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Abstract

Mesh generation is of great value in various applica-
tions involving computer graphics and virtual content, yet
designing generative models for meshes is challenging due
to their irregular data structure and inconsistent topology
of meshes in the same category. In this work, we design a
novel sparse latent point diffusion model for mesh genera-
tion. Our key insight is to regard point clouds as an inter-
mediate representation of meshes, and model the distribu-
tion of point clouds instead. While meshes can be generated
from point clouds via techniques like Shape as Points (SAP),
the challenges of directly generating meshes can be effec-
tively avoided. To boost the efficiency and controllability
of our mesh generation method, we propose to further en-
code point clouds to a set of sparse latent points with point-
wise semantic meaningful features, where two DDPMs are
trained in the space of sparse latent points to respectively
model the distribution of the latent point positions and fea-
tures at these latent points. We find that sampling in this
latent space is faster than directly sampling dense point
clouds. Moreover, the sparse latent points also enable us to
explicitly control both the overall structures and local de-
tails of the generated meshes. Extensive experiments are
conducted on the ShapeNet dataset, where our proposed
sparse latent point diffusion model achieves superior per-
formance in terms of generation quality and controllability
when compared to existing methods. Project page, code and
appendix: https://slide-3d.github.io.

1. Introduction
Being a fundamental representation of 3D objects in

computer graphics, meshes are widely used in applications
such as VR, AR, and games, and a generative model for
meshes is thus of great value. By representing 3D ob-
jects with vertices, edges, and faces, meshes lead to more

*Equal Contribution.

efficient modeling and computation of object geometries.
However, such a specialized design also results in several
intrinsic challenges for generative models. The first one is
the irregular data structure of meshes, where the discrete
vertex connections make it hard to define operations like
convolution and up-sampling on meshes. Moreover, unlike
point clouds and volumes, the topology of meshes is vary-
ing across different object instances in the same category.
Therefore template-based methods [11,14,21,34,36,39] can
only obtain meshes obeying the topology of used templates,
causing defects like self-intersection when the deformation
is significant.

Facing these challenges mentioned above, we propose to
generate meshes indirectly via an intermediate representa-
tion that is easier to model. Inspired by recent successes of
deep neural networks in modeling the distribution of point
clouds [2, 22, 24, 38, 43] and reconstructing meshes from
point clouds [11, 27], we propose to use point clouds as
an intermediate representation of meshes. Consequently,
the generation of meshes is effectively reformulated as the
generation of point clouds, followed by transforming point
clouds into meshes. Such a reformulation not only enables
us to take advantage of the advances of point cloud gen-
eration methods, but also successfully bypasses the afore-
mentioned challenges, as the distribution of point clouds
is continuous and point clouds are unordered sets without
explicit topology. In this paper, we adopt denoising diffu-
sion probabilistic models (DDPMs) [13, 32], demonstrated
promising results in modeling point clouds [22, 24, 43], to
learn the distribution of the point clouds. And Shape as
Points (SAP) [27] is employed to reconstruct meshes from
the generated point clouds, which is a powerful surface re-
construction technique that can extract high-quality water-
tight meshes from point clouds at low inference times.

With the introduction of point clouds as the intermedi-
ate representation of meshes, we can use DDPMs to model
the distribution of meshes. However, to ensure the qual-
ity of transformed meshes, the generated point clouds need
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Figure 1. We can use the sparse latent points to control the shape of the generated meshes. Red points are stationary, and blue points are
moving. Black arrows indicate the moving direction of the blue points. Some points are invisible because they are within the mesh. Note
that the latent points are not always strictly lying on the surface of the generated meshes. This is because our point cloud decoder assumes
that some noises exist in the positions of the sparse latent points. It will generate a mesh that best fits the latent points, but avoid generating
defective meshes just to strictly fit the latent points.

to be sufficiently dense. This inevitably leads to two is-
sues. At first, the overall computational complexity is high,
since sampling thousands of points from DDPMs is quite
time-consuming. It is also difficult to explicitly control the
structure of meshes via dense point clouds, as the seman-
tics of their points are not sufficiently compact. We there-
fore further encode a point cloud to a sparse set of seman-
tic latent points with features attached to every point, and
learn a Sparse Latent poInt Diffusion modEl (SLIDE) for
mesh generation following the framework of latent diffu-
sion models [28, 33]. Specifically, we train two DDPMs
to learn the distribution of this latent space. The first
DDPM learns the distribution of positions of the sparse la-
tent points, and the second one learns the distribution of
the features conditioned on the positions of the points. By
cascading these two DDPMs together, we can perform un-
conditional generation of sparse latent points and their fea-
tures. We adopt farthest point sampling (FPS) to obtain the
positions of sparse latent points from a dense point cloud,
and a neural encoder is deployed to attach each latent point
a semantically meaningful feature. Accordingly, a neural
decoder is used to recover a dense point cloud from the po-
sitions and features of the sparse latent points and then re-
construct the mesh. In this way, we maintain the quality of
generated meshes while being able to control their overall
structures and local details respectively via controlling con-
figurations and semantic features of the sparse latent points,
as shown in Figure 1. Moreover, we find that sampling in
this sparse latent point space is significantly faster than di-
rectly sampling dense point clouds.

We conduct experiments on the ShapeNet [4] dataset
to compare both point cloud and mesh generation perfor-
mance of SLIDE with other methods. SLIDE achieves

superior performances in terms of both visual quality and
quantitative metrics. It also demonstrates great flexibility
in controlling the overall structures and local part shapes
of the generated objects without using any part-annotated
3D data. In summary, the main contributions of our work
are: 1) We propose to use point clouds as the intermediate
representation of meshes. By generating point clouds first
and then reconstructing surface from them, we can gener-
ate meshes with diverse topology and high quality. 2) We
design a novel point cloud autoencoder to further encode
point clouds to a sparse set of latent points with features
attached to them. Sampling in this latent space is more ef-
ficient than directly sampling dense point clouds. 3) By de-
composing the learning of the positions of the sparse latent
points and features of them, we can perform both uncondi-
tional point cloud generation and controllable point cloud
generation based on the positions of the sparse latent points
as shown in Figure 1. We can also perform both global and
local interpolations in this latent space.

2. Background

2.1. Denoising Diffusion Probabilistic Model

Denoising Diffusion Probabilistic Models (DDPMs) are
a kind of generative models that learn the distribution of
samples in a given dataset. A DDPM consists of two pro-
cesses: A diffusion process and a reverse process. The dif-
fusion process is defined as

q(x1, · · · ,xT |x0) =

T∏
t=1

q(xt|xt−1), (1)

where q(xt|xt−1) = N (xt;
√

1− βtx
t−1, βtI), (2)
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(a) The autoencoder encodes a mesh to features at the sparse latent points and decodes it back to a mesh.

(b) The DDPM learns the distribution of the sparse latent points. (c) The DDPM learns the distribution of features at latent points.

Figure 2. Overview of our sparse latent point diffusion model and the two latent diffusion models.

x0 is a clean sample from the dataset, x1, · · · ,xT are la-
tent variables, T is the number of diffusion steps, N denotes
the Gaussian distribution and βt’s are predefined small pos-
itive constants. See Appendix A.4 for details of these hyper-
parameters. The diffusion process gradually adds noise to
the clean sample x0 and eventually turns it into a Gaussian
noise xT given that T is large enough. The reverse process
is defined as

pθ(x
0, · · · ,xT−1|xT ) =

T∏
t=1

pθ(x
t−1|xt),

where pθ(x
t−1|xt) = N (xt−1;µθ(x

t, t), σ2
t I),

(3)

and the mean µθ(x
t, t) is parameterized by a neural net-

work. We use the proposed method in [13] to reparameter-
ize µθ(x

t, t) as

µθ(x
t, t) =

1
√
αt

(
xt − βt√

1− ᾱt
ϵθ(x

t, t)

)
, (4)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi. The reverse process
simulates the reverse process of the diffusion process: It it-
eratively uses the network ϵθ(x

t, t) to denoise a Gaussian
noise and turn it into a clean sample. To generate a sam-
ple from the DDPM, we first sample xT from the Gaus-
sian distribution, then use Equation 3 to iteratively sample
xT−1,xT−2, . . . ,x0 and finally obtain the sample x0.

We use the simplified loss proposed in [13] to train the
DDPM:

L(θ) = Ex0∼pdata ∥ϵ− ϵθ(
√
ᾱtx

0 +
√
1− ᾱtϵ, t)∥2, (5)

where pdata is the distribution of the dataset, t is sampled
uniformly from 1, 2, . . . , T , and ϵ is sampled from a Gaus-
sian noise. We can see that the network ϵθ actually learns

to predict the noise ϵ added to the clean sample x0. In other
words, the network ϵθ learns to denoise noisy samples. The
architecture of the denoising network ϵθ depends on the
data format of x0. If x0 are images, a common choice of
ϵθ is an Unet that predicts a per-pixel adjustment of the in-
put noisy image xt. If x0 are point clouds, we can choose
Point-Voxel CNN [43] or PointNet++ [24] for ϵθ that can
predict a per-point displacement of the noisy input point
cloud xt.

2.2. Latent Diffusion Model

Latent diffusion models [28, 33] are proposed for high-
resolution image synthesis. Directly training DDPMs on
high-resolution images and sampling from them are quite
time-consuming. Latent diffusion models circumvent this
problem by first encoding a high-resolution image to a low-
dimensional latent space, and then training DDPMs in this
latent space. Samples generated in this latent space are then
decoded back to images. We follow the same procedures
as [28] to train latent diffusion models. First, train an au-
toencoder in the data space. Then, train a DDPM using
encoded samples from the dataset, namely, we can regard
the variable x0 in Section 2.1 as the encoded variable of the
original data sample by the pre-trained autoencoder.

3. Sparse Latent Point Diffusion Models

It is difficult to directly train a generative model on
meshes, because meshes have irregular data structures. In
general, a mesh is composed of vertices and faces. Ver-
tices are points in the 3D space, while faces characterize
the connections among vertices. It is easy for a genera-
tive model to model the positions of vertices, but it is dif-
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ficult to model the connections among vertices. To tackle
this problem, we propose to use point clouds with normals
as an intermediate representation of meshes for their sim-
ple structure and efficient representation. Point clouds with
normals can be sampled from the surface of meshes (2048
points in our experiments). Then we can use existing gener-
ative models [3, 23, 43] to model the distribution of point
clouds. Finally, we use SAP [27] to reconstruct meshes
from the generated point clouds. SAP is composed of an
upsampling network and a Differentiable Poisson Surface
Reconstruction (DPSR) algorithm. We refer readers to the
original work or Appendix A.1 for details of SAP.

As mentioned above, we can use point clouds with nor-
mals as the intermediate representation of meshes. How-
ever, we think that point clouds are still a redundant repre-
sentation of 3D shapes. In addition, point clouds are dif-
ficult to manipulate and control. To this end, we propose
to further encode point clouds with normals to some sparse
latent points with features as shown in Figure 2a. The in-
tuition behind this representation is that a 3D shape can be
decomposed to its skeleton that encodes the overall struc-
ture of the shape, and features located on the skeleton that
encodes the local geometric details of the shape. To make
the sparse latent points stretch over a given point cloud, we
use farthest point sampling (FPS) to sample a given num-
ber (16 in our experiments) of points as the sparse latent
points. We use two strategies to choose the first point in
FPS: The first is choosing the centroid (mean coordinates
of all the points) as the first point in FPS. The second is ran-
domly choosing a point as the first point. We then design a
point cloud encoder to encode a point cloud with normals
to features attached to the sampled sparse latent points. We
also design a point cloud decoder to decode the sparse la-
tent points with features back to the input point cloud with
normals. The details of the point cloud encoder and decoder
are explained in the next section.

3.1. Architecture of the autoencoder

As mentioned above, we need a point cloud encoder to
encode a point cloud to a sparse set of points with features,
and a decoder to decode the sparse latent points back to the
input point cloud. In this section, we explain the detailed
architectures of the point cloud encoder and decoder.
Point cloud encoder. The encoder needs to encode a
point cloud to features at the FPS sampled sparse set of
points. The overview of the encoder is shown in Figure 3a.
It mainly consists of the improved Set Abstraction (SA)
modules with attention mechanism proposed in PDR [24].
We briefly repeat the design of the SA module. The input of
the SA module is a set of points with a feature attached to
each point. The SA module subsamples the input points by
farthest point sampling (FPS) and then propagates features
to the subsampled points. Specifically, for every point in the

subsampled points, it finds K nearest neighbors in the in-
put points. Then it transforms the features of the neighbors
by a shared Multi-layer perceptron (MLP) and aggregates
the transformed features to this point through the attention
mechanism. We refer readers to the original work [24] for
details of the SA module. In our encoder, there are 4 cas-
caded SA modules. They iteratively downsample the input
point cloud (2048 points) to 1024, 256, 64, 32 points and
propagate features to the downsampled points. The features
of the input point cloud are simply the 3D coordinates and
normals of every point.

Recall that the encoder needs to encode the input point
cloud to features at the sampled sparse latent points (16
points). We achieve this by mapping features at the out-
put of the last level SA module (consisting of 32 points) to
the sparse latent points. We use the feature transfer (FT)
module proposed in PDR [24] to map features from the last
level SA module to the sparse latent points. The FT mod-
ule can map features from one set of points to the second
set of points, and the mapping is parameterized by a neu-
ral network. It is worth noting that the FT module requires
points in the second set to have features, and these features
are used as queries to aggregate features from the first set
of points to the second set. We refer readers to Appendix
A.2 or the original work [24] for details of the FT module.
To utilize the FT module, we first use a lightweight Point-
Net++ to extract features for the sparse latent points them-
selves. Then we use it to map features from the last level
SA module to the sparse latent points. The mapped features
are concatenated to the original features at the sparse la-
tent points to form the final features that represent the input
point cloud.

Overall, as shown in Figure 3a, our point cloud encoder
contains 4 SA modules to hierarchically extract features
from the input point cloud, a light-weight PointNet++ to ex-
tract features for the sparse latent points, and an FT module
to map features from the last level SA module to the sparse
latent points.
Point cloud decoder. As mentioned above, the point
cloud encoder can encode an input point cloud to features at
the sampled sparse latent points. Next, we explain the point
cloud decoder that can decode the sparse latent points with
features back to the input point cloud with normals. Its over-
all structure is shown in Figure 3b. It contains 3 point up-
sampling (PU) modules that gradually upsample the sparse
latent points (16 points) to 2048 points.

The input to the l-th PU module is a set of points X l =
{xl

j ∈ R3|1 ≤ j ≤ N l}, with features attached to each

point F l = {f l
j ∈ Rdl |1 ≤ j ≤ N l}, where N l is the

number of input points to the l-th PU module, f l
j is the fea-

ture at point xl
j , and dl is the dimension of the feature. The

input to the first PU module is the sparse latent points X1

and their features F 1. The PU module first uses a shared
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(a) The point cloud encoder. (b) The point cloud decoder.

Figure 3. Architecture of the point cloud autoencoder.

Multi-layer Percpetron (MLP) to transform the feature f l
j

at every point xl
j to γ displacements. Then the displace-

ments are added to the original point xl
j to obtain γ new

points. In this way, the input points are upsampled by a
factor of γ. To enforce the uniformness of the upsampled
points, after upsampling, we use FPS to downsample the
upsampled points by half. Overall, the input points are up-
sampled by a factor of γ/2 and we obtain the upsampled
points X l+1 = {xl+1

j ∈ R3|1 ≤ j ≤ Nl+1}, where
Nl+1 = γNl/2. Note that the upsampled points X l+1 are
controlled by the features F l at the input points X l and the
learned MLP.

Next, we use the (l + 1)-th PU module to further up-
sample the output of the l-th PU module, X l+1, but first
we need to compute features for points in X l+1, because
the PU module needs features at the input points to per-
form upsampling. We think that the features should consist
of two parts. The first part is from the upsampled points
X l+1 themselves. This part of the feature characterizes
the shape of the current point cloud X l+1, and instructs
how we can further upsample and refine it to make it more
plausible. We use a improved PointNet++ [24] to extract
this part of the feature from the set X l+1, and denote it as
F l+1
1 = {f l+1

1,j ∈ Rdl+1
1 |1 ≤ j ≤ Nl+1}, where f l+1

1,j is
the feature at point xl+1

j , and dl+1
1 is the dimension of the

feature.
The second part of the feature should come from the

previous level PU module, namely, X l. This is because
we want the information in the features at the sparse latent
points can propagate along the PU modules layer by layer
to control the shape of the final decoded point cloud. After-
all, all information of the input point cloud is encoded to the
features at the sparse latent points, and we want the decoded
shape to be consistent with the information stored in the
features at the sparse latent points. Therefore, to obtain the
second part of the feature for every point in X l+1, we use
the FT module mentioned in the point cloud encoder to map
features from X l to X l+1, and the first part feature F l+1

1 at
X l+1 are used as queries. After obtaining the second part
of the features, F l+1

2 = {f l+1
2,j ∈ Rdl+1

2 |1 ≤ j ≤ Nl+1}, it
is concatenated with the first part feature F l+1

1 to obtain the
final feature for X l+1: F l+1 = {(f l+1

1,j , f l+1
2,j ) ∈ Rdl+1 |1 ≤

j ≤ Nl+1}, where dl+1 = dl+1
1 + dl+1

2 .
After upsampling the point cloud X l to X l+1, and ob-

taining the features F l+1 at X l+1, we can use the PU mod-
ule to further upsample X l+1. By applying the PU module

and FT module iteratively, we can gradually upsample the
sparse latent points to a point cloud of 2048 points. For
the last PU module, we let it predict both γ displacements
and γ normals, so that the final output point cloud has 2048
points with normals. Overall, the input to the point cloud
decoder is the sparse latent points X1 (16 points) and their
features F 1. The decoder outputs the intermediate results
X2 (256 points), X3 (1024 points), the final reconstructed
point cloud X4 (2048 points) and normals F 4.
Training of the autoencoder. The point cloud autoen-
coder is trained to encode the input point cloud and then
reconstruct the point cloud. The input to the autoencoder
is point cloud Xin (2048 points) with normals Fin sampled
from the meshes in the dataset. The supervision is added on
all the intermediate upsampling results in the point cloud
decoder: X2,X3, X4. The loss is the sum of the Cham-
fer distance (CD) between Xin and X2,X3, X4, respec-
tively. Note that when computing the CD loss between Xin
and X2,X3, we first downsample Xin using farthest point
sampling to the same number of points as X2 and X3, re-
spectively. We also add a normal consistency loss between
the ground-truth normals Fin and the predicted normals F 4

with a weight of 0.1. See Appendix B.3 for details of this
loss. We further add a slight Kullback–Leibler divergence
loss (weight 10−5) between the encoded features F 1 and a
standard normal distribution. This regularization term is to
encourage the latent feature space to be simple and smooth,
so that we can perform manipulation and interpolation in
this space. Before the encoder encodes the input point cloud
Xin to the sampled sparse latent points X1, we add a Gaus-
sian noise with a standard deviation of 0.04 to the point po-
sitions in X1. This is to make the autoencoder more robust
to the positions of the sparse latent points, so that even if
the positions of the sparse latent points are not perfect (e.g.,
human-edited sparse latent points), the autoencoder can still
well reconstruct the input point cloud.

3.2. Train DDPMs in the Sparse Latent Point Space

After training the autoencoder, we can train latent
DDPMs in the latent space of the autoencoder, while freez-
ing the parameters of the autoencoder. Specifically, for each
point cloud, we can encode it to features F 1 at sparse latent
points X1. We train two DDPMs in this latent space. The
first one learns the distribution of the sparse latent points
X1 and is illustrated in Figure 2b. The sparse latent points
can be seen as a point cloud with very few points. There-
fore, its distribution can be effectively learned by a DDPM
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designed for point clouds, except that we can use a light-
weight PointNet++ as the denoising network ϵθ(x

t, t) in
Equation 5.

The second DDPM learns the distribution of the feature
F 1 given the sparse latent points X1, which is illustrated
in Figure 2c. For algebraic simplicity, we use f to denote
the vector form of F 1, namely, concatenating all feature
vectors in F 1 to a single vector f . Similarly, let x be the
vector form of X1. The second DDPM can be seen as a
conditional DDPM that generates features f conditioned on
the positions of the sparse latent points x. To achieve this,
we can simply replace the diffusion variable x in Equation 1
with f , and adapt the reverse process in Equation 3 to

pϕ(f
0, · · · ,fT−1|fT ,x) =

T∏
t=1

pϕ(f
t−1|f t,x),

where pϕ(f
t−1|f t,x) = N (f t−1;µϕ(f

t,x, t), σ2
t I),

(6)

and µϕ(f
t,x, t) is parameterized as

µϕ(f
t,x, t) =

1
√
αt

(
f t − βt√

1− ᾱt
ϵϕ(f

t,x, t)

)
. (7)

To feed the input f t and x to the denoising network ϵϕ, we
concatenate each feature in f t to the corresponding point in
x. In other words, the input to ϵϕ can be seen as a sparse
point cloud with noisy features attached to each point, and
the output of the network ϵϕ is to predict the noise added
to each feature in f . Therefore, we can use the improved
PointNet++ in PDR [24] as the denoising network ϵϕ. Cor-
respondingly, the training loss of the network ϵϕ is

L(ϕ) = E(Xin,Fin)∼pdata ∥ϵ− ϵϕ(
√
ᾱtf +

√
1− ᾱtϵ,x, t)∥2,

where Xin is the point cloud (2048 points) sampled from a
mesh in the dataset, Fin are the corresponding normals, x
are sampled sparse latent points from Xin, f is the encoded
feature at x obtained by the trained authoencoder, t is sam-
pled uniformly from 1, 2, . . . , T , and ϵ is sampled from a
Gaussian noise.

The detailed architecture of the two DDPMs is provided
in Appendix A.3. After training the two DDPMs, we can
use them to perform both unconditional 3D shape gener-
ation or controllable generation conditioned on the posi-
tions of the sparse latent points. To perform unconditional
3D point cloud generation, we can simply cascade the two
DDPMs together: The first DDPM generates a set of sparse
latent points, and the second DDPM generates features at
the sparse latent points. Finally, the point cloud decoder de-
codes the sparse latent points with features to a point cloud.
To achieve controllable generation, we can manipulate the
positions of the sparse latent points, then feed the human-
adjusted sparse latent points to the second DDPM to gener-
ate plausible features on them, and finally decode them to a
point cloud.

4. Related Work

Mesh Generation. Most existing mesh generation meth-
ods rely on deforming a template mesh or another mesh [11,
14, 15, 21, 34, 36, 39], but meshes generated in this way are
usually limited by the topology of the template or the ini-
tial mesh. And large deformations could cause defects. In
contrast, our method is able to generate meshes from scratch
with diverse topologies. Another line of works uses implicit
representations of 3D shapes [6,7,10,17,25,26,31,41], but it
usually requires dense neural network evaluations to extract
meshes from the learned model.

Point cloud generation. Many learning-based methods
are proposed to model the distribution of point clouds.
Some works use generative adversarial networks (GANs)
to generate point clouds [1, 19, 20, 30]. [1] also trains a la-
tent GAN in the latent space of a point cloud autoencoder,
but the autoencoder they use can only encode a point cloud
to a global feature. Other works [16,18,38] use normalizing
flows to model the distribution of point clouds. ShapeGF [3]
learns gradient fields to move randomly sampled points to
the surface of the objects. DDPMs have also been applied to
point cloud generation [23, 43]. The generated point clouds
of these methods can be transformed to meshes through sur-
face reconstruction techniques [5, 8, 9, 12, 15, 29, 35, 37]. In
this work, we choose SAP [27] for surface reconstruction
for its efficiency and reconstruction quality.

Diffusion models. DDPMs are a kind of likelihood-based
generative model that generate samples by gradually de-
noising a Gaussian noise [13,32]. They have shown promis-
ing results for 3D point cloud generation [23,43]. Our work
is based on the recently proposed latent diffusion mod-
els [28, 33]. Latent diffusion models train diffusion models
in the latent space of an autoencoder that encodes data sam-
ples to a more compact representation, and thus makes the
training and sampling process of DDPMs faster.

Concurrent works. The concurrent work, LION [40],
also proposes to use a latent diffusion model to learn the
distribution of point clouds and then use SAP [27] to re-
construct meshes from point clouds, but the latent point
cloud representation they use is a noisy point cloud with
the same number of points (2048 points) as the original
clean point cloud. In contrast, we encode the original clean
point cloud to a sparse set of latent points (16 points) with
features of dimension 48, which is a more compact rep-
resentation and thus leads to faster training and sampling
for DDPMs. This representation also enables us to perform
controllable generation using the sparse latent points. Con-
currently, NVMG [42] proposes to use voxels as the latent
representations of meshes, but computational cost increases
rapidly as the resolution of the 3D grid increases.
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Figure 4. Meshes generated by our method and baselines. We can see that meshes generated by our method are more visually appealing.
More examples of other baselines and our method are provided in Appendix B.5 and B.8.

Figure 5. Point clouds generated by our method and baselines.
More examples are provided in Appendix B.7 and B.8.

5. Experiment
We present our main experiment results in this section.

We use ShapeNet [4] to train our mesh generative model,
SLIDE, and compare it with other baselines. We use the
pre-processed ShapeNet dataset provided by [27]. The de-
tailed setups and complete experiment results are provided
in Appendix B.

5.1. Evaluation Metrics

To evaluate the quality of generated meshes, we uni-
formly sample point clouds (2048 points) with normals
from the generated meshes and reference meshes from the
validation set. Then we use the commonly used point cloud
evaluation metrics 1-NN [38], Minimum Matching Dis-
tance (MMD) and Coverage (COV) as our main evaluation
tools. All of the metrics require a distance metric to com-
pute the distance between two point clouds. We use the
commonly used Chamfer distance (CD) and earth mover
distance (EMD). We also use the normal consistency loss
between two point clouds with normals. We find that it can
better reflect the surface curvature differences between the
two underlying meshes. Details of the normal consistency
loss are described in Appendix B.3.

5.2. Point Cloud and Mesh Generation

We train SLIDE on 5 categories of the ShapeNet dataset:
Airplane, cabinet, car, chair, and lamp. And compare
with baselines TreeGan [30], SPGAN [20], ShapeGF [2],
PVD [43], DPM [23]. All the baselines are trained by our-
selves using their public codebase. We compare both the

Figure 6. SLIDE is able to generate diverse meshes for the same
set of sparse latent points due to the stochasticity in the feature
generation process. Here are two pairs of generated lamps for the
same set of latent points.

point clouds that they generate and meshes reconstructed
from the point clouds using SAP. Meshes generated by
SLIDE and baselines are shown in Figure 4. More exam-
ples and generated point clouds are shown in Appendix B.6,
B.7, and B.8. We can see that SLIDE generates meshes of
the highest visual quality, with smooth surfaces and sharp
details. Since all the meshes are reconstructed from the
generated point clouds using the same method, SAP. This
means the quality of the generated point clouds greatly af-
fects the quality of the reconstructed meshes. We provide an
example of generated point clouds in Figure 5. More point
cloud examples are provided in Appendix B.7. Indeed, we
can see that point clouds generated by SLIDE spread more
uniformly on the surface of the objects, and bear less noise
compared with other methods. We attribute this to the de-
sign of our novel point cloud autoencoder. Quantitatively,
we compute 1-NN, MMD, and COV on both generated
point clouds and reconstructed meshes. Results are shown
in Appendix B.4 and B.6. In terms of efficiency, the average
generation time for a single point cloud of SLIDE is about
0.2s (See Appendix B.10 for more details of the generation
time.) tested on a single NVIDIA A100 GPU, while the
DDPM-based method that directly trains generative models
on dense point clouds, PVD [43], need 2.93s to generate a
point cloud tested on the same A100 GPU. LION [40] re-
ports it needs 27.12s per shape. We also conduct an ablation
study on the number of sparse latent points and the method
to sample them. Results are shown in Appendix B.10.
Controllable Generation. As mentioned in Section 3.2,
we can use the sparse latent points to control the gener-
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Figure 7. Use manually placed sparse latent points to control the
rear legs of the generated chairs. The blue points are moving and
the red points are fixed. The top row generates new features for
all sparse latent points, and the bottom row generates new features
only for moved points and fixes the features of the rest points.

Figure 8. Perform shape combination. The first row are the sparse
latent points of the original two lamps and the combined sparse
latent points. The second row are the original two lamps (two
sides) and the two lamps (middle two) obtained by combining the
top part and bottom part of the original lamps.

ated mesh. Specifically, we can change the positions of the
sparse latent points, then use the second DDPM to generate
features at the latent points, and finally decode them to a
point cloud and reconstruct the mesh. Several examples are
shown in Figure 1. It shows that we can use the sparse la-
tent points to control the overall scale of the generated mesh
as well as change the position, scale, or shape of a part of
the mesh. It is worth noting that we achieve this without
any part annotations of the dataset. SLIDE is also able to
generate diverse meshes even for the same set of sparse la-
tent points due to the stochasticity in the feature generation
process. Figure 6 gives two pairs of examples.

The sparse latent points in Figure 1 are obtained by FPS.
At inference, we can also manually place the sparse latent
points at regions of interest other than FPS sampled points
and control the corresponding part. This is because we aug-
ment the FPS sampled sparse latent points with Gaussian
noises during training and it makes our model robust to the
positions of the sparse latent points. Figure 7 gives an ex-
ample where we manually select the sparse latent points and
control the rear legs of a chair. In addition, if we want to
keep the rest part of a shape fixed while changing the part
we want to edit, we can use the second DDPM to sample
features only for moved sparse latent points and fix the fea-
tures of rest points. See Figure 7 for an example. This is
achieved by an algorithm similar to DDPM-based image in-

Figure 9. SLIDE is able to perform both global and local interpo-
lations. The first row is an example of global interpolation. The
second row interpolates between the bottom of the two lamps.

painting and is described in Appendix A.5.
Shape Interpolation. To interpolate two shapes, we can
interpolate both the positions and features between the cor-
responding latent points of the two shapes. See Appendix
B.11 for how to establish correspondence between two sets
of sparse latent points of two shapes. The top row of Fig-
ure 9 is an example of global interpolation. SLIDE is also
able to perform local interpolation. We can interpolate only
a part of the latent points, and keep the positions and fea-
tures of the rest part of the latent points fixed. The bottom
row of Figure 9 is an example of local interpolation.
Shape combination. We can also perform shape combi-
nations using our sparse latent point-based representation of
3D shapes. We can simply combine the sparse latent points
and their features from two or more source shapes to form
new shapes. See Figure 8 for an example.

6. Conclusion
In this work, we propose to use point clouds as an in-

termediate representation of meshes. We train generative
models on the point clouds sampled from the surface of
the meshes, then we use SAP to reconstruct meshes from
the generated point clouds. Meshes generated in this way
demonstrate diverse topology. We propose to further en-
code dense point clouds to features at a sparse set of la-
tent points, and train two DDPM in this latent space to
learn the distribution of the positions and features of the
latent points, respectively. Our sparse latent point diffