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Abstract

Weakly Supervised Video Anomaly Detection (WSVAD)
is challenging because the binary anomaly label is only
given on the video level, but the output requires snippet-
level predictions. So, Multiple Instance Learning (MIL) is
prevailing in WSVAD. However, MIL is notoriously known
to suffer from many false alarms because the snippet-level
detector is easily biased towards the abnormal snippets with
simple context, confused by the normality with the same
bias, and missing the anomaly with a different pattern. To
this end, we propose a new MIL framework: Unbiased MIL
(UMIL), to learn unbiased anomaly features that improve
WSVAD. At each MIL training iteration, we use the cur-
rent detector to divide the samples into two groups with dif-
ferent context biases: the most confident abnormal/normal
snippets and the rest ambiguous ones. Then, by seeking
the invariant features across the two sample groups, we
can remove the variant context biases. Extensive exper-
iments on benchmarks UCF-Crime and TAD demonstrate
the effectiveness of our UMIL. Our code is provided at
https://github.com/ktr-hubrt/UMIL.

1. Introduction
Video Anomaly Detection (VAD) aims to detect events

among video sequences that deviate from expectation,
which is widely applied in real-world tasks such as intel-
ligent manufacturing [8], TAD surveillance [9,22] and pub-
lic security [25, 30]. To learn such a detector, conventional
fully-supervised VAD [1] is impractical as the scattered
but diverse anomalies require extremely expensive labeling
cost. On the other hand, unsupervised VAD [3, 11, 13, 35,
42] by only learning on normal videos to detect open-set
anomalies often triggers false alarms, as it is essentially ill-
posed to define what is normal and abnormal by giving only
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Figure 1. Two anomalies of Explosion and Vandalism are illus-
trated. Among each video sequence, we use red boxes to highlight
the ground-truth anomaly regions as in the first row. The corre-
sponding anomaly curves of an MIL-based model are depicted be-
low. False alarms and real anomalies are linked to the curves with
blue arrows and green arrows respectively. Best viewed in color.

normal videos without any prior knowledge. Hence, we are
interested in a more practical setting: Weakly Supervised
VAD (WSVAD) [12, 43], where only video-level binary la-
bels (i.e., normal vs. abnormal) are available.

In WSVAD, each video sequence is partitioned into
multiple snippets. Hence, all the snippets are normal
in a normal video, and at least one snippet contains the
anomaly in an abnormal one. The goal of WSVAD is to
train a snippet-level anomaly detector using video-level la-
bels. The mainstream method is Multiple Instance Learn-
ing (MIL) [22, 30]—multiple instances refer to the snip-
pets in each video, and learning is conducted by decreas-
ing the predicted anomaly score for each snippet in a nor-
mal video, and increasing that only for the snippet with the
largest anomaly score in an abnormal video. For example,
Figure 1a shows an abnormal video containing an explo-
sion scene, and the detector is trained by MIL to increase
the anomaly score for the most anomalous explosion snip-
pet (green link).

However, MIL is easily biased towards the simplest con-
text shortcut in a video. We observe in Figure 1a that the de-
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B BFigure 2. Red: Confident Set, Blue: Ambiguous Set.  : Nor-
mal sample, ▲: Abnormal sample, Gray instances: Failure cases.
The red line denotes the classifier trained under MIL. The invari-
ant classifier (black line) can be learned by combining confident
snippets learning in MIL (red line) and the ambiguous snippets
clustering (blue line). Best viewed in color.

tector is biased to smoke, as the pre-explosion snippet with
only smoke is also assigned a large anomaly score (blue
link). This biased detector can trigger false alarms on smoke
snippets without anomaly, e.g., a smoking chimney. More-
over, it could also fail in videos with multiple anomalies of
different contexts. In Figure 1b, the video records two men
vandalizing a car, where only the second one has substantial
motions. We notice that the two snippets of them have large
differences in the anomaly scores, and only the latter is pre-
dicted as an anomaly. This shows that the detector is biased
to the drastic motion context while being less sensitive to
the subtle vandalism behavior, which is the true anomaly.

