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Abstract

Federated Learning (FL) has emerged as a de facto ma-
chine learning area and received rapid increasing research
interests from the community. However, catastrophic forget-
ting caused by data heterogeneity and partial participation
poses distinctive challenges for FL, which are detrimental
to the performance. To tackle the problems, we propose a
new FL approach (namely GradMA), which takes inspira-
tion from continual learning to simultaneously correct the
server-side and worker-side update directions as well as
take full advantage of server’s rich computing and mem-
ory resources. Furthermore, we elaborate a memory reduc-
tion strategy to enable GradMA to accommodate FL with
a large scale of workers. We then analyze convergence of
GradMA theoretically under the smooth non-convex setting
and show that its convergence rate achieves a linear speed
up w.r.t the increasing number of sampled active workers.
At last, our extensive experiments on various image classi-
fication tasks show that GradMA achieves significant per-
formance gains in accuracy and communication efficiency
compared to SOTA baselines. We provide our code here:
https://github.com/lkyddd/GradMA.

1. Introduction
Federated Learning (FL) [18, 26] is a privacy-preserving

distributed machine learning scheme in which workers
jointly participate in the collaborative training of a central-
ized model by sharing model information (parameters or
updates) rather than their private datasets. In recent years,
FL has shown its potential to facilitate real-world appli-
cations, which falls broadly into two categories [10]: the
cross-silo FL and the cross-device FL. The cross-silo FL
corresponds to a relatively small number of reliable work-
ers, usually organizations, such as healthcare facilities [9]
and financial institutions [41], etc. In contrast, for the cross-

*Corresponding author

device FL, the number of workers can be very huge and
unreliable, such as mobile devices [26], IoT [27] and au-
tonomous driving cars [22], among others. In this paper, we
focus on cross-device FL.

The privacy-preserving and communication-efficient
properties of the cross-device FL make it promising, but it
also confronts practical challenges arising from data hetero-
geneity (i.e., non-iid data distribution across workers) and
partial participation [5,12,20,39]. Specifically, the datasets
held by real-world workers are generated locally accord-
ing to their individual circumstances, resulting in the dis-
tribution of data on different workers being not identical.
Moreover, owing to the flexibility of worker participation
in many scenarios (e.g., IoT and mobile devices), workers
can join or leave the FL system at will, thus making the set
of active workers random and time-varying across commu-
nication rounds. Note that we consider a worker participates
or is active at round t (i.e., the index of the communication
round) if it is able to complete the computation task and
send back model information at the end of round t.

The above-mentioned challenges mainly bring catas-
trophic forgetting (CF) [25, 30, 37] to FL. In a typical FL
process, represented by FedAvg [26], a server updates the
centralized model by iteratively aggregating the model in-
formation from workers that generally is trained over sev-
eral steps locally before being sent to the server. On the
one hand, due to data heterogeneity, the model is updated
on private data in local training, which is prone to overfit
the current knowledge and forget the previous experience,
thus leading to CF [8]. In other words, the updates of the lo-
cal models are prone to drift and diverge increasingly from
the update of the centralized model [12]. This can seriously
deteriorate the performance of the centralized model. To
ameliorate this issue, a variety of existing efforts regular-
ize the objectives of the local models to align the central-
ized optimization objective [1, 12, 13, 17, 19]. On the other
hand, the server can only aggregate model information from
active workers per communication round caused by partial
participation. In this case, many existing works directly dis-
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card [1, 11, 12, 18, 26, 39] or implicitly utilize [7, 28], by
means of momentum, the information provided by work-
ers who have participated in the training but dropped out
in the current communication round (i.e., stragglers). This
results the centralized model, which tends to forget the ex-
perience of the stragglers, thus inducing CF. In doing so,
the convergence of popular FL approaches (e.g., FedAvg)
can be seriously slowed down by stragglers. Moreover, all
above approaches solely aggregate the collected informa-
tion by averaging in the server, ignoring the server’s rich
computing and memory resources that could be potentially
harnessed to boost the performance of FL [45].

In this paper, to alleviate CF caused by data heterogene-
ity and stragglers, we bring forward a new FL approach,
dubbed as GradMA (Gradient-Memory-based Accelerated
Federated Learning), which takes inspiration from contin-
ual learning (CL) [4,14,24,29,44] to simultaneously correct
the server-side and worker-side update directions and fully
utilize the rich computing and memory resources of the
server. Concretely, motivated by the success of GEM [24]
and OGD [4], two memory-based CL methods, we invoke
quadratic programming (QP) and memorize updates to cor-
rect the update directions. On the worker side, GradMA
harnesses the gradients of the local model in the previous
step and the centralized model, and the parameters differ-
ence between the local model in the current step and the
centralized model as constraints of QP to adaptively correct
the gradient of the local model. Furthermore, we maintain
a memory state to memorize accumulated update of each
worker on the server side. GradMA then explicitly takes
the memory state to constrain QP to augment the momen-
tum (i.e., the update direction) of the centralized model.
Here, we need the server to allocate memory space to store
memory state. However, it may be not feasible in FL scenar-
ios with a large size of workers, which can increase the stor-
age cost and the burden of computing QP largely. There-
fore, we carefully craft a memory reduction strategy to alle-
viate the said limitations. In addition, we theoretically ana-
lyze the convergence of GradMA in the smooth non-convex
setting.

