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Abstract

Active learning selects informative samples for annota-
tion within budget, which has proven efficient recently on
object detection. However, the widely used active detection
benchmarks conduct image-level evaluation, which is un-
realistic in human workload estimation and biased towards
crowded images. Furthermore, existing methods still per-
form image-level annotation, but equally scoring all targets
within the same image incurs waste of budget and redun-
dant labels. Having revealed above problems and limita-
tions, we introduce a box-level active detection framework
that controls a box-based budget per cycle, prioritizes infor-
mative targets and avoids redundancy for fair comparison
and efficient application.

Under the proposed box-level setting, we devise a novel
pipeline, namely Complementary Pseudo Active Strategy
(ComPAS). It exploits both human annotations and the
model intelligence in a complementary fashion: an efficient
input-end committee queries labels for informative objects
only; meantime well-learned targets are identified by the
model and compensated with pseudo-labels. ComPAS con-
sistently outperforms 10 competitors under 4 settings in a
unified codebase. With supervision from labeled data only,
it achieves 100% supervised performance of VOC0712 with
merely 19% box annotations. On the COCO dataset, it
yields up to 4.3% mAP improvement over the second-best
method. ComPAS also supports training with the unlabeled
pool, where it surpasses 90% COCO supervised perfor-
mance with 85% label reduction. Our source code is pub-
licly available at https://github.com/lyumengyao/blad.

1. Introduction
Reducing the dependency on large-scale and well-

annotated datasets for deep neural networks has received
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Figure 1. Active detection methods evaluated on VOC0712 un-
der image-level (Left) and box-level (Right) settings. BoxCnt is
our hack that simply queries potentially the most crowded images,
which demonstrates that image-level evaluation is highly biased.
Methods marked with * have specialized detector architectures.

a growing interest in recent years, especially for the detec-
tion task, where the box-level annotation is highly demand-
ing. Among data-efficient training schemes, active detec-
tion methods [1, 4, 6, 7, 13, 20, 24, 35] iterate over detec-
tor training, performance evaluation, informative image ac-
quisition and human annotation. Despite recent progress,
previous pool-based active detection methods still consider
the subject of interest at the image-level: they conduct
image-level evaluation, where the budget is controlled by
the number of labeled images per cycle; afterwards, they
perform exhaustive image-level annotation, where all in-
stances of the same image are labeled. Such an image-level
framework suffers from unfairness in model performance
comparison and leads to a waste of annotation resources.

On the one hand, existing methods under the image-level
evaluation assume equal budget for every image. How-
ever, in real-world use cases, the workload of annotators
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is measured by bounding boxes [10,23]. As the image-level
budget fails to reflect actual box-based costs, active detec-
tion methods are allowed to obscurely gain an advantage
by querying box supervision as much as possible until the
image-based budget is run out. In fact, according to our ex-
periment shown in Fig. 1L, naively sampling potentially the
most crowded images (dubbed as “BoxCnt”) can surpass
all elaborately designed methods, demonstrating the unfair-
ness of image-level evaluation. On the other hand, during
human annotation, simply performing image-level exhaus-
tive annotation is wasteful, since the informativeness of dif-
ferent targets involved in the same image can vary sharply.
For example, a salient target of a common category might
have been well-learned, whereas a distant or occluded vari-
ant could be more informative. As a result, annotating all
instances amongst the same image as equals leads to a waste
of resources and redundant annotations (See Fig. 4).

After revealing the above problems and limitations, we
propose a new box-level active detection framework to-
wards fair comparison and non-redundant human annota-
tion. For evaluation, our framework includes a more prac-
tical and unbiased criterion that controls the amount of
queried boxes per cycle, enabling competing methods to be
assessed directly within realistic box-based budgets (as il-
lustrated in Fig. 1R). Considering the annotation, we advo-
cate a box-level protocol that prioritizes top-ranked targets
for annotation and discards well-learned counterparts to
avoid redundancy. Under the proposed framework, we de-
velop a novel and efficient method namely Complementary
Pseudo Active Strategy (ComPAS). It seamlessly integrates
human efforts with model intelligence in actively acquiring
informative targets via an input-end committee, and mean-
time remedying the annotation of well-learned counterparts
using online pseudo-labels.

In consideration of the active acquisition, concentrating
resources on the most informative targets makes box-level
informativeness estimation crucial. Among active learn-
ing strategies, multi-model methods, such as Ensemble [2]
and MCDropout [9], have demonstrated superiority. Built
upon a model-end ensemble, query-by-committee methods
select the most controversial candidates based on the voting
of model members to minimize the version space [26, 27].
However, directly adapting them to detection not only mul-
tiplies the computational cost in the committee construc-
tion, but complicates the detection hypothesis ensemble on
the box-level. Therefore, to harness the power of diver-
sity without a heavy computational burden, orthogonal to
model-end ensembles, we construct an input-end committee
during the sampling stage. Variations are drawn from ubiq-
uitous data augmentations and applied to unlabeled candi-
dates, among which each perturbation can be considered
as a cheap but effective committee member towards ver-
sion space minimization. When it comes to the box-level

hypothesis ensemble, instead of performing pair-wise label
assignment among all members [24], we reduce the ensem-
ble burden by analyzing the disagreement between predic-
tions of a reliable reference and other members. Then the
disagreement is quantified for both classification and local-
ization to exploit the rich information in annotations.

Later during box-level annotation, the oracle only yields
labels for challenging, controversial targets, leaving consis-
tent ones unlabeled. Those unlabeled targets would be con-
sidered as the background class during the following train-
ing cycles, which severely harms the performance and poses
a new challenge. To compensate well-learned targets for
missing annotation, we combine sparse ground truths with
online pseudo-label generation, where in contrast to active
sampling, confident model predictions are accepted as self-
supervision signals. The proposed box-level pipeline sup-
ports both labeled-only and mixed-supervision learning set-
tings w/ or w/o the unlabeled image pool involved during
training, which makes a fairer comparison with fully- and
semi-supervised state-of-the-arts (SOTAs).

Our contributions can be summarized as follows:

• We propose a box-level active detection framework,
where we control box-based budgets for realistic and
fair evaluation, and concentrate annotation resources
on the most informative targets to avoid redundancy.

• We develop ComPAS, a novel method that seamlessly
integrates model intelligence into human efforts via an
input-end committee for challenging target annotation
and pseudo-labeling for well-learned counterparts.

• We provide a unified codebase with implementations
of active detection baselines and SOTAs, under which
the superiority of ComPAS is demonstrated via exten-
sive experiments.

2. Related Work
Active scoring functions. Pool-based active detec-

tion strategies rely on scoring functions to rank sample
candidates for annotation, which can be categorized into
uncertainty-based [4, 12, 24, 34, 35], diversity-based [1, 25]
and hybrid methods [20, 32]. Uncertainty-based methods
prioritize unconfident predictions based on posterior prob-
ability distributions [2, 9, 35], a specified loss prediction
module [34], or Gaussian mixture heads [4]. To avoid sam-
pling bias [5, 21] in batch mode active learning induced by
uncertainty, another strategy is to promote diversity for a
more representative dataset, which is achieved by core-set
selection [1, 25]. However, diversity-based methods incline
to sample data points as far as possible to cover the data
manifold without considering density. Thus, hybrid meth-
ods that make trade-offs between diversity and uncertainty
are proposed [20,32]. Besides adaption from classification-
oriented methods, some recent research specially considers
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Figure 2. Overview of our ComPAS pipeline for box-level active detection, which iterates between active acquisition via the input-end
committee and complementary training based on pseudo-active synergy. Only workflow of sparsely labeled images is shown for generality.

the localization subtask, of which the uncertainty is esti-
mated via the inconsistency between RPN proposals and fi-
nal predictions [13], or a mixture density model [4]. How-
ever, they either impose limitations on the detector archi-
tecture, or require certain modifications to it, thus cannot be
generalized. In contrast, our localization informativeness
is efficiently estimated between stochastic perturbations of
candidates without dependency on model architecture.