The root of MIL’s biased predictions lies in its training
scheme with biased sample selection. As shown in Fig-
ure 2, the bottom-left cluster (denoted as the red ellipse)
corresponds to the confident normal snippets, e.g., an empty
crossroad or an old man standing in a room, which are either
from normal videos as the ground truth or from abnormal
videos but visually similar to the ground-truth ones. On the
contrary, the top-right cluster denotes the confident abnor-
mal ones, which not only contain the true anomaly features
(e.g., explosion and vandalism) but also include the context
features commonly appearing with anomaly under a context
bias (e.g., smoke and motions). In MIL, the trained detector
is dominated by the confident samples, corresponding to the
top-right cluster with the abnormal representation and the
bottom-left cluster with the normal representation. Hence
the learned detector (red line) inevitably captures the con-
text bias in the confident samples. Consequently, the biased
detector generates ambiguous predictions on snippets with
a different context bias (the red line mistakenly crossing the
blue points), e.g., smoke but normal (industrial exhaust in

Figure 2a), substantial motion but normal (equipment main-
tenance in Figure 2b), or subtle motion but abnormal (van-
dalizing the rear-view mirror in Figure 2c), leading to the
aforementioned failure cases.

To this end, we aim to build an unbiased MIL detector
by training with both the confident abnormal/normal and
the ambiguous ones. Specifically, at each UMIL training
iteration, we divide the snippets into two sets using the cur-
rent detector: 1) the confident set with abnormal and nor-
mal snippets and 2) the ambiguous set with the rest snip-
pets, e.g., the two sets are enclosed with red circles and
blue circles in Figure 2, respectively. The ambiguous set is
grouped into two unsupervised clusters (e.g., the two blue
circles separated by the blue line) to discover the intrinsic
difference between normal and abnormal snippets. Then,
we seek an invariant binary classifier between the two sets
that separate the abnormal/normal in the confident set and
the two clusters in the ambiguous one. The rationale of
the proposed invariance pursuit is that the snippets in the
ambiguous set must have a different context bias from the
confident set, otherwise, they will be selected into the same
set. Therefore, given a different context but the same true
anomaly, the invariant pursuit will turn to the true anomaly
(e.g., the black line).

Overall, we term our approach as Unbiased MIL
(UMIL). Our contributions are summarized below:

• UMIL is a novel WSVAD method that learns an unbiased
anomaly detector by pursuing the invariance across the
confident and ambiguous snippets with different context
biases.

• Thanks to the unbiased objective, UMIL is the first WS-
VAD method that combines feature fine-tuning and de-
tector learning into an end-to-end training scheme. This
leads to a more tailored feature representation for VAD.

• UMIL is equipped with a fine-grained video partitioning
strategy for preserving the subtle anomaly information in
video snippets.

• These contribute to the improved performance over the
current state-of-the-art methods on UCF-Crime [30] (
1.4% AUC) and TAD [22] (3.3% AUC) benchmarks.
Note that UMIL brings more than 2% AUC gain com-
pared with the MIL baseline on both datasets, which jus-
tifies the effectiveness of UMIL.

2. Related Work

The research lineup of video anomaly detection falls into
two classes: unsupervised and weakly-supervised settings.
Unsupervised methods include the ones that only use unla-
belled training data or directly train and test on testing data.
Del et al. [5] proposed to detect changes on a sequence of
video data to detect unique frames. Tudor et al. [32] intro-
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duced unmasking technology [10] to iteratively train a bi-
nary classifier to distinguish the most discriminant features.
Lately, Zaheer et al. [40] exploited the low frequency of
anomalies by building a cross-supervision between a gen-
erator and a discriminator. There are also One-Class Clas-
sification (OCC) methods assume the availability of normal
training data only and approach the problem in an unsuper-
vised manner. Typically, researchers fit a model with only
normal data, then detect anomalies by distinguishing the
events that deviate from the model. Early works used hand-
crafted appearance and motion features [2, 3, 18, 23, 24].
Thanks to the impressive progress of deep learning, recent
works used the features from pre-trained deep neural net-
works and built an anomaly classifier upon them [6, 27].
There are also methods for self-supervised feature learn-
ing [28, 37], where a popular approach is by temporal pre-
diction [15, 20, 36]. However, unsupervised methods suffer
from false alarms for unseen normal patterns, since it is im-
possible to collect all kinds of normality in one dataset.
Weakly-supervised methods exploit both normal and ab-
normal training data with weak annotations only on the
video-level [30]. Multiple instance learning (MIL) is the
mainstream paradigm that uses video-level labels for train-
ing snippet-level anomaly detectors [7, 30, 44]. Generally,
they embrace the two-stage anomaly detection pipeline,
which performs anomaly detection upon pre-extracted fea-
tures. In particular, Zhong et al. [43] considered the WS-
VAD task as supervised learning under noise labels and they
designed an alternate training procedure to enhance the dis-
crimination of action classifiers. Lv et al. [22] focused on
anomaly localization and proposed a higher-order context
model as well as a margin-based MIL loss. Tian et al. [31]
investigated the feature magnitude to facilitate anomaly de-
tection and selected the instances of top-k scores to better
represent the video for MIL. Li et al. [12] proposed mul-
tiple sequence learning, where consecutive snippets with
high anomaly scores are selected in MIL learning. They
attempted to improve the sample selection for improving
MIL, whose biased nature is not changed yet. In this pa-
per, our unbiased MIL framework is the first effort on re-
moving the context bias [38, 39] in WSVAD. In addition,
we integrate feature representation fine-tuning and anomaly
detector learning into an end-to-end training fashion.