To sum up, we highlight our contributions as follows:

• We formulate a novel FL approach GradMA, which
aims to simultaneously correct the server-side and
worker-side update directions and fully harness the
server’s rich computing and memory resources. Mean-
while, we tailor a memory reduction strategy for
GradMA to reduce the scale of QP and memory cost.

• For completeness, we analyze the convergence of
GradMA theoretically in the smooth non-convex set-
ting. As a result, the convergence result of GradMA
achieves the linear speed up as the number of selected
active workers increases.

• We conduct extensive experiments on four com-
monly used image classification datasets (i.e., MNIST,
CIFAR-10, CIFAR-100 and Tiny-Imagenet) to show
that GradMA is highly competitive compared with
other state-of-the-art baselines. Meanwhile, ablation
studies demonstrate efficacy and indispensability for
core modules and key parameters.

2. Related Work
FL with Data Heterogeneity. FedAvg, the classic dis-

tributed learning framework for FL, is first proposed by
McMahan et al. [26]. Although FedAvg provides a practical
and simple solution for aggregation, it still suffers perfor-
mance deterioration when the data among workers is non-
iid [18]. Shortly thereafter, a panoply of modifications for
FedAvg have been proposed to handle said issue. For ex-
ample, FedProx [19] constrains local updates via adding a
proximal term to the local objectives. Scaffold [12] uses
control variate to augment the local updates. FedDyn [1]
dynamically regularizes the objectives of workers to align
global and local objectives. Moon [17] corrects the lo-
cal training by conducting contrastive learning in model-
level. Meanwhile, there exists another line of works to
improve the global performance of FL through perform-
ing knowledge distillation [13, 23, 42, 45, 46] on the server
side or worker side. FedMLB [13] architecturally regular-
izes the local objectives via online knowledge distillation.
However, other approaches incur additional communication
overhead [42,46] or pseudo data [23,45]. Going beyond the
aforementioned approaches, FL with momentum is an ef-
fective way to tackle worker drift problem caused by data
heterogeneity and accelerate the convergence. Specifically,
on the server side, FedAvgM [7] maintains a momentum
buffer, whereas FedADAM [28] and FedAMS [33] both
adopt adaptive gradient-descent methods to speed up train-
ing. FedCM [38] keeps a state, carrying global information
broadcasted by the server, on the worker side to address data
heterogeneity issue. DOMO [36] and Mime [11] maintain
momentum buffers on both server side and worker side to
improve the training performance.

FL with Partial Participation. In addition to data het-
erogeneity issue, another key hurdle to FL stems from par-
tial participation. The causes for partial participation can
be roughly classified into two categories. One is the differ-
ence in the computing power and communication speed of
different workers. A natural way to cope with this situation
is to allow asynchronous updates [2, 34, 40]. The other is
the different availability mode, in which workers can abort
the training midway (i.e., stragglers) [10]. To do so, many
approaches may collect information from only a subset of
workers to update the centralized model [1, 7, 11, 12, 18, 26,
39]. However, the server in the mentioned approaches sim-
ply ignores and discards the information of the stragglers,
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which can lead to other problems such as under-utilization
of computation and memory [45], slower convergence [18],
and biased/unfair use of workers’ information [10]. Re-
cently, MIFA [5] corrects the gradient bias by exploiting
the memorized latest updates of all workers, which avoids
excessive delays caused by inactive workers and mitigates
CF to some extent.

Continual Learning. CL is a training paradigm that fo-
cuses on scenarios with a continuously changing class dis-
tribution of each task and aims at overcoming CF. Existing
works for CL can be roughly divided into three branches:
expansion-based methods [21, 44], regularization-based
methods [14, 32] and memory-based methods [4, 24, 29].
Note that unlike CL, we focus on alleviating CF in dis-
tributed data, not sequential data. There are a handful of
recent studies that consider FL with CL. For example, Fed-
WeIT [43] focuses on sequential data. FedCurv [30] trains
objectives based on all-reduce protocol. FedReg [37] and
FCCL [8] require generated pseudo data and public data,
respectively.

3. Preliminaries
This section defines the objective function for FL and

introduces QP.
In practice, FL is designed to minimize the empirical risk

over data distributed across multiple workers without com-
promising local data. The following optimization problem
is often considered:

min
x∈Rd

f(x) =
1

N

N∑
i=1

[
fi(x) =

1

ni

ni∑
r=1

Fi(x; ξ
(i)
r )

]
, (1)

where N is the number of workers. Moreover, the local ob-
jective fi : R

d → R measures the local empirical risk over
data distribution Di, i.e., ξ(i)r ∼ Di, with ni samples avail-
able at i-th worker. Note that Di can be different among
workers. In this work, we consider the typical centralized
setup where N workers are connected to one central server.

Next, we introduce QP, which is a fundamental opti-
mization problem with well-established solutions and can
be widely seen in the machine learning community, to cor-
rect the server-side and work-side update directions. In this
paper, we can model our goal via QP, which is posed in the
following primal form:

min
p̃

1

2
∥p− p̃∥2 s.t. ⟨p̃,M [i]⟩ ≥ 0,∀i ∈ [C], (2)

where p ∈ Rd and M ∈ Rd×C (C ∈ N). One can see
that the goal of (2) is to seek a vector p̃ that is positively
correlated with M [i] ∈ Rd,∀i ∈ [C] while being close to
p. By discarding the constant term p⊤p, we rewrite (2) as:

min
p̃

1

2
p̃⊤p̃− p⊤p̃ s.t.M⊤p̃ ⪰ 0 ∈ RC . (3)

Algorithm 1 GradMA: A Gradient-Memory-based Accel-
erated Federated Learning

1: Input: learning rates (ηl, ηg), the number of all work-
ers N , the number of sampled active workers per com-
munication round S, control parameters (β1, β2), syn-
chronization interval I and memory size m (S ≤ m ≤
min{d,N}).

2: Initial state x
(i)
0 = x0 ∈ Rd (∀i ∈ [N ]), m̃0 = 0.

3: Initial counter = {c(i) = 0,∀i ∈ [N ]}.
4: Initial memory state D = {}.
5: buf = {}, new buf = {}.
6: for t = 0, 1, . . . , T − 1 do
7: On server:
8: Server samples a subset St with S active workers and

transmits xt to St.
9: counter,D, buf, new buf ← mem red (m,St,

counter,D, buf, new buf).
10: On workers:
11: for i ∈ St parallel do
12: x

(i)
t+1 = Worker Update(x(i)

t , xt, ηl, I),
13: sends d(i)

t+1 = xt − x
(i)
t+1 to server.

14: end for
15: On server:
16: D,xt+1, m̃t+1 = Server Update([d(i)

t+1, i ∈ St],
m̃t, D, ηg , β1, β2, buf , new buf ).

17: Sends xt+1 to sampled active workers in the next
round.

18: new buf = {}.
19: end for
20: Output: xT

However, this is a QP problem on d variables, which are
updates of the model. Generally, d can be enormous, result-
ing in d being much larger than C. We thus solve the dual
formulation of the above QP problem:

min
z

1

2
z⊤M⊤Mz + p⊤Mz s.t. z ⪰ 0 ∈ RC . (4)

Once we solve for the optimal dual variable z⋆, we can
recover the optimal primal solution as p̃ = Mz⋆ + p.

4. Proposed Approach: GradMA

We now present the proposed FL approach GradMA,
see Alg. 1 for complete pseudo-code. Note that the com-
munication cost of GradMA is the same as that of Fe-
dAvg. Next, we detail core modules of GradMA, which
include the memory reduction strategy (i.e., mem red()),
Worker Update() and Server Update() on lines 9, 12 and
16 of Alg. 1, respectively.
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Algorithm 2 Worker Update(x′, x, ηl, I)

1: Sets x(i)
−1 = x′, x(i)

0 = x.
2: for τ = 0, 1, . . . , I − 1 do
3: g

(i)
τ = ∇fi(x(i)

τ ),
4: G

(i)
τ = [∇fi(x(i)

τ−1),∇fi(x),x
(i)
τ − xt],

5: g̃
(i)
τ = QPl(g

(i)
τ ,G

(i)
τ ),

6: x
(i)
τ+1 = x

(i)
τ − ηlg̃

(i)
τ .

7: end for
8: Output: x(i)

I .

4.1. Correcting gradient for the worker side

Throughout the local update, we leverage QP to perform
correcting gradient directions, see Alg. 2. Here, the input
of QP (marked as QPl for distinction) is p ← g

(i)
τ and

M ← G
(i)
τ ∈ R

d×3 (line 5 of Alg. 2), and its output
is the following vector g̃(i)

τ , which is positively correlated
with ∇fi(x(i)

τ−1),∇fi(x) and x
(i)
τ − xt while ensuring the

minimum ∥g(i)
τ − g̃

(i)
τ ∥:

g̃(i)
τ = G(i)

τ z⋆
τ + g(i)

τ (5)

= z⋆τ,1∇fi(x
(i)
τ−1) + z⋆τ,2∇fi(x) + z⋆τ,3(x

(i)
τ − xt) + g(i)

τ ,

where z⋆
τ = [z⋆τ,1, z

⋆
τ,2, z

⋆
τ,3]

⊤ and z⋆
τ ⪰ 0 ∈ R3. Essen-

tially, the output of QPl is a conical combination and serves
as an update direction for local training. Particularly, when
z⋆τ,1 = 0, z⋆τ,2 = 0 and z⋆τ,3 > 0, Eq. (5) is equivalent to the
local update of FedProx [19]. The difference is that the con-
trol parameter µ in FedProx is a hyper-parameter, while z⋆τ,3
is determined adaptively by QPl. Specifically, when g

(i)
τ is

positively correlated with x
(i)
τ −xt, i.e., ⟨g(i)

τ ,x
(i)
τ −xt⟩ ≥

0, z⋆τ,3 is approximately equal to 0; otherwise, z⋆τ,3 is greater

than 0. In other words, x(i)
τ − xt acts as a hard constraint

only when g
(i)
τ is negatively correlated with x

(i)
τ −xt, which

makes g̃(i)
τ focus more on local information. Moreover, the

calculation mechanisms for z⋆τ,1 and z⋆τ,2 are the same as
that for z⋆τ,3. When z⋆τ,1 > 0 and z⋆τ,2 > 0, it indicates

that the update direction g̃
(i)
τ takes into account the previ-

ous step and global information about the model, which is
inspired by CL [4, 24]. Intuitively, Eq. (5) adaptively taps
previous and global knowledge, thus effectively mitigating
CF caused by data heterogeneity.

4.2. Correcting update direction for the server side

Now, we describe the proposed update process of the
centralized model on the server side, see Alg. 3 for details.
For ease of presentation, we define the number of local up-
dates of workers that the server can store as the memory size
m. To elaborate, we assume that there is enough memory

space on the server such that m = N . In this way, at com-
munication round t, the update process can be streamlined,
which takes the form:

dt+1 =
1

S

∑
i∈St

d
(i)
t+1,mt+1 = β1m̃t + dt+1, (6)

D[i]←
{

β2D[i] + d
(i)
t+1, i ∈ St

β2D[i], i /∈ St
, (7)

m̃t+1 = QPg(mt+1,D),xt+1 = xt − ηgm̃t+1. (8)

As shown in Eq. (7), we propose that the server allocates
memory space to maintain a memory state D, which is up-
dated in a momentum-like manner to memorize the accu-
mulated updates of all workers. Each worker only uploads
update d

(i)
t+1 (i ∈ [N ]) to the server, and as such the risk

of data leakage is greatly reduced. By memorizing accu-
mulated updates of inactive workers, GradMA avoids wait-
ing for any straggler when facing heterogeneous workers
with different availability, so as to effectively overcome the
adverse effects caused by partial participation. This is dif-
ferent from the recently proposed MIFA [5] (see Alg. 6 in
Appendix .1), which stores the latest updates of all workers
to perform averaging. However, such a straightforward and
naive implementation of integration implicitly increases sta-
tistical heterogeneity in situations where different workers
have varying data distributions, which can induce bias.

Therefore, the core idea of this paper is how to leverage
memorized information to overcome the above challenge
effectively. To tackle the challenge, we apply QP (marked
as QPg for distinction) to seek an update direction m̃t+1

that is positively correlated with buffers D[i] ∈ Rd,∀i ∈
[N ] while being close to mt+1. Concretely, the input of
QPg is p←mt+1 and M ←D ∈ Rd×N , and its output is
m̃t+1 (see Eq. (8)), which takes the form m̃t+1 = Dz⋆

t+1+
mt+1, where z⋆

t+1 = [z⋆t+1,1, · · · , z⋆t+1,N ]⊤ ⪰ 0 ∈ RN is
determined adaptively by QPg . Inherently, QPg takes ad-
vantage of the accumulated updates of all workers stored on
D to correct the update direction mt+1 and circumvents the
centralized model from forgetting stragglers’ knowledge,
thereby alleviating CF induced by partial participation. In
particular, one can easily observe that m̃t+1 = mt+1 holds
if m = 0 (that is, D = 0). The update process of Alg. 3
is then consistent with that of FedAvgM [7] on the server
side. Consequently, Alg. 3 can be considered as an exten-
sion of FedAvgM in terms of augmenting updates through
allocating memory.

4.3. A Practical Memory Reduction Strategy

It is well known that in realistic FL scenarios, on the one
hand, the number of workers may be large; the size of the
model may be huge on the other hand, leading to large-scale
QP as well as high memory demanding for server to store
D, which is infeasible and unnecessary in practice.
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Algorithm 3 Server Update([d(i)
t+1, i ∈ St], m̃t, D, ηg , β1,

β2, buf , new buf )

1: dt+1 = 1
S

∑
i∈St

d
(i)
t+1, mt+1 = β1m̃t + dt+1.

2: for c(i) ∈ buf do
3: if i ∈ St then

4: D[i]←

{
β2D[i] + d

(i)
t+1, c(i) /∈ new buf

d
(i)
t+1, c(i) ∈ new buf

.

5: else if i /∈ St then
6: D[i]← β2D[i].
7: end if
8: end for
9: m̃t+1 = QPg(mt+1,D), xt+1 = xt − ηgm̃t+1.

10: Output: D, xt+1, m̃t+1.

Algorithm 4 mem red(m,S, c,D, buf, new buf)

1: for i ∈ S do
2: if c(i) ∈ buf then
3: c(i)← c(i) + 1.
4: else if c(i) /∈ buf then
5: if Length(buf) = m then
6: old buf = {}.
7: for k ∈ buf do
8: if k /∈ S then
9: old buf ← old buf ∪ {c(k)}.

10: end if
11: end for
12: Discarding c(i′) with the smallest value from

old buf and set c(i′) = 0.
13: Discarding D[i′] from memory state D.
14: end if
15: c(i)← c(i) + 1.
16: buf ← buf ∪ {c(i)}.
17: new buf ← new buf ∪ {c(i)}.
18: end if
19: end for
20: Output: c,D, buf, new buf

Therefore, we propose a memory reduction strategy to
alleviate this deficiency, which ensures that the size of D
does not exceed a pre-given m and S ≤ m ≤ min{d,N},
see Alg. 4 for details. The design ethos of the memory re-
duction strategy is to keep as much useful information as
possible in a given m. Specifically, at communication round
t, the server samples S active workers and performs that
c(i)← c(i)+1 (i ∈ S) (lines 3 and 15 of Alg. 4). When the
memory used is less than the given one, c(i) /∈ buf of sam-
pled active workers enter the buffers buf and new buf in
turn (lines 16-17 of Alg. 4). Once the memory used is equal
to the given one, c(i′) with the smallest value in old buf is
discarded and set c(i′) = 0. Also, D[i′] is discarded from

D (lines 12-13 of Alg. 4).

5. Convergence Results for GradMA
We now present a convergence analysis of GradMA in

the smooth non-convex setting. And the following assump-
tions are considered.

Assumption 1 (Global function below bounds). Set f∗ =
infx∈Rd f(x) and f∗ > −∞.

Assumption 2 (L-smooth). ∀i ∈ [N ], the local functions
fi are differentiable, and there exist constant L > 0 such
that for any x,y ∈ Rd, ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Assumption 3 (Bounded data heterogeneity). The degree
of heterogeneity of the data distribution across workers can
be quantified as ∥∇fi(x)−∇f(x)∥2 ≤ ρ2, for any i ∈ [N ]
and some constant ρ ≥ 0.

Assumption 4 (Bounded optimal solution error for QPl).
Given g(i) = ∇fi(x) (see Alg. 2), then there exists εl > 0
such that ∥g(i) − g̃(i)∥2 ≤ ε2l .

Assumption 5 (Bounded optimal solution error for QPg).
Given β2 ∈ [0, 1) and m (see Alg. 3), then there exists

εg > 0 such that ∥m− m̃∥2 ≤ ε2g
1−β2

.

Assumptions 1 and 2 are commonly used in the analysis
of distribution learning [12, 19, 35]. Assumption 3 quanti-
fies inter-worker variances, i.e., data heterogeneity [12, 19].
Assumptions 4 and 5 are necessary for the theoretical anal-
ysis of GradMA, which constrain the upper bound on the
optimal solution errors of QPl and QPg , respectively. In-
tuitively, the assumptions hold if the local updates for all
worker make sense [3]. Note that the upper bound for As-
sumption 5 follows an intuitive observation: more accumu-
lated updates of workers (i.e., the larger β2) can provide
more accumulated update information for the centralized
model. Next, we state our convergence results for GradMA.

Theorem 1 Assume Assumptions 1-5 exist. Let ηl ≤
1

1600.5LI , ηgηl ≤ (1−β1)
2S(N−1)

IL(β1S(N−1)+4N(S−1)) and 320I2η2l L
2+

64IηgηlL(1+40I2η2
l L

2)
(1−β1)2

N−S
S(N−1) ≤ 1. For all t ∈ [0, · · · , T −

1], the following relationship generated by Alg. 1 holds:

1

T

T−1∑
t=0

E

[
∥∇f(xt)∥2

]
≤ 8(1− β1)(f(x0)− f⋆)

IηgηlT

+ C1ε
2
l + C2ε

2
g + C3ρ

2,

where the expectation E is w.r.t the sampled active workers
per communication round, and C1 = 8 + 320I2η2l L

2 +
64IηgηlL(1+40I2η2

l L
2)

(1−β1)2
N−S

S(N−1) , C2 =
20ηgL

(1−β1)2(1−β2)Iηl
+

8
(1−β2)I2η2

l
, C3 = C1 − 8.
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A detailed proof of Theorem 1 is presented in the Ap-
pendix .3.

Corollary 1 Assume Assumptions 1-5 exist. We set ηl =
1

T 0.5LI , ηg = S0.5

I0.5 , εl = 1
T 0.5 and εg = I0.25

T 0.75S0.25L . For

T ≥ max
{
160, (β1S(N−1)+4N(S−1))2

I2(1−β1)4S(N−1)2 , (b+(b2+1280)0.5)2

4

}
where b = 128(N−S)

(1−β1)2I0.5S0.5(N−1) in Theorem 1, we have:

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
= O

(
I0.5

S0.5T 0.5
+

1

T

)
.

An immediate observation from Corollary 1 is that
GradMA can achieve the linear speed up as the number of
sampled active workers S increases. This convergence rate
matches the well-known best result in FL approaches in lit-
erature [39] under the smooth non-convex setting.

6. Empirical Study
In this section, we empirically investigate GradMA on

four datasets (MNIST [16], CIFAR-10, CIFAR-100 [15]
and Tiny-Imagenet1) commonly used for image classifica-
tion tasks.

6.1. Experimental Setup

To gauge the effectiveness of Worker Update() and
Server Update(), we perform ablation study of GradMA.
For this purpose, we design Alg. 7 (marked as GradMA-
W) and Alg. 8 (marked as GradMA-S), as specified
in Appendix .1. Meanwhile, we compare other base-
lines, including FedAvg [26], FedProx [19], MOON [17],
FedMLB [13], Scaffold [12], FedDyn [1], MimeLite [11],
MIFA [5] and slow-momentum variants of FedAvg, Fed-
Prox, MIFA, MOON and FedMLB (i.e., FedAvgM [7],
FedProxM, MIFAM, MOONM and FedMLBM), in
terms of test accuracy and communication efficiency in dif-
ferent FL scenarios. For fairness, we divide the baselines
into three groups based on FedAvg’s improvements on the
worker side, server side, or both. See Table 1 and Table 2
for details. Furthermore, on top of GradMA-S, we empir-
ically study the effect of the control parameters (β1, β2)
and verify the effectiveness of men red() by setting varying
memory sizes m.