Multi-model score ensemble. Based on the above
active scoring functions, multi-model methods ensemble
different hypotheses obtained via multiple training repe-
titions [2], stochastic forward passes [9], different model
scales [24] or duplicated detection heads [4]. Despite their
effectiveness because of increased variety, ensemble meth-
ods have not been widely discussed in detection due to the
computational burden and the box-level ensemble difficulty.
To reduce the computational cost, some of the previous
methods attempted at altering model inputs, such as image
flipping [7] and noise interfering [13], but those variations
are simple and limited. During the result ensemble, unlike
classification methods that can directly average over pos-
terior distributions, existing adaptations towards detection
mainly avoid the obstacles by image-level scoring followed
by model-level aggregation [4]. However, when applied on
the box-level, it requires pair-wise label assignment [24],
which further incurs computational cost. In contrast, our
input-based committee promotes diversity via stronger po-
sitional and color perturbations applied on more input mem-
bers, and disagreement is efficiently analyzed between a ref-
erence and members.

Implementation and evaluation. While most re-
cent research on active detection is still evaluated on the
image-level, our analysis has revealed that it is unreal-
istic and heavily biased. Furthermore, we suggest box-
level annotation, which is attempted but neither well-
explored [31] nor applicable to the in-domain task [29].
To this end, we present a strong pipeline that integrates
both human annotations and machine predictions on the
box-level. We also note that previous active detection

methods are compared without detector uniformity (e.g.
SSD [17], Faster R-CNN [22], RetinaNet [15]), learning
standardization (e.g. runtime settings), benchmark consis-
tency (VOC12/0712 [8], COCO2014/2017 [16]), and super-
vision differentiation (fully- or semi-supervised). To help
advance reproducible research, we introduce a shared im-
plementation of methods based on the same detector, train
with similar procedures in a unified codebase, evaluate un-
der the box-level criterion and support both labeled-only
and mixed-supervision learning.

3. ComPAS for Box-level Active Detection

3.1. Problem Formulation

The pipeline of the box-level active detection is initial-
ized at the active learning cycle t = 0. A small set of images
L0 is randomly sampled and fully annotated with bounding
boxes, whereas the majority of images are remained unla-
beled U0. Based on the current data pools, a generic object
detector M(θ0) is obtained, evaluated and used for inferring
on the unlabeled pool. Then a scoring function evaluates
the informativeness of each unlabeled candidate and queries
an oracle for labels. Different from image-level active de-
tection methods that consider an image as the minimum
annotation unit, we actively select top-ranked informative
bounding box proposals for annotators to identify the ob-
jects of interest within the candidate regions. Such protocol
actively prompts annotators with the potential boxes for cor-
rection, rather than leaving them passively spotting, mark-
ing and verifying all instances for every class among an
image, which greatly helps narrow down the spatial search
space and semantic options.

Since the first active sampling process t ≥ 1, sparsely
labeled images become available as St. Then the detec-
tor M(θt) is updated accordingly, with labeled images only
(Lt ∪ St), or with all images involved (Lt ∪ St ∪ Ut) in the
mixed-supervision setting. In the subsequent active acquisi-
tion cycles, both sparsely labeled and unlabeled images are
evaluated, among which top-ranked boxes with low overlap
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with existing ground truths are prompted for labels. This it-
eration repeats itself until the stopping criterion is reached.

As illustrated in Fig. 2, under the box-level active de-
tection scenario, we propose a Complementary Pseudo Ac-
tive Strategy (ComPAS), where the synergy between hard
ground truth mining during active sampling (Sec. 3.2) and
easy pseudo-label generation (Sec. 3.3) is exploited.

3.2. Active Acquisition via Input-end Committee

Ensemble-based active learning has proven effective for
classification [2, 9] as well as detection under the box-level
evaluation (shown in Fig. 1). The ensemble is also dubbed
as a committee [24, 27] when the disagreement amongst
member hypotheses is estimated. However, existing en-
semble strategies mainly rely on model parameter dupli-
cation, referred to as model-end diversity, which induces
extra computational cost. Furthermore, efficiently aggre-
gating bounding box results is also non-trivial. Previous
methods adapt the procedure via the instance-level integra-
tion to obtain image-level scores, followed by model-level
averages [2,4,9] which cannot be applied to box-level detec-
tion. Or otherwise, aggregating multiple sets of box results
would incur pair-wise label assignment, due to the fact that
we have to traverse every prediction from all other members
to construct a committee for each instance [24].