3. Method
In Weakly Supervised Video Anomaly Detection (WS-

VAD), each training video is annotated with a binary
anomaly label y ∈ {0, 1} (i.e., normal or abnormal) and
partitioned into m snippets. We denote xi, i ∈ {1, . . . ,m}
as the feature of the i-th snippet in the video extracted by
a backbone parameterized by θ. The goal of WSVAD is to
train a snippet-level anomaly classifier f(xi) predicting the
probability of the snippet being positive (abnormal).

3.1. From MIL to Unbiased MIL

The mainstream method in WSVAD is Multiple Instance
Learning (MIL). In MIL, the backbone θ is pre-trained (e.g.,
on Kinetics400 [4]) and frozen in training. It aims to learn
f so as to predict the most anomalous snippet in a normal
video (i.e., y = 0) as normal, and that in an abnormal video
(i.e., y = 1) as abnormal. Specifically, for each video,
MIL creates a tuple containing the prediction of f on the
most anomalous snippet and the video’s anomaly label, i.e.,
(max{f(xi)}mi=1, y). Then MIL aggregates the tuple for
all videos to construct a labeled confident snippet set C, and
trains f by minimizing the binary cross-entropy (BCE) loss:

BCE(C) = − E
(ŷ,y)∼C

[ylog(ŷ) + (1− y)log(1− ŷ)] , (1)

where ŷ = max{f(xi)}mi=1. Note that some methods [30]
use the mean squared error loss, which achieves the same
outcome as Eq. (1). In this way, for a normal video with
y = 0, by minimizing max{f(xi)}mi=1, f must assign low
abnormal probability for all the snippets. For an abnormal
video with y = 1, by maximizing max{f(xi)}mi=1, f is
trained to output an even larger probability for the most con-
fident abnormal snippet. However, the MIL training scheme
suffers from biased sample selection: as f is trained to fur-
ther increase max{f(xi)}mi=1 in an abnormal video, the rest
ambiguous snippets become even less likely to be selected
by max. Hence MIL essentially discards the ambiguous
snippets and only trains on the confident ones, which leads
to a biased detector (e.g., Figure 2).

In contrast, our proposed Unbiased MIL (UMIL) lever-
ages both the confident and ambiguous snippets to train the
anomaly classifier f . Specifically, in Step 1, we divide the
snippets into a labeled confident snippet set C and an un-
labeled ambiguous snippet set A. In Step 2, we cluster A
into 2 groups in an unsupervised fashion to distinguish the
normal and abnormal snippets. Finally, in Step 3, f is super-
vised by both C and A to simultaneously predict the binary
labels in C and separate the clusters in A.

