tasks and the pre-
training of the elaborately-designed relation heads. Addi-
tionally, an effective strategy for RE inference is introduced.

3.1. Model Architecture

3.1.1 Backbone

Inspired by the two-stream structure in METER [6] and
SelfDoc [21], the backbone of GeoLayoutLM is composed
of an independent vision module, a text-layout module, and
interactive visual and text co-attention layers. As shown in
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Figure 2. An overview of GeoLayoutLM.

Fig. 2, the vision module takes the document image as in-
put, and the text-layout module is fed with layout-related
text embeddings. Following LayoutLMv3 [15] and BiVL-
Doc [30], the text embeddings are the summation of 5 em-
beddings, including the token embeddings, 1D position em-
beddings, 1D segment rank embeddings, 1D segment BIE
embeddings and 2D segment box embeddings. The out-
put feature of the vision module is processed by the global
average pooling [24] and RoI align [11] to compute the
global visual feature Fv0 and the n visual segment fea-
tures {Fvi|i ∈ [1, n]}. Then the visual co-attention module
takes {Fvi} as query and {Fti} from the text-layout mod-
ule as key and value for attention calculation, and outputs
the fused visual features {Mvi}. The fused textual fea-
tures {Mti} are calculated in a similar way. Finally, we
add Mvi and the corresponding first token feature of the
segment Mt,b(i) to obtain the i-th segment feature Hi.

3.1.2 Relation Heads

The semantic entity recognition (SER) in VIE is usually
modeled as a token classification problem. Learning a sim-
ple MLP classifier is effective for SER [15]. In the relation
extraction (RE) of VIE, the final relation matrix was usu-
ally produced by a single linear or bilinear layer [12, 22].
Since the relationships of text-segments are relatively com-
plex and related to each other, we argue that a simple linear
or bilinear layer is not enough for relation modeling.

In this work, we propose two relation heads, including a
Coarse Relation Prediction (CPR) head and a novel Relation
Feature Enhancement (RFE) head, to enhance the relation
feature representation for both relation pre-training and RE
fine-tuning. The RFE head is a lightweight transformer [37]
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consisting of a standard encoder layer, a modified decoder
layer that discards the self-attention layer for computation
efficiency, and a fully-connected layer followed by the sig-
moid activation. As shown in Fig. 3, the text-segment fea-
tures {Hi} are fed into the CRP head (a bilinear layer)
to predict a coarse relation matrix r(0). To build the re-
lation features Fr, the segment feature pairs are passed to
a pair feature extractor (linearly mapping the concatenated
paired features). Then we select positive relation features
F+
r based on r(0). Note that F+

r probably has some false
positive relation features since r(0) is the coarse prediction.
F+
r is then fed into the RFE encoder to capture the inter-

nal pattern of the true positive relations in each document
sample, which is based on the assumption that most of the
predicted positive pairs in r(0) are true. All the relation fea-
tures Fr and the memory from the RFE encoder are fed into
the RFE decoder to compute the final relation matrix r(1).

3.2. Pre-training

GeoLayoutLM is pre-trained with four self-supervised
tasks simultaneously. To learn multimodal contextual-
aware text representations, the widely-used Masked Visual-
Language Model (MVLM) [15, 40, 43] is adopted on both
{Fti} and {Mti}. Three proposed self-supervised geomet-
ric pre-training tasks are described in Sec. 3.2.2.

3.2.1 Geometric Relationship

To better represent document layout by geometric informa-
tion, three geometric relationships are introduced, which
are GeoPair, GeoMPair and GeoTriplet. The relation be-
tween two text-segments (a pair) is denoted as GeoPair,
which is also considered in previous works [22, 27, 31] to
model the relative layout information between two text-
segments. We further extend GeoPair to GeoMPair that
is the relation among multiple segment pairs, to explore the
relation of relations. Like the relation of three points in ge-
ometry, GeoTriplet is also devised, which is the relation
among three text-segments.