Orthogonal to the model-end diversity in principle, we
instead propose to introduce invariant transformations on
the input-end. The posterior disagreement is thus estimated
amongst multiple stochastic views of the input, which can
be considered as committee members. Drawing variations
from data augmentation instead of model ensemble greatly
alleviates the burden of training. To achieve complexity re-
duction for result assignment, inspired by the consensus for-
mulation [19, 26], we keep an exponential moving average
(EMA) E(θ′) of the detector M(θ) as a chairman to gener-
ate box references:

θ′tr = αθ′tr−1 + (1− α)θtr, (1)

where tr indicates the training step within one cycle. As
shown in Fig. 2, the chairman model generates more reli-
able predictions [14] E(x) with regard to the input x. Mean-
while, the detector bears more diversity and produces com-
peting hypotheses {bjm} for a batch of M stochastic aug-
mentations Am(x). Based on the chairman predictions as a
reference, measuring disagreement between it and all other
member hypotheses can effectively reduce the assignment
complexity. Note that those augmentations are fed into the
network as batches and run in parallel in practice, instead of
being forwarded in multiple passes. Next, we detail our dis-
agreement quantification for classification and localization.

Disagreement on classification. In estimating the po-
tential value of a box to the classification branch, we prior-
itize controversial regions in the input space. Specifically,

given the box candidates {bi} predicted by the chairman,
member boxes {bjm} are assigned to each reference box in
{bi} using, though not limited to, the detector-defined as-
signment strategy, such as the max-IoU assigner.

Given a matched pair of boxes {bi, bjm}, we measure the
classification disagreement based on the cross entropy be-
tween the one-hot chairman prediction qi and the posterior
predictive member distribution qj :

dijc = −Eqi [log qj ]. (2)

And the disagreement about box bi is aggregated among M
committee members:

dic =
1

M

M∑
m

 1

kmi

kmi∑
j

dijc

 , (3)

where kmi denotes the number of positively matched mem-
ber predictions in the m-th stochastic view. A larger value
indicates higher disagreement amongst the input-end com-
mittee over a box candidate. It shows that the current model
cannot consistently make invariant label predictions under
varying degrees of image perturbations, and thus it should
be queried for human annotations.

Disagreement on localization. While it is straightfor-
ward to adopt the prediction distribution as the confidence
indicator, dc can only reflect the committee disagreement
on classification. Considering the multi-tasking nature of
detection, we are motivated to measure the controversy over
localization.

Inspired by [13, 33], with multiple stochastic perturba-
tions applied on the input, we estimate the variation of their
box regression results. The intuition behind it is that, if the
predicted position is seriously interfered due to randomness,
the judgment of the current model on the target concept
might not be trustworthy, and thus should be aided by hu-
man annotations. The reverse applies when the predictions
remain stable despite input variations.

Specifically, with the same chairman-member label as-
signer used for the classification counterpart, a box refer-
ence bi is matched by multiple candidates {bjm} generated
by M members. We apply respective inverse transforma-
tions on those boxes, which are aligned as {A−1

m (bjm)} and
fed into the localization branch of the chairman model Ereg.
Then the disagreement over the location of bi is measured
based on the chairman re-calibrated boxes:

dir =
1

4

4∑
k

σ̂k({Ereg(A−1
m (bjm))}). (4)

In doing so, the localization task is decomposed into four
regression tasks based on coordinates. σ̂k represents the
standard deviation of the k-th coordinate, which is normal-
ized by the average of box height and width.

23769



Overall, for the box-level detection task, our scoring
function is formulated as follows:

di = dic × dir, (5)

based on which we rank all reference boxes for unlabeled
regions, and provide labels for top-ranking boxes if they
meet certain IoU-based criterion with interested targets dur-
ing the annotation procedure.

Measuring controversy in both classification and local-
ization exploits human annotations at the bounding box
level. Built upon the scoring function, our voting com-
mittee is constructed with input-end stochasticity to avoid
duplicated training, and the reference formulation further
reduces assignment complexity in box-level active acquisi-
tion. With controversial regions of the input space being
efficiently identified and annotated, the generalization error
minimization is gradually achieved in subsequent cycles.

3.3. Sparse- and Mixed-Supervision Training

Ever since the first active sampling, sparsely-labeled im-
ages are incorporated into the queried pool, where anno-
tated targets provide additional information, and meantime
unlabeled ones bring the noise. More severely, our setting
prioritizes challenging targets, which we empirically found
to be small-sized, distant or occluded, whereas salient and
dominant objects are more likely to be left unlabeled. As a
result, the label absence of confident objects provides incor-
rect supervision signals, and proposals associated with them
are mistakenly classified as hard negatives. If not properly
handled, the sparse annotation problem would have a detri-
mental effect on the detection performance (See Sec. 4.3).

Despite the significant label absence, as described in
Sec. 3.2, the silver lining is that human annotations have
been provided for targets that the previous detector fails to
interpret, leaving the easier ones to be concerned about. We
find the pseudo-label generation complementary to it, where
targets with confident model predictions are kept for self-
training, while challenging targets with uncertain predic-
tions are filtered out. With both active sparse training and
pseudo-label generation, we can reduce noise incurred by
missing labels, as well as alleviate the error accumulation
of pseudo signals. To exploit labeled, sparsely labeled and
optionally unlabeled images, we adopt the SOTA pseudo-
label generation scheme inspired by [18, 30, 33].

Supervised loss for labeled images. Fully labeled im-
ages {xi

l} from Lt are fed into the detector and learned in a
supervised way:

Ll =
1

Nl

∑
i

Lcls(x
i
l, y

i
l) +Lloc(x

i
l, t

i
l), (6)

where Nl is the number of fully labeled images, y represents
ground truth class labels and t denotes corresponding box

locations. Lcls and Lloc represent loss functions used by
the detector for classification and localization respectively.

As described in Eq. 1, we keep a temporal smoothed
version of the detector, which is also denoted as a teacher
model. Here we refer to it as chairman following Sec. 3.2
for consistency.

Pseudo-label generation. The data batch is appended
with randomly sampled sparse or unlabeled images if avail-
able. The weakly augmented input image x is processed
by the chairman to generate pseudo-label candidates {bi} ,
while the strongly augmented version A(x) is fed into the
detector to improve data diversity.

In accordance with our acquisition strategy, pseudo-
labels for classification and localization are filtered based
on different criteria to ensure precision. Specifically, we
apply confidence thresholding with a high threshold λc to
obtain reliable boxes {b̂ic} for classification. With regard to
localization, similar as in Eq. 4, we apply positional pertur-
bations a(bi) on pseudo-labels for the chairman model to
refine. Candidates with predictive fluctuations lower than
a threshold λr are kept to supervise the regression head,
which is denoted as {b̂ir}.

Pseudo-active synergy for sparse images. Although
the confidence thresholding is known to accumulate false
negative errors due to the low recall of pseudo-labels, it is
less likely to happen in our active sparse training setting.
Because annotations of the most challenging targets have
been provided. For a sparsely labeled image xs, the pseudo-
active synergy is exploited as follows:

G(ys, ŷsc) = ys ∪ {ŷisc | IoU (b̂isc, b
j
s) ≤ λg,∀bjs ∈ bs},

(7)
where we supplement sparse ground truth labels ys with
pseudo-labels ŷsc whose corresponding boxes b̂sc have less
than λg jaccard overlap with the ground truth ones. And
the same de-duplication process applies to the localization
branch, which results in G(ts, t̂sr). The supervision quality
for sparse images is thus enhanced after the completion:

Ls =
1

Ns

Ns∑
i

Lcls(A(xi
s),G(yis, ŷ

i
sc))+

Lloc(A(xi
s),G(tis, t̂

i
sr)),

(8)

where Ns is the number of sparsely labeled images.
Mixed-supervision with unlabeled images. In the

pool-based active learning scenario, unlabeled images are
also available during training, which can be utilized to boost
performance [7, 20, 35]. Without any human annotation
available, the loss function is formulated as follows:

Lu =
1

Nu

Nu∑
i

(Lcls(A(xi
u), ŷ

i
uc) +Lloc(A(xi

u), b̂
i
ur)),

(9)
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Figure 3. Box-level comparative results on (Left) VOC-semi, (Middle) COCO-sup and (Right) COCO-semi. Solid lines are performed
with labeled-supervision, whereas dashed lines indicate training with unlabeled images.

in which Nu denotes the number of unlabeled images, and
ŷuc and b̂ur are pseudo-labels and boxes for the two sub-
tasks after thresholding respectively.

Overall training objectives. In the labeled-only setting,
our objective function is formulated as Ll +

Ns

Nl
Ls, where

we use the sample ratio Ns

Nl
to control the contributions of

the sparse data flow. Likewise, the objective function for
the mixed-supervision setting is Ll +

Ns

Nl
Ls +

Nu

Nl
Lu.

In grouping hard annotations and easy pseudo-labels to-
gether, ComPAS strategy leverages both human brainpower
and machine intelligence. It frees object detectors from
image-level exhaustive annotations and greatly reduces la-
bor costs.

4. Experiments

4.1. General Setup

Datasets. We study previous and the proposed meth-
ods under the box-level evaluation setting on 1) PASCAL
VOC0712 [8] dataset, of which the trainval split contains
16,551 images with 40K boxes from 20 classes, and we val-
idate on VOC07 test split; 2) Microsoft COCO [16] dataset,
which includes 118K images with about 860K boxes for 80
classes on the train2017 split, and 5K images for validation.

Baselines and Evaluation. Depending on the
holistic involvement of unlabeled images during train-
ing, existing active learning strategies are divided into
labeled-supervised methods (Random, MeanEntropy,
WhiteBoxQBC [24], CoreSet [25], LearningLoss [34],
MIAOD1 [35], ALMDN [4], MCDropout [9], Ensem-
ble [2] and our supervised-ComPAS (denoted as sCom-
PAS)) and mixed-supervised ones (ActiveTeacher [20] and
our mixed-ComPAS (mComPAS)). Under different super-
vision and datasets, we refer to our experimental settings as

1MIAOD [35] samples an unlabeled pool of the same size as the labeled
pool, and thus is excluded from holistic mixed-supervision comparison.

VOC-sup, VOC-semi, COCO-sup and COCO-semi.
On VOC0712 dataset, to initialize the labeled pool, we

randomly sample images for exhaustive annotation until the
budget of 3K boxes is reached, and append 1K boxes per
cycle. On COCO, images of 50K boxes are randomly sam-
pled and annotated at first, and 20K boxes are labeled per
cycle based on respective query strategies. We conduct all
experiments in the main paper for 10 cycles unless the fully
supervised (FS) performance has been reached. We report
mean average precision @0.5 (mAP50) for VOC0712 and
@0.5:0.95 (mAP) for COCO. The mean and standard devi-
ation of results for three independent runs are reported.

Implementation. Our detector implementation and
training configurations are based on Faster R-CNN [22]
with ResNet-50 [11] backbone under the mmdetection [3]
codebase. For a fair comparison, we re-implement
MeanEntropy, WhiteBoxQBC [24], CoreSet [25], Learn-
ingLoss [34], MIAOD [35], ALMDN [4], MCDropout [9]
and Ensemble [2] based on their respective public code (if
available) or paper descriptions2. Details of their implemen-
tations can be found in the supplementary material.

In each independent run, the exact same data split is used
for all methods, among which methods with specialized
architectures have different initial performances (marked
with *). During the training of each cycle, we train 12500
or 88000 iterations with a batch-size of 16 for VOC0712
or COCO datasets respectively to be consistent with the
fully supervised setting. Unless otherwise stated, SGD op-
timizer is adopted with learning rates set as 0.01 or 0.02
for VOC0712 or COCO, which is decayed by 10 at 8/12×
and 11/12× total iterations. On VOC0712, we train from
scratch in each cycle, whereas for COCO we fine-tune from
the previous checkpoint for 0.3× iterations with 0.1× learn-
ing rate. In terms of the semi-supervision training of com-

2We verify that the performance of our re-implementations with suffi-
cient regularization and augmentation can surpass their reported results.
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petitors and our mixed-supervision setting, we double the
training iterations following the common practice, and leave
the rest unchanged. For the proposed method, thresholds
λc, λr, λg are set as 0.9, 0.02 and 0.4 respectively, which
are not specially tuned. We adopt M=10 committee mem-
bers. Diverse augmentations (e.g. flip, color distortion) are
applied for all methods to make full use of available data.

All experiments on VOC0712 were conducted on
NVIDIA RTX 3090, and those of COCO were performed
on Tesla V100.

4.2. Main Results

Image-level vs. box-level evaluation. The compari-
son between the image-level and box-level evaluation set-
tings under VOC-sup is shown in Fig. 1. Although most of
the SOTAs and our hacking method BoxCnt work well un-
der the image-level evaluation, their scoring functions ob-
scurely prioritize crowded images, or their highly ranked
targets are severely interfered by invaluable counterparts
from the same images. Thus, when evaluated under the box-
level criterion, resources wasted on the latter ones emerge,
and some previous conclusions are no longer tenable.

Performance comparison. Results under VOC-sup and
COCO-sup are presented in Fig. 1R and Fig. 3M respec-
tively. As can be seen, within the same box-based bud-
gets, the proposed method outperforms baselines and SO-
TAs at each active learning cycle by a large margin. Under
the labeled-supervision setting for VOC, we obtain 100%
supervised performance with only 9K ground truth boxes,
which efficiently saves approximately 81% label expendi-
ture. The superiority of our method is also clearly demon-
strated on COCO, where sComPAS can exploit rich knowl-
edge from both human annotations and model intelligence.
It consistently beats the second-best model-end ensemble-
based method by a large margin, and outperforms it by 4.3%
mAP in the last cycle in a robust and efficient manner.

In leveraging the unlabeled pool, as shown in Fig. 3LR,
we first notice that the proposed active learning strategy re-
tains its overall supremacy: surpassing the 100% supervised
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Figure 5. Analysis on (Left) the extension from image-level an-
notation to the box-level and (Right) alternatives to the box-level
active acquisition strategy under the VOC-sup setting.

performance requires less than 13% boxes for mComPAS
on VOC0712, and on the COCO dataset it only requires
15% boxes to achieve 90% fully supervised capability. In
comparison, ActiveTeacher [20] adopts an advanced semi-
supervised model [28] for pseudo-label generation, but its
acquisition function is solely based on predictive class dis-
tributions, which cannot exploit the pseudo-active synergy
or well capture sample informativeness.

Under four benchmark settings, the consistent improve-
ments of ComPAS over active learning cycles demonstrate
the effectiveness of the input-end committee in identifying
informative targets to benefit the detector. Built upon it, our
superior results over competitors further show that the pro-
posed pipeline can maximize return over investment by the
pseudo-active synergy on the box-level.

4.3. Quantitative Analysis

Redundant annotations in the image-level annota-
tion. We take MeanEntropy sampling, the best image-level
single-model method, to demonstrate the redundancy prob-
lem. In Fig. 4, MeanEntropy shows a long-tail phenomenon
in the score distributions of newly acquired images, which
gets even more acute in later cycles. It indicates that the
scoring functions of image-level methods are interfered by
less informative targets. Passively annotating them along
with highly-ranked ones results in redundancy. In contrast,
our box-level method actively annotates valuable targets
and leaves the rest unlabeled, maximizing the return over
investment. As the iteration proceeds, the divergence be-
tween distributions of labeled and unlabeled boxes consis-
tently increases, demonstrating the improvement of model
capability and acquisition reliability.

Next, to show the extension of annotation protocol from
image-level to the box-level, in Fig. 5L, we take MeanEn-
tropy sampling as a baseline, and apply the box-level an-
notation protocol, ComPAS model design choices and our
scoring function step-by-step under the VOC-sup setting.

Impact of box-level sparse annotation. Image-level
exhaustive annotation (img-MeanEntropy), despite the la-
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Figure 6. Qualitative results of targets top-ranked by our scoring
functions (in green) and complementary pseudo-labels (in blue).

bel redundancy, guarantees the stable training of detection
models. When the annotation is disentangled into the box-
level, without specific handling (box-Entropy-noPL), the
missing label problem has a detrimental effect on the model
due to the incorrect supervision signal. To alleviate the
problem, we introduce pseudo-label generation for sparse
images (box-Entropy), where sparse labels for challenging
targets are supplemented with confident model predictions
via an IoU-based grouping strategy, which rectifies super-
vision signals and significantly boosts performance. How-
ever, we notice that it is outperformed by the image-level
counterpart in later cycles, which indicates that the box-
level annotation poses a greater challenge to the budget allo-
cation, under which entropy-based sampling is not an opti-
mal informativeness estimation solution. Thus, we propose
box-ComPAS, which is analyzed later in this section.

ComPAS model design. The pseudo-label generation
scheme designed for sparse annotations of box-level meth-
ods can also be used to boost the performance for fully su-
pervised training. To present the effect of it, we simply ap-
ply it on all labeled images for image-level MeanEntropy
(img-MeanEntropy). We first observe that pseudo-labeling
is especially effective in the low data regime, but the per-
formance increment is limited in later cycles as the knowl-
edge grows. We also note that our method retains superior-
ity although only sparse images are fed for pseudo-labeling,
which demonstrates that the effectiveness of ComPAS is at-
tributed to informative box selection, while pseudo-labeling
is mainly used to compensate for acquired knowledge.

Box-level scoring function. Under the box-level an-
notation protocol, we experiment with alternatives to our
scoring function during the active acquisition stage, which
includes Random, Entropy, our classification disagreement
estimation dc in Eq. 3 alone, our localization disagree-
ment estimation dr in Eq. 4 alone, and the proposed
classification-localization hybrid metric dc × dr presented
in Eq. 5. All alternatives are performed with the input-
end committee ensemble same as ours. As the results in
Fig. 5R suggest, baseline methods, such as entropy-based
sampling that performs well for image-level annotation, are

not optimal box-level informativeness indicators. In con-
trast, dc estimates the cross entropy between the consensus
and member prediction distributions, which well captures
the classification informativeness. But built upon dc and dr,
our hybrid metric further incorporates disagreement estima-
tion about the localization subtask, benefiting both detection
heads from human annotations. It shows that our acquisi-
tion function reflects the challenge of boxes being correctly
and robustly detected given the current level of knowledge,
so that highly ranked boxes can play a complementary role
with pseudo-labels in the subsequent training cycles.

4.4. Qualitative Analysis.

The complementarity between actively queried targets
(in green) and pseudo-labels (in blue) are visualized in
Fig. 6. We present top-ranked boxes scored by our classifi-
cation metric dc, localization metric dr as well as the hybrid
metric dc×dr respectively, and give the chairman-generated
pseudo-labels from the same learning cycle. We empirically
find that actively queried targets are more likely to be small,
occluded or deviant, where the model fails to guarantee in-
variant predictions under strong input variations. In con-
trast, targets left by our scoring function tend to be salient
and ubiquitous, whose online pseudo-labels usually get bet-
ter and better in the next cycles and play a complementary
role. More visualizations are shown in the supplementary.

5. Conclusion
In this paper, we reveal the pitfalls of image-level eval-

uation for active detection and propose a realistic and fair
box-level evaluation criterion. We then advocate efficient
box-level annotation, under which we formulate a novel
active detection pipeline, namely Complementary Pseudo
Active Strategy (ComPAS) to exploit both human anno-
tations and machine intelligence. It evaluates box infor-
mativeness based on the disagreement amongst a near-free
input-end committee for both classification and localiza-
tion to effectively query challenging targets. Meantime,
the detector model addresses the sparse training problem
by pseudo-label generation for well-learned targets. Un-
der both labeled-only and mixed-supervision settings on
VOC0712 and COCO datasets, ComPAS outperforms com-
petitors by a large margin in a unified codebase.

6. Acknowledgment
This work was partly supported by National Key R&D

Program of China (No. 2022ZD0119400), National Natural
Science Foundation of China (Nos. 61925107, 62271281,
U1936202), Zhejiang Provincial Natural Science Foun-
dation of China under Grant (No. LDT23F01013F01),
China Postdoctoral Science Foundation (BX2021161) and
Tsinghua-OPPO JCFDT.

23773



References
[1] Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan

Arora. Contextual diversity for active learning. In European
Conference on Computer Vision, pages 137–153. Springer,
2020. 1, 2

[2] William H Beluch, Tim Genewein, Andreas Nürnberger, and
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