All our experiments are performed on a centralized net-
work with 100 workers. And we fix synchronization inter-
val I = 5. To explore the performances of the approaches,
we set up multiple different scenarios w.r.t. the number of
sampled active workers S per communication round and
data heterogeneity. Specifically, we set S ∈ {5, 10, 50}.
Moreover, we use Dirichlet process Dp(ω) [1,46] to strictly
partition the training set of each dataset across 100 work-
ers. We set ω ∈ {0.01, 0.1, 1.0}. A visualization of the

1http://cs231n.stanford.edu/tiny-imagenet-200.zip

data partitions for the four datasets at varying ω values can
be found in Fig. 8 in Appendix .2. For MNIST, a neu-
ral network (NN) with three linear hidden layers is imple-
mented for each worker. For CIFAR-10 (CIFAR-100, Tiny-
Imagenet), each worker runs a Lenet-5 [16] (VGG-11 [31],
Resnet20 [6]) architecture. Due to the space limitation, we
relegate detailed hyper-parameters tuning and full experi-
mental results to Appendix .2.

6.2. Performance Analysis

Effects of data heterogeneity. From Table 1, one
can see that the performances of all approaches degrade
severely with decreasing ω on MNIST, CIFAR-10 and Tiny-
Imagenet, with GradMA being the only approach that is ro-
bust while surpasses other baselines with an overwhelming
margin against most scenarios. In particular, the higher data
heterogeneity, the more superior performance for GradMA.
Also, as shown in Table 2 and Fig. 3, GradMA requires
much less communication rounds to reach a given test ac-
curacy compared to baselines against most scenarios. These
results validate our idea in the sense that the advantage of
GradMA comes from the effective adaptive utilization of
workers’ information on both the worker side and server
side, which alleviates negative impacts caused by the dis-
crepancy of data distributions among workers.

Impacts of stragglers. We explore the impacts of dif-
ferent S on MNIST, CIFAR-100 and Tiny-Imagenet. A
higher S means more active workers upload updates per
communication round. From Table 1, we can clearly see
that the performance of all approaches improves uniformly
with increasing S on CIFAR-100 and Tiny-Imagenet, where
GradMA consistently dominates other baselines in terms
of test accuracy. Meanwhile, Fig. 3 shows that the learn-
ing efficiency of GradMA consistently outperforms other
baselines (see Appendix .2 for more results). However, for
MNIST, the test accuracy for most of the approaches does
not intuitively improve with increasing S. We conjecture
that for simple classification tasks and models, the more ac-
tive workers participating in training, the more prone the
centralized model is to overfitting.

Comments on GradMA-W and GradMA-S. We now
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Figure 1. Test accuracy curves selected of GradMA-W as well as
baselines over MNIST and CIFAR-10.
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Table 1. Top test accuracy (%) overview given different FL scenarios.

Alg.s
MNIST+NN, S = 10 MNIST+NN, ω = 0.01 CIFAR-10+Lenet-5, S = 10 CIFAR-100+VGG-11, ω = 0.1 Tiny-Imagenet+Resnet20, (ω, S)

ω = 1.0 ω = 0.1 ω = 0.01 S = 5 S = 50 ω = 1.0 ω = 0.1 ω = 0.01 S = 5 S = 10 S = 50 (0.01, 5) (1.0, 5) (1.0, 10)

FedAvg 98.22±0.05 97.11±0.39 46.19±1.29 49.65±3.88 68.32±4.16 69.48±8.28 47.86±5.26 20.97±3.73 56.02±0.37 61.22±0.16 64.78±0.43 7.50±0.32 41.80±0.55 42.90±0.12

FedProx 98.16±0.09 97.19±0.31 46.82±0.96 49.89±3.67 67.97±4.27 71.58±4.66 48.63±4.92 20.40±3.85 55.94±0.71 61.25±0.09 64.69±0.27 7.51±0.46 41.82±0.29 42.58±0.69
FedMLB 98.31±0.06 97.26±0.40 54.53±0.39 57.22±3.07 68.44±3.26 69.28±6.56 48.99±4.94 20.81±3.26 53.80±0.16 59.20±0.27 64.06±0.30 7.98±0.34 42.83±0.13 43.59±0.80
MOON 98.18±0.12 97.11±0.31 46.26±1.35 50.39±5.16 68.75±4.50 71.11±7.94 48.84±5.16 19.39±3.99 55.37±0.34 60.58±0.60 64.48±0.42 7.70±0.38 41.68±0.22 42.80±0.54
Scaffold 97.63±0.37 93.94±1.18 50.86±7.46 39.97±4.88 49.54±2.28 53.33±6.63 35.91±2.14 15.55±1.33 32.22±0.92 34.72±0.80 45.70±0.76 7.20±0.33 40.96±0.23 43.02±0.30

GradMA-W 98.15±0.10 97.01±0.23 63.34±3.75 65.39±0.96 65.13±2.54 72.33±3.84 50.25±3.94 18.99±4.06 56.43±0.51 61.38±0.11 64.96±0.36 9.98±0.22 43.68±0.23 44.57±0.45

FedAvgM 98.29±0.18 97.20±0.30 53.77±0.32 57.87±3.64 67.80±5.58 71.04±7.29 51.91±4.46 21.02±3.52 55.85±0.28 61.32±0.29 64.88±0.25 16.96±1.08 41.91±0.23 42.57±0.14
MIFA 98.02±0.12 96.88±0.56 66.92±2.53 56.04±3.92 52.84±4.89 71.41±5.81 50.60±11.87 23.78±2.04 50.37±1.02 58.74±0.42 64.71±0.31 8.88±0.33 41.42±0.22 42.83±0.13

MIFAM 98.02±0.15 96.90±0.44 67.15±2.23 55.28±6.05 53.35±6.84 73.48±1.37 52.13±9.71 24.17±1.24 49.30±0.86 58.91±0.24 64.61±0.33 12.01±0.32 41.94±0.06 43.17±0.09
GradMA-S 98.38±0.09 97.35±0.28 74.52±1.71 75.93±0.97 69.09±3.83 78.76±1.96 64.60±5.87 28.41±2.43 59.08±0.43 63.23±0.22 65.63±0.35 20.93±1.49 48.83±1.06 49.65±0.72

FedProxM 98.26±0.08 97.13±0.34 54.50±0.79 58.59±4.58 69.00±4.42 78.00±1.61 51.22±5.14 21.80±3.72 55.63±0.31 63.15±0.12 64.78±0.11 18.30±0.79 37.98±0.10 45.27±0.19
FedMLBM 98.26±0.16 97.35±0.30 61.12±1.48 64.12±4.17 68.78±3.28 73.70±4.62 49.90±5.82 21.53±2.93 53.91±0.78 60.44±0.34 64.85±0.18 17.32±0.82 44.62±0.32 45.18±0.27
MOONM 98.21±0.13 97.04±0.42 62.34±8.91 57.98±5.51 68.82±4.43 73.96±4.11 50.06±6.14 20.19±3.10 56.01±0.25 62.06±0.19 65.37±0.17 16.78±0.95 42.43±0.39 42.78±0.46
Feddyn 97.92±0.12 96.03±0.46 59.39±2.29 65.36±5.20 57.68±4.30 74.94±2.48 41.93±3.22 17.94±3.52 52.95±1.63 58.48±0.18 61.71±0.25 17.89±0.95 44.37±0.57 44.86±0.15

MimeLite 98.19±0.07 97.10±0.31 54.86±13.36 51.04±4.15 69.41±4.15 77.98±1.48 53.27±1.69 20.73±3.33 58.00±0.51 63.29±0.49 64.68±0.33 8.29±0.29 41.05±0.21 41.56±0.18
GradMA 98.39±0.04 97.34±0.35 77.97±1.28 75.51±1.94 66.68±3.03 79.92±0.59 65.91±5.10 30.81±1.78 59.47±0.58 63.49±0.47 65.68±0.25 23.52±1.32 49.29±0.86 50.54±0.56

Table 2. Communication rounds to reach given test accuracy ac under different FL scenarios. Note that since Scaffold and MimeLite have
twice as much communication load per communication round as the other approaches, we use 2× to show the distinction.

Alg.s

MNIST, S = 10 MNIST, ω = 0.01 CIFAR-10, S = 10 CIFAR-100, ω = 1.0 Tiny Imagenet+Resnet20, (ω, S)

w = 1.0 w = 0.1 w = 0.01 S = 5 S = 50 w = 1.0 w = 0.1 w = 0.01 S = 5 S = 10 S = 50 (0.01, 5) (1.0, 5) (1.0, 10)
ac = 95% ac = 95% ac = 45% ac = 40% ac = 50% ac = 55% ac = 45% ac = 15% ac = 30% ac = 40% ac = 60% ac = 5% ac = 30% ac = 35%

FedAvg 25 115 493 299 117 177 882 106 437 435 1,071 986 906 1,116

FedProx 25 120 478 283 117 141 766 197 429 435 1,081 986 906 1,091
FedMLB 22 115 280 203 78 245 694 63 511 548 1,404 791 806 966
MOON 25 116 493 283 117 96 616 247 475 458 1,088 986 906 1,116

Scaffold (2×) 26 – 60 – – – – – 806 – – 971 971 1,181
GradMA-W 30 111 125 78 172 168 582 136 389 420 1,027 821 841 936

FedAvgM 19 116 280 138 79 175 605 73 429 397 654 286 821 991
MIFA 42 85 67 62 89 156 393 54 631 567 1,075 716 1,021 1,151

MIFAM 39 80 60 62 80 152 325 25 677 547 883 656 956 1,076
GradMA-S 16 43 38 38 56 83 101 14 297 266 579 131 231 251

FedProxM 22 115 280 138 96 97 631 67 468 397 665 291 821 611
FedMLBM 16 87 191 113 77 185 653 69 522 522 922 296 681 796
MOONM 19 115 186 210 95 78 766 85 461 417 697 291 821 991
Feddyn 19 73 136 128 96 66 – 83 441 356 736 371 396 406