3.2.2 Geometric Pre-training

To make our model understand the geometric relation-
ships and achieve good layout representations, we pro-
pose three geometry-related self-supervised pre-training
tasks to model GeoPair, GeoMPair, and GeoTriplet re-
spectively. The input of these tasks are text-segments
features {Bi} which can be either of the five features:
{Hi}, {Mvi}, {Fvi}, {Mt,b(i)}, {Ft,b(i)}, where b(i) is the
index of the first token of the i-th segment.
Direction and Distance Modeling for GeoPair To better
understand the relative position relationship of two text-
segments, as shown in Fig. 4(a), the Direction and Distance

Pair Feature 
Extractor

CRP Head

r(0)

RFE 
Decoder

RFE 
Encoder

Fr

RFE Head

F#"

r(1)

H1 H2 H3

Figure 3. Relation heads.

Modeling (DDM) is proposed, in which both the direction
and distance are measured.

We consider 9 directions, including 8 neighbor ones [31]
and the overlapping. Hence, the direction modeling is ex-
actly a 9-direction classification problem:

P direct
ij = Softmax(Linear([Bi, Bj ])) (1)

where P direct
ij is the predicted direction probability, [·] is the

concatenation operation.
The distance between two segments is defined as the

minimum distance between the two bounding boxes [31].
The distance is modeled as a binary classification problem
that is to identify whether the j-th text-segment is the near-
est to the i-th one in their direction. There is at most 1 near-
est segment judged by distance in each of the 8 neighbor
directions. A bilinear layer is applied here:

P dist
ij = Sigmoid(Bilinear(Bi, Bj)) (2)

where P dist
ij is the probability of the nearest pair identifi-

cation. Note that the operation in Eq. (2) shares the same
process of CRP, which achieves the goals of pre-training
the CRP head.

The loss function LDDM of DDM task is defined as:
LDDM = CrossEntropy(P direct, Y direct)

+ BCELoss(P dist, Y dist)
(3)

where Y direct and Y dist are labels for direction and dis-
tance modeling.
Detection of Direction Exceptions for GeoMPair The re-
lationships within a certain document area usually have
some common geometric attributes. As shown in Fig. 4(b),
the directions of key-value pairs are the same (arrows in red)
in the wireless form area. The link in green can be easily
judged as false due to its exceptional direction. Motivated
by this, the Detection of Direction Exceptions (DDE) task
is proposed to model GeoMPair for the non-local layout un-
derstanding in documents.

The DDE task is to discriminate segment pairs whether
their directions are exceptional in a sample set S. A di-
rection is regarded as an exception if the pairs with the di-
rection have a minor ratio in the given positive set Sp. For
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Figure 4. Geometric pre-training.

example, given a positive set in which more than 60% of
pairs have the same direction Right, and a sample set, we
label the right pairs in the sample set as 1, while the pairs
of other directions as 0 (exception), as shown in Fig. 4(b).
The pair feature Li is built by linearly projecting the con-
catenated segment features. Then, the positive set and the
sample set are fed into the proposed RFE head to predict
the discrimination probabilities of the sample set. The bi-
nary cross-entropy loss is applied.

PDDE = RFE(Sp, S) (4)

LDDE = BCELoss(PDDE , Y DDE) (5)

Collinearity Identification of Triplet for GeoTriplet The
geometric alignment of segments is an important expression
of document layout, which is meaningful and involves the
relation of multiple segments. Like the collinear attribute
of three points, we define that of three segments. Given
three text-segments Bi, Bj and Bk, if the direction from Bi

to Bj , Bj to Bk and Bi to Bk are the same or antiphase,
they are collinear; otherwise non-collinear. The collinear
cases can be further divided into four classes: horizontal
line, vertical line, forward slash and backslash. As shown in
Fig. 4(c), the left-aligned segments with the same entity tag
are vertically collinear. Correspondingly, a pre-training task
called Collinearity Identification of Triplet (CIT) is pro-
posed. The triplet feature is the summation of three segment
features since the collinear attribute is undirected. Subse-
quently, the 5-classification is made for CIT:

PCIT
ijk = Softmax(Linear(Bi +Bj +Bk)) (6)

LCIT = CrossEntropy(PCIT , Y CIT ) (7)

The full pre-training objective of GeoLayoutLM is:

Lpt = LMVLM + LDDM + LDDE + LCIT (8)

3.3. Fine-tuning and Inference

During fine-tuning, the relation heads are initialized with
the pre-trained parameters, which mitigates the gap between

pre-training and fine-tuning. The cross-entropy and binary
cross-entropy function are utilized in SER loss LSER and
RE losses {LRE,i|i = 0, 1} (corresponds to r(0) and r(1))
respectively. They are optimized together:

Lft = LSER +

1∑
i=0

LRE,i (9)

In the RE task, for a relation pair Bj → Bi, Bj is called
the father node, and Bi is the son node. r(1)i,j stands for the
probability that Bj is the father of Bi. The final relation

output R was usually defined as: Rij = 1

(
r
(1)
i,j > 0.5

)
,

where 1(·) is the indicator function. Optionally, we pro-
pose to impose the Restriction on the Selection of Fathers
(RSF) for each son during the inference if some segments
have several father nodes. Specifically, the j-th segment is
regarded as a father node of the i-th one only if r(1)i,j > 0.5

and r
(1)
i,j is close to the maximum probability:

Rij = 1

(
r
(1)
i,j > 0.5

)
× 1

(
max

k
r
(1)
i,k < r

(1)
i,j + τ

)
(10)

where τ is the margin between the probabilities.
We suggest an additional variance loss for RSF espe-

cially. Since the probabilities of father nodes are expected
to be as close as possible, the variance of them should be as
small as possible. During fine-tuning, the variance loss is
exerted on the son nodes that have more than 1 father node.

4. Experiments
4.1. Implementation Details

The backbone detail is described in Sec. 3.1.1. The vi-
sion module is composed of a ConvNeXt [28] and a multi-
scale FPN [23]. BROS [12] is used as our text-layout mod-
ule. The visual and textual co-attention modules are both
equipped with a transformer decoder layer.

The document images are resized to 768 × 768. The
embedding size and feed-forward size of the co-attention
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module are 1024 and 4096 respectively. In the RFE head,
the relation feature size and feed-forward size are both set
to 1024. The number of attention heads is 2. τ is 1e− 3.
Pre-training Details. Following the LayoutLM series
[15, 40, 43], we pre-train our model on the IIT-CDIP Test
Collection 1.0 [19], which consists of around 11 million
document images. However, the original line-level OCR
annotation in the dataset will lead to the monotony of
paired box directions (only top and bottom exist in most
documents), which is extremely harmful to geometric pre-
training. To break the imbalance in the distribution of the
geometric relationship, we modify the OCR annotation by
a Poisson Line Segmentation algorithm for each document
with a probability of 90%. Algorithm 1 lists the procedure
of splitting a line.

Algorithm 1: Poisson Line Segmentation
Input: An original line from OCR annotation L
Output: The processed line(s) L′

1 Get the number of words in Li → Nw;
2 pl = (1− 1/(Nw − 0.5)); // split probability

3 if Nw < 2||rand() > pl then
4 L′ ← L
5 else
6 Ns = poisson(λ = min(Nw/3, 7));
7 Split L into Ns segments→ L′;
8 end

The AdamW optimizer is applied for pre-training, with
the initial learning rate of 1e-5 and a linear decay learning
rate scheduler. We use a batch size of 224 to train GeoLay-
outLM for 2 epochs on the IIT-CDIP dataset. The maximum
sequence length is set to 512. The maximum number of
text-segments is set to 256. Following [15,40,43], we mask
15% text tokens in which 80% are replaced by the [MASK]
token, 10% are replaced by a random token, and 10% keeps
unchanged. In DDM, 16 text-segments are randomly sam-
pled. Then, for each of them, we randomly sample 32 dif-
ferent text-segments to build paired text-segments. In DDE,
40 segment pairs are randomly sampled in the document. In
CIT, 16 triple text-segments are randomly sampled.
Fine-tuning Details. Following the LayoutLM series [8,15,
43], the SER task is regarded as a sequence labeling prob-
lem aiming to tag each word with a label. For the RE task,
to conduct fair comparisons with previous methods (e.g.,
BROS [12]), the ground truth entity labels are used. We
evaluate GeoLayoutLM on two popular benchmark datasets
with five subtasks. FUNSD [17] is a scanned document
dataset for form understanding. It has 149 training sam-
ples and 50 test samples with multifarious layouts. We fo-
cus on both the semantic entity recognition (a.k.a. entity
labeling) and the relation extraction (a.k.a. entity linking)
tasks. CORD [32] is a camera-captured receipt dataset for

information extraction. It contains 800 training, 100 vali-
dation and 100 test images. In CORD, three subtasks are
evaluated including semantic entity recognition (SER), re-
lation extraction as entity grouping (REaGRP) and relation
extraction as key-value linking (REaKV). We fine-tune our
GeoLayoutLM for 200 epochs in FUNSD and 100 epochs
in CORD with the batch size of 6. The learning rate is ini-
tially set to 2e− 5.

4.2. Comparison with the SOTAs

We compare our results with the previous state-of-the-
arts. As shown in Tab. 2, our GeoLayoutLM obtains the
best F1 score in both semantic entity recognition (SER) and
relation extraction (RE).

For the FUNSD SER task, GeoLayoutLM and Lay-
outLMv3 both significantly surpass other models. Besides,
the SER results on FUNSD and CORD also suggest that
the geometric pre-training does the SER slightly more fa-
vorable than the popular text-image alignment. For the RE
task, GeoLayoutLM significantly outperforms the previous
state-of-the-art by 9.1% on FUNSD, and reaches or nearly
reaches the perfect performance in CORD. It demonstrates
the great superiority of our model in extracting relations.
Even if we only fine-tune for 100 epochs, we still achieve
(SER: 92.24%, RE: 88.80%) on FUNSD.

GeoLayoutLM backbone is slightly heavy due to the
two-tower encoder. Our vision module is flexible and can be
replaced by others. LayoutLMv3 has a coupling feature en-
coder for visual patches and text, which contributes to fewer
parameters. The relation head we used in LayoutLMv3 is
the same as the CPR head in GeoLayoutLM (1M Params).
The proposed RFE head (14M) only constitutes 3.5% of the
total parameters. On one Nvidia V100 GPU, the average in-
ference time of GeoLayoutLM is 80.17ms, which is nearly
the same as that of LayoutLMv3 (79.69ms).

4.3. Ablation Study

To better understand the effectiveness of geometric pre-
training, the design of the RE heads and the RSF strategy in
GeoLayoutLM, we perform plentiful ablation studies.
Impact of Geometric Pre-training. To figure out how each
pre-training task influences the information extraction re-
sult, we pre-train our model using different combinations of
the geometric tasks while remaining the MLM task. To be
efficient, only 10% of the original pre-training data is used
to train the model for 1 epoch. The results meet our ex-
pectations completely, as shown in Tab. 3. By comparing
#0 with #1x, we observe that the performance of SER and
RE will be improved if either of the three geometric tasks is
exerted paralleled to the MLM task. For SER, GeoPair con-
tributes the most while GeoMPair does the least. For RE,
GeoMPair contributes the most while GeoTriplet does the
least, which may be owing to the RE head that is directly
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Method #Params FUNSD CORD
SER RE SER REaKV REaGRP

BERTLARGE [4] 340M 65.63 29.11 90.25 - -
LayoutLMLARGE [40] 343M 78.95 42.83 94.93 - -
StrucTexT [22] 107M 83.09 44.10 - - -
SERA [45] - - 65.96 - - -
LayoutLMv2LARGE [43] 426M 84.20 70.57 96.01 - 97.29
BROSLARGE [12] 340M 84.52 77.01 97.28 - 97.40
LayoutLMv3LARGE [15] 357M 92.08 80.35† 97.46 99.64† 98.28†
GeoLayoutLM 399M 92.86 89.45 97.97 100.00 99.45

Table 2. Comparison with existing models that explore both SER & RE. The F1 score followed by † means it is re-implemented by us.

# GeoPair GeoMPair GeoTriplet SER RE
0 83.39 74.91
1a ✓ 91.80 82.23
1b ✓ 88.67 82.56
1c ✓ 90.78 78.90
2a ✓ ✓ 91.86 85.22
2b ✓ ✓ 91.90 82.37
2c ✓ ✓ 91.39 84.97
3 ✓ ✓ ✓ 92.17 85.32

Table 3. Ablation study on the geometric pre-training task in
FUNSD. The first column labels the experiment settings.

Entropy↓ Cross Entropy↓ Acc.↑
LayoutLMv3 1.1423 0.9986 0.6319
GeoLayoutLM 0.7633 0.5884 0.8223

Table 4. Experiments on the geometric layout understandings. The
entropy of direction prediction reveals the information maintained
in the backbone. The lower the Entropy and the Cross Entropy are,
the more layout information the model maintains.

pre-trained in GeoPair and GeoMPair. By comparing #2x
with #1x and #3x with #2x, we find that it is always better
to pre-train with more geometric tasks, which indicates that
the tasks are complementary.

To be interpretable, we also investigate how much infor-
mation of geometric relationship is kept after an example
is encoded for the downstream information extraction task.
To this end, we exert a linear classifier onto the backbone of
the model fine-tuned on FUNSD (GeoLayoutLM VS Lay-
outLMv3), and only train the classifier on the re-processed
FUNSD dataset with pair direction labels (9-direction clas-
sification), to squeeze the direction information that is mea-
sured by the classification entropy, cross-entropy and the
accuracy. As shown in Tab. 4, GeoLayoutLM has a lower
entropy and cross-entropy, and a higher accuracy, indicat-
ing that it retains much more information about geometric
relations in the downstream tasks.

To further understand the geometric layout information,

(a) LayoutLMv3 (b) GeoLayoutLM

Figure 5. Comparison of the left (L) and right (R) relation features.
For LayoutLMv3 and GeoLayoutLM, 2D layout positions remain
unchanged and the input text tokens are set to [UNK].

we conduct an embedding visualization of the left-right di-
rection. As shown in Fig. 5, GeoLayoutLM has stronger
distinguishable embeddings in left and right relationships
that are important for document layout representation.

A case study is given in Fig. 6. Most of the false posi-
tive relation links predicted by LayoutLMv3 violate the ge-
ometric layout obviously. It depends on the semantic infor-
mation excessively and ignores the layout more or less. For
example, the entity starting with “No.” is linked to the num-
ber entity regardless of the geometric relationship between
them. In contrast, GeoLayoutLM successfully predicted all
links with a good recall.

Although the rule-based geometric constraint can bring
some improvement (Tab. 1), it still fall behind GeoLay-
outLM because it: (1) relies on hard-coded thresholds,
which limit its adaptability and generalization when han-
dling documents of different formats and layouts; (2) is able
to prune false linkings, but cannot recover missed ones.
Effects of the Relation Heads. There are two important
points in our RE task heads: the novel RFE head and its
pre-training. We study the impact of them for the RE task.
The coarse relation prediction (CRP) head is always kept.
Besides, we do not use the RSF strategy to be elegant.

As shown in Tab. 5, a bare CRP head not initialized by
the pre-trained parameters (w/o Pt) achieves an 82.2% F1
score owing to the strong geometry-aware backbone. Once
it is initialized by pre-training (Pt), an improvement of 2.7%
F1 score is obtained. By adding the RFE head (w/o Pt),
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(a) LayoutLMv3 (b) GeoLayoutLM

Figure 6. RE case study. The arrows in green, red and orange
denote true positive, false positive and false negative (missed) re-
lations respectively. Best viewed by zooming up.

CRP head RFE head F1w/o Pt Pt w/o Pt Pt
✓ 82.2

✓ 84.9
✓ ✓ 84.0

✓ ✓ 84.0
✓ ✓ 86.2

✓ ✓ 86.9

Table 5. Ablation study on the CRP and RFE head in FUNSD RE
task. “w/o Pt” and “Pt” mean that the head is not pre-trained and
pre-trained respectively. The RSF strategy is not used.

the version of CRP (w/o Pt) becomes stronger while that
of CRP (Pt) even degrades a little bit. We argue that the
RFE head introduces more parameters, which causes over-
fitting despite its superiority in relation modeling. Thus it is
necessary to pre-train the RFE head. We also find that the
pre-training of the RFE head is more important than that of
the CRP head. By making full use of the two points, Geo-
LayoutLM obtains the best RE performance.
Effects of RSF. The RSF strategy is non-trivial in the fine-
tuning and inference stage. It contains two parts: the post-
process for inference and the variance loss in fine-tuning.

Tab. 6 gives a clear view. By the post-processing, the
precision of our method is improved dramatically with a
little sacrifice of recall. A bare variance loss without the
post-processing does nothing to the performance since it is
designed for the post-processing only. We obtain the best
F1 score when using both of them.

4.4. Few-shot RE Learning

In real scenarios, the acquirement of the training data for
document information extraction is a bottleneck due to the
expensive and boring annotation work. So it is necessary to
learn from only a few document samples.

To explore the ability of few-shot learning, we compare

postprocessvariance
loss Precision Recall F1

85.26 90.15 87.64
✓ 88.25 89.01 88.62

✓ 85.06 90.34 87.62
✓ ✓ 88.94 89.96 89.45

Table 6. Ablation study on the RSF strategy in FUNSD RE task.

1

Figure 7. Comparison of few-shot learning in FUNSD RE task.

our GeoLayoutLM with another two models: a modified
GeoLayoutLM whose heads are not initialized from pre-
training (GeoLayoutLM*), and LayoutLMv3. We also dis-
able the RSF strategy to make it clearer.

As shown in Fig. 7, GeoLayoutLM shows great supe-
riority in this setting. GeoLayoutLM* outperforms Lay-
outLMv3 but is inferior to GeoLayoutLM all the time. It
suggests that the geometric pre-training endows our model
with a strong ability to extract entity relations, and also em-
phasizes the importance of RE head pre-training. Notably,
our GeoLayoutLM achieves a slightly better performance
(71.53%) using only 30 samples than LayoutLMv3 does
(71.07%) using 104 samples. The performance gap is very
large when only few fine-tuning samples are available.

5. Conclusion

In this paper, we propose GeoLayoutLM, a geomet-
ric pre-training framework for VIE. Three geometric rela-
tions in different levels are defined: GeoPair, GeoMPair
and GeoTriplet. Correspondingly, three specially designed
pre-training objectives are introduced to model geometric
relations explicitly. Additionally, the relation heads are
elaborately designed to enhance the relation feature rep-
resentation, which are pre-trained by the geometric pre-
training, thus mitigating the gap between pre-training and
fine-tuning. Experimental results on VIE have illustrated
the effectiveness of GeoLayoutLM in both SER and RE
tasks. In the future, we will explore more effective geomet-
ric pre-training tasks, and apply our method to more tasks
of visually-rich document understanding.
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