3.2. Step 1: Divide Snippets

Based on the predictions from f , we divide the snippets
into the confident set C and the ambiguous one A:
Constructing C. During training, we track the history of the
last 5 predictions from f for each snippet. Then, at the start
of every epoch, we select N snippets x1, . . . ,xN with the
least prediction variance, and the confident set C is given by
{f(xi), yi}Ni=1. The rationale is that for the apparent normal
or abnormal snippets (e.g., enclosed in red in Figure 2), their
predictions tend to quickly converge to confident normal or
abnormal with small predictive variance over time. This
approach is empirically validated in Appendix, and we point
out similar method shows promising results in [43].
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Figure 3. The proposed UMIL framework for WSVAD consists of a backbone model θ, an anomaly head f , and a cluster head g. We
use the predictions by f to divide the snippets into a confident set C and an ambiguous set A. In MIL, the model is only supervised by
the confident snippets to further increase the confidence of anomaly prediction (the black arrows on the probability bar). In UMIL, f
is additionally supervised by A to separate the two clusters identified by g for removing the context bias in C. The black arrow on the
similarity bar denotes that minimizing the BCE losses in A will decrease the dot-product similarity of the predictions on the pair, as they
are from different clusters (y1 ̸= y2). Best viewed in color.

Constructing A. The rest of the M snippets have large
prediction fluctuations, showing that f is still uncertain
about them. They are collected as the ambiguous set A =
{xi}Mi=1. Note thatA is a set of features at this point, await-
ing the next clustering step.

3.3. Step 2: Clustering Ambiguous Snippets

While the prediction from f is ambiguous on A, the
feature distribution can still reflect the intrinsic differences
between normal and abnormal snippets. Hence we aim to
clusterA into 2 groups to distinguish them. Specifically, we
learn a cluster head g that takes the snippet feature x ∈ A
as input and outputs the softmax-normalized probabilities
for being in each of the 2 clusters. The head g is trained in
a pair-wise manner such that a pair of similar features have
similar predictions from g (i.e., from the same cluster), and
vice versa for dissimilar. To accomplish this, we denote the
pair-wise form of A based on cluster prediction from g as:

Ag = {g(xi)
⊺g(xj),1(xi ∼ xj) | xi,xj ∈ A}, (2)

where the dot-product is used to measure the prediction sim-
ilarity, and 1(·) is an indicator function that returns 1 if the
cosine similarity between xi,xj is larger than a threshold τ
(i.e., xi ∼ xj), and returns 0 otherwise. This allows us to
train g by minimizing BCE(Ag).

With the optimized g, each feature xi in A is assigned
a cluster label yi = argmax g(xi) as the cluster with the

highest predicted probability. Next, we supervise f by A to
separate the clusters and form our overall objective.

3.4. Step 3: Overall Objective

Note that unlike the sample-wise supervision provided
by labels in C, i.e., whether a feature is normal or abnor-
mal, the cluster labels in A only provide pair-wise super-
vision, i.e., whether a feature pair is from the same clus-
ter. Hence we supervise f with A using a pair-wise loss: f
is trained to produce similar anomaly prediction on feature
pairs with the same cluster label, and push away predictions
for those in different clusters. This corresponds to minimiz-
ing BCE(Af ) with Af based on the pair-wise prediction
similarity of f :

Af = {f(xi)
⊺f(xj),1(yi = yj) | xi,xj ∈ A}, (3)

where f(xi)
⊺f(xj) denotes the dot-product similarity of

the binary probabilities (i.e., normal or abnormal)1 with
slight abuse of notation. The overall objective of UMIL is
given by:

min
θ,f,g

C supervision︷ ︸︸ ︷
BCE(C) +

A supervision︷ ︸︸ ︷
αBCE(Af )+

Clustering in A︷ ︸︸ ︷
βBCE(Ag), (4)

where α, β are trade-off parameters with ablations in Sec-
tion 4.4. Hence in addition to the supervision from C as in

1While f only outputs the probability of being abnormal as p, the prob-
ability of being normal is easily computed as 1− p.
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Algorithm 1 UMIL Training (1 epoch)

1: Input: N+M video snippets, backbone parameterized
by θ, classifier f and cluster head g, batch size b.

2: Output: θ, f, g trained for 1 epoch.
3: Compute {xi}N+M

i=1 (features extracted by θ)
4: Update prediction historyH ← H∪ {f(xi)}N+M

i=1

5: Construct C = {f(xi), yi}Ni=1,A = {xi}Mi=1 fromH
6: repeat
7: Sample a batch {f(xi), yi}bi=1 from C
8: Compute BCE(C) for the batch with Eq. (1)
9: Sample a batch {xi}bi=1 from A

10: Assign yi ← argmax g(xi) for i ∈ {1, . . . , b}
11: Construct Ag,Af with Eq. (2), (3) for the batch
12: Compute BCE(Ag),BCE(Af )
13: Optimize θ, f, g with Eq. (4)
14: until end of epoch

MIL, f in UMIL is additionally supervised byA to separate
its 2 clusters identified by g to remove the context bias in C
(Figure 2). This unbiased objective allows us to train not
only f , but also to fine-tune the backbone θ to get a tailored
representation for VAD.
Training and Testing. Before training, the backbone θ is
first pre-trained with MIL, and f, g are randomly initialized.
Then the models are trained with our proposed UMIL by
iterating Algorithm 1 until convergence. In testing, anoma-
lies are labeled on the frame level. The model is evaluated
with a non-overlapping sliding window of frames (i.e., each
window of frames is a snippet) to predict anomaly whenever
the window intersects with any anomaly frame.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conducted extensive experiments and ablations on
two standard WSVAD evaluation datasets [22, 30]. As per
standard in WSVAD, the training videos only have video-
level labels, and the test videos have frame-level labels.
Other details are given below:
UCF-Crime [30] is a large-scale dataset that contains
1,900 untrimmed real-world outdoor and indoor surveil-
lance videos. The total length of the videos is 128 hours,
which contains 13 classes of anomalous events. We follow
the standard split: the training set contains 1,610 videos,
and the test set contains 290 videos.
TAD dataset [22] contains real-world videos of traffic
scenes with a total length of 25 hours and 1,075 average
frames per video. The videos contain more than 7 cate-
gories of anomalies that are common on roads. The dataset
is partitioned as a training set with 400 videos, and a test set
with 100 videos.
Evaluation Metrics. Following previous works [30, 43],

Coarse

Snippet

AVG

f

Anomaly score

AVG

f

Anomaly score

f f f

Fine

Snippet

Average feature testing Average prediction testing

Figure 4. Average feature versus average prediction testing. θ, f :
the feature backbone and anomaly classifier, respectively.

we used the Area Under the Curve (AUC) of the frame-
level ROC (Receiver Operating Characteristic) as the main
evaluation metric for TAD and UCF-Crime. Intuitively,
a larger AUC means a larger margin between the normal
and abnormal snippet predictions, hence indicating a better
anomaly classifier. Inspired by Lv et al. [22], besides evalu-
ating AUC on the overall test set with normal and abnormal
videos, denoted as AUCO, we also computed the AUC on
abnormal ones alone, denoted as AUCA. The rationale is
to remove normal videos where all snippets are normal (la-
bel 0), and keep only the abnormal ones with both kinds
of snippets (label 0,1), which truly challenges a classifier’s
capability of localizing anomalies.

4.2. Implementation Details

Video Sequence Partition. Existing works partition each
video into multiple coarse snippets, and use the average
feature in each one as the input to their classifiers (Fig-
ure 4 left). However, we find that the subtle anomaly fea-
ture is often diluted by averaging features over the coarse
snippets (see Appendix). This has less impact on the tradi-
tional MIL compared to our UMIL, as MIL only leverages
the confident snippets with apparent anomalies. Therefore,
in UMIL training, we used fine-grained snippets with one-
second lengths. In testing, to generate the prediction for
a coarse snippet, we used the average predictions over the
fine snippets inside the coarse one (Figure 4 right).
Baseline. We built a baseline to validate that the im-
provements of UMIL are indeed from the unbiased training
scheme (Section 4.4), rather than the above testing scheme
based on average predictions. Specifically, the baseline has
exactly the same model design as UMIL, and we trained it
with the MIL objective in Eq. (1) on fine snippets and tested
it by averaging predictions. Hence the only difference be-
tween the baseline and UMIL is the training objective.
Model Training. We implemented the backbone θ with the
X-CLIP-B/32 model [26] fine-tuned on Kinectics-400 [4] to
improve its capabilities in action recognition. We used the
fully connected layer to implement the anomaly classifier
f and the cluster head g. We trained our model with the
AdamW optimizer [17] using an initial learning rate of 8e-
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Category Method AUCO (%) AUCA (%)
U

VA
D

SVM Baseline 50.00 50.00
Conv-AE [6] 50.60 -

Sohrab et al. [29] 58.50 -
Lu et al. [18] 65.51 -
BODS [33] 68.26 -
GODS [33] 70.46 -

W
SV

A
D

Sultani et al. [30] 75.41 54.25
Zhang et al. [41] 78.66 -

Motion-Aware [44] 79.10 62.18
GCN-Anomaly [43] 82.12 59.02

Wu et al. [34] 82.44 -
RTFM [31] 84.30 -
WSAL [22] 85.38 67.38

Baseline 80.67 60.57
UMIL 86.75 68.68

Table 1. Frame-level AUC performance on UCF-Crime. Best
results in bold. AUCO and AUCA denote that the AUC com-
puted on the overall test set and only abnormal test videos, respec-
tively. “UVAD” and “WSVAD” under category denote Unsuper-
vised VAD and Weakly-Supervised VAD, respectively.

6, weight decay of 0.001, and batch size of 8. We utilized
the cosine annealing scheduler and warmed up the learn-
ing rate for 5 epochs. Our UMIL model was pre-trained
with MIL for 30 epochs, followed by 10 epochs of UMIL
training. We conducted all experiments on 4 TITAN RTX
GPUs. We implement the max value scores as well as max
margin scores [22] in C supervision of Eq 4. We also incor-
porated entropy minimization as a standard auxiliary objec-
tive [14, 16], and added the self-training loss, which lever-
ages the learned unbiased anomaly classifier f to generate
accurate pseudo-labels on samples in the ambiguous set A
for additional supervision. Details in Appendix.

4.3. Main Results

UCF-Crime and TAD. In Table 1, we compared our UMIL
with other state-of-the-art (SOTA) methods in both Unsu-
pervised VAD (UVAD) and WSVAD. On UCF-Crime [30],
UMIL achieves the best AUCO and AUCA among all the
methods, with an improvement of +1.37% and +1.3%, re-
spectively. UMIL also significantly outperforms all meth-
ods in TAD [22] by +3.3% on AUCO and +4.2% on AUCA.
Overall Observations. 1) Notice that our baseline per-
forms similarly (e.g., AUCO on TAD) or even worse (e.g.,
60.57% versus 67.38% on UCF-Crime AUCO) compared
to existing MIL-based methods. This validates that the im-
provements from UMIL are not from the test scheme of
averaging predictions. 2) In particular, our improvement
in AUCA indicates that the superior performance of UMIL
on AUCO is not merely from easy normal videos, but also
from improved capabilities to identify anomalous snippets
in abnormal videos. 3) Moreover, on both datasets, WS-
VAD significantly improves over UVAD on AUCO, which
empirically validates that detecting open-set anomalies in
UVAD is ill-posed (Section 1). However, the improvements

Category Method AUCO (%) AUCA (%)

U
VA

D SVM Baseline 50.00 50.00
Luo et al. [19] 57.89 55.84
Liu et al. [15] 69.13 55.38

W
SV

A
D

Sultani et al. [30] 81.42 55.97
Motion-Aware [44] 83.08 56.89

GIG [21] 85.64 58.65
WSAL [22] 89.64 61.66

Baseline 89.10 56.47
Ours 92.93 65.82

Table 2. Frame-level AUC performance on TAD benchmark.

Baseline ST RTFM* UMIL AUCO (%) - UCF AUCO (%) - TAD
✓ 80.67 89.10
✓ ✓ 82.01 90.80
✓ ✓ ✓ 83.45 91.28
✓ ✓ 83.66 91.74
✓ ✓ ✓ 86.75 92.93

Table 3. Ablation studies of the components in UMIL on UCF-
Crime and TAD. *: we re-implemented RTFM with our backbone
and average-prediction-based testing scheme for fair comparison.