MimeLite (2×) 32 115 277 284 113 92 385 134 355 329 675 1,016 871 1,071
GradMA 18 49 37 29 105 49 130 11 274 253 559 146 231 231
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Figure 2. Test accuracy curves selected of GradMA-S as well as
baselines over CIFAR-100 and Tiny-Imagenet.

discuss the empirical performances of GradMA-W and
GradMA-S and observe that GradMA-S beats GradMA-W
by a significant margin in different FL scenarios, and even
slightly outperforms GradMA in a few cases (see Table 1
and Table 2). To put it differently, GradMA leads GradMA-
S in most FL scenarios, suggesting that the combination
of Worker Update() and Server Update() can have a pos-
itive effect and thus improve performance. Meanwhile,
GradMA-W trumps baselines in most cases, which suggests
that Worker Update() can mitigate the issue of CF and thus
augment the centralized model. In addition, we can draw an

0 200 400 600 800 1000
communication rounds

0.10

0.20

0.30

0.40

0.50

0.60

0.70

te
st

 a
cc

ur
ac

y

(a) CIFAR-10, = 0.1, S = 10

0 500 1000 1500 2000
communication rounds

0.00

0.10

0.20

0.30

0.40

0.50

0.60
(b) CIFAR-100, = 0.1, S = 5

FedProxMFedMLBMMOONMFedDynMimeLiteGradMA

Figure 3. Test accuracy curves selected of GradMA as well as
baselines over CIFAR-10 and CIFAR-100.

empirical conclusion that correcting the update direction of
the centralized model on the server can greatly boost accu-
racy compared to correcting that of the local model for each
worker. Selected learning curves shown in Fig. 1 and Fig. 4
verify the above statements.

Next, we further explore effects of (β1, β2) and m on the
performance of GradMA-S on MNIST and CIFAR-10.

Varying control parameters (β1, β2). In order to ex-
plore effects of (β1, β2) in more detail, we set β1, β2 ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. And we fix m = 100 and S =
10. Notice that some similarities exist between GradMA-S
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Figure 4. Test accuracy curves selected of GradMA, GradMA-S
and GradMA-W over CIFAR-10 and Tiny-Imagenet.
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Figure 5. Top test accuracy (%) overview for GradMA-S with
varying control parameters (β1, β2) on MNIST and CIFAR-10.
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Figure 6. Top test accuracy (%) overview for GradMA-S with
varying memory sizes m on MNIST and CIFAR-10.

and MIFA (MIFAM) when β1 = 0.0 and β2 = 0.0 (β1 =
0.0 and β2 > 0.0), i.e., they both memorize the latest up-
dates of stragglers at the server side. From Table 1 and
Fig. 5 (refer to Appendix .2 for more results), we can see
that GradMA-S with β2 = 0.0 considerably beats MIFA
and MIFAM regardless of value of β1. Furthermore, we ob-
serve that GradMA-S with β2 > 0.0 outperforms GradMA-
S with β2 = 0.0 in most cases, and the best test accuracy is
located in the region of β2 > 0.0. This indicates that the ac-
cumulated updates of stragglers can provide more effective
update information for the centralized model to refine the
performance of GradMA-S compared to the latest updates
of stragglers.

Varying memory sizes m. In a real-world FL scenario,
the memory space on the server side determines the value
of the tunable parameter m for GradMA-S. Here, we fix
S = 10 and set m ∈ {0, 10, 20, 40, 60, 80, 100} to carefully
look into the performance of GradMA-S with varying m.
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Figure 7. Test accuracy curves selected of GradMA-S with varying
memory sizes m on MNIST and CIFAR-10.

Notably, GradMA-S with m = 0 is equivalent to FedAvgM.
From Fig. 6, FedAvgM performs comparably to GradMA-S
with m > 0 for MNIST under moderate data heterogeneity
setting (i.e., ω = 0.1). In contrast, the performance of Fe-
dAvgM sharply degrades and is seriously worse than that of
GradMA-S with m > 0 under high data heterogeneity set-
ting (i.e., ω = 0.01). Meanwhile, for CIFAR-10, GradMA-
S with m > 0 consistently surpasses FedAvgM, even un-
der mild data heterogeneity setting (i.e., ω = 1.0). Be-
sides, we can see that the performance of GradMA-S does
not intuitively and monotonically improve with increasing
m. This indicates that the quality of the memory reduction
strategy is an essential ingredient affecting the performance
of GradMA-S for a given m. Therefore, how to tailor a
more effective memory reduction strategy is one of our fu-
ture works. From Fig. 7, the learning curves selected also
echo the said statements (see Appendix .2 for more results).

7. Conclusions

In this paper, we propose a novel FL approach GradMA,
which corrects the update directions of the server and
workers simultaneously. Specifically, on the worker side,
GradMA utilizes the gradients of the local model in the pre-
vious step and the centralized model, and the parameters
difference between the local model in the current round and
the centralized model as constraints of QP to adaptively cor-
rect the update direction of the local model. On the server
side, GradMA takes the memorized accumulated gradients
of all workers as constraints of QP to augment the update
direction of the centralized model. Meanwhile, we pro-
vide the convergence analysis theoretically of GradMA in
the smooth non-convex setting. Also, we conduct extensive
experiments to verify the superiority of GradMA.
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