Threshold(%) 10 30 50 70 90
AUCO (%) - UCF 86.8 86.8 85.9 84.3 83.1
AUCO (%) - TAD 92.7 93.0 92.8 91.5 91.1

Table 4. Ablation on the threshold to divide the confi-
dent/ambiguous snippet set on UCF-Crime and TAD.

in AUCA are much smaller (e.g., 54.25% over 50.00% on
UCF-Crime). This shows that the existing WSVAD meth-
ods are still biased toward the apparent normal/abnormal,
causing many false positives and negatives on ambiguous
snippets from the abnormal videos. 4) Our UMIL signifi-
cantly improves the AUCA over MIL (e.g., +4.2% on TAD),
which demonstrates the effectiveness of using ambiguous
snippets in UMIL to learn an unbiased invariant classifier.
5) Interestingly, TAD tends to have larger AUCO but lower
AUCA, e.g., from UCF-Crime to TAD, UMIL’s AUCO is
6.2% higher, but AUCA is 2.8% lower. The improved over-
all performance suggests that TAD has stronger context bias
in the confident set, i.e., more apparent normal/abnormal
snippets, and the dropped AUCA indicates that it contains
more subtle anomalies in the ambiguous snippets that are
hard to detect and localize. This also explains why our
UMIL improves AUCA more on TAD than UCF-Crime
by incorporating ambiguous snippets to remove the context
bias from the confident set.

4.4. Ablations

Components. Our approach has 2 main components: 1)
the self-training objective; 2) the UMIL objective in Eq. (4).
We validate the effectiveness of each component in Table 3
with AUCO. All ablations in the table are on the equal
ground—using average prediction instead of average fea-
ture for anomaly detection (i.e., Baseline). By comparing
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Figure 6. ROC curves on UCF and TAD. Note that we only show
part of the curves for visual clarity, as the other part of the methods
have a large overlap when the true positive rate approaches 100%.

the first two lines, we observe that self-training can improve
AUCO from 80.67% to 82.01% on UCF-crime and 89.10%
to 90.80% on TAD. To independently evaluate the effec-
tiveness of UMIL objective, we re-implement the SOTA
RTFM [31] using our backbone and add the self-training
objective, namely RTFM*. The result is listed in line 3.
Our UMIL in line 4 still significantly outperforms RTFM*
(+3.3% on UCF-crime and +1.7% on TAD), hence validat-
ing the effectiveness of our unbiased learning objectives.
Confident Threshold. We then conducted experiments to
analyze the effects of the variance threshold for dividing
confident and ambiguous snippets as in Section 3.2. Specif-
ically, we selected k (%) training snippets with the mini-
mum variance on their prediction history with varying k as
in Table 4. Overall the threshold is easy to determine, i.e.,
10-50% is a reasonable range with 30% being the best.
Trade-off Parameters. Recall that we use α and β in
Eq. (4) as the trade-off for the supervision from the am-
biguous set A and clustering, respectively. We empirically
find in Figure 5 that α, β = 0.1 are suitable across the two
datasets, hence we used this setting in the experiments by
default. In general, the choice of α depends on the strength
of the context bias in the confident set, e.g., TAD has strong
bias as analyzed in Section 4.3, which cannot be overcome
with a small α (e.g., α=0.01 has low performance).
Class-wise AUC. On UCF-Crime dataset, the class of
anomaly in each test video is given. This allows us to plot
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Figure 7. Class-wise AUCA of three methods on UCF-Crime.
the class-wise AUCA to examine models’ capabilities to
detect subtle abnormal events. In Figure 7, we compared
UMIL with baseline and RTFM*, where “Average” shows
the overall AUCA and the rest shows the class-wise one.
We have the following observation: 1) Both of the two MIL-
based methods perform well on human-centric anomaly
classes with drastic motions, e.g., “Assault” and “Burglary”.
These classes correspond to apparent anomalies as the back-
bone expresses the human action feature well (fine-tuned
on the action recognition Kinetics400 dataset [4]). 2) How-
ever, we notice that they easily fail to distinguish anomalies
with subtle motions, e.g., “Arson” and “Vandalism”, as well
as non-human-centric anomalies, e.g., “Explosion”. These
classes correspond to ambiguous anomalies discarded by
the biased training in MIL. 3) Our UMIL performs simi-
larly on the above apparent anomaly classes and much bet-
ter on the other subtle anomalies, which largely contributes
to the superior anomaly detection and localization perfor-
mance. Overall, observation 1 and 2 empirically verifies
the biased prediction situation of MIL in Figure 1 and Fig-
ure 2. In contrast, our UMIL convincingly improves the
performance on ambiguous anomalies with almost no sacri-
fice on the confident ones, which validates the effectiveness
of our approach, i.e., identifying the invariance between the
two types of anomalies to remove the bias in MIL.
ROC Curve. In Figure 6, we draw the ROC Curve on the
overall test set for our baseline, the re-implemented RTFM*
and UMIL, which shows the true and false positive rate for
detecting anomaly on a sweeping threshold over the pre-
dictions. VAD is evaluated using the area under this curve
to demonstrate the overall separation of normal and abnor-
mal snippet predictions. However, when applying a detector
for real-world usage, we need to choose a specific thresh-
old (e.g., with a maximum tolerable false positive rate).
We observe from Figure 6 that our UMIL outperforms the
two MIL baselines in every inch, which further shows the
strength of our proposed unbiased training.
Qualitative Analysis. In Figure 8, we show the continu-
ous predictions of anomaly probabilities from our baseline,
RTFM*, and our UMIL on 4 test videos on UCF-crime. We
summarize the observations: 1) For the MIL baseline (2nd
column), we observe that it assigns a larger probability on
the pre-explosion snippets from B1 and B2 (top two videos),
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B1 R1 U1

B2 R2 U2

Baseline RTFM* UMILGround-truth

B4 R4 U4

B3 R3 U3

Figure 8. Visualization cases of ground-truth and anomaly score curves of various approaches. The white and black triangles denote the
location of the normal and abnormal frame displayed on the left, respectively. The green curves represent the anomaly predictions of
various methods. The pink background corresponds to the ground-truth abnormal regions.

e.g., workers performing maintenance and snippets with
smoke, yet the actual explosion may have a lower prediction
(e.g., comparing the height of the green lines on the white
and black triangle locations). Similarly, on B3, the running
person (white triangle) triggers a larger anomaly prediction
than the actual vandalism (black triangle). This further il-
lustrates the biased prediction problem in MIL. 2) RTFM
(3rd column) uses feature magnitudes to assist anomaly de-
tection by assuming anomalous snippets have larger magni-
tudes, which indeed improves over the baseline sometimes,
e.g., R2 is no longer biased to smoke. However, its assump-
tion has no guarantee to hold and hence the failure on subtle
anomalies persists, e.g., false alarm in R1 white triangle lo-
cation and low prediction in R3 black triangle location. 3)
In contrast, our UMIL localizes the anomalies accurately in
U1-U3, e.g., having consistently high scores in the pink ar-
eas, which holds its ground on the name “unbiased”. 4) In
the 4th video, however, RTFM’s prediction in the pink area
is more consistent than ours. By inspecting the frames on
the left, we realize that the two peaks in the pink area of
U4 correspond to the burning fire and the running suspect
caught on fire. Hence UMIL’s prediction is reasonable and
sufficient for triggering the alarm on the first peak.

Computational Efficiency. Lastly, we investigated the
speed of the proposed model. For inference, our method
processes a 5-frame clip in 0.003 seconds on a Nvidia
2080Ti GPU. Notably, this is almost 80× faster than the
SOTA RTFM [31], which spends 0.76 seconds to process
a 16-frame clip on Nvidia 2080Ti. Thanks to our unbiased
training scheme, we can fine-tune the backbone to learn a
WSVAD-tailored representation, which achieves even bet-
ter performance than existing SOTA. This also shows the
promising future of UMIL in real-time applications.

5. Conclusion
In this work, we presented an Unbiased Multiple In-

stance Learning (UMIL) scheme that learns an unbiased
anomaly classifier and a tailored representation for Weakly
Supervised Video Anomaly Detection (WSVAD). Specif-
ically, the existing MIL training scheme suffers from the
context bias by only training on the confident set contain-
ing apparent normal/abnormal video snippets. We replace
it with an unbiased one—seeking the invariant predictor that
simultaneously distinguishes the normal/abnormal snippets
in the confident set, and separates the two unsupervised
clusters in the rest ambiguous snippets. Hence the con-
text bias that fails among the ambiguous ones is removed.
Our approach is empirically validated by the state-of-the-art
performance and extensive ablations on standard WSVAD
benchmarks. In future, we will seek additional prior beyond
unsupervised clustering to discover the intrinsic differences
between the ambiguous normal and abnormal snippets and
adopt principled representation learning paradigm (e.g., dis-
entanglement) to highlight the anomaly features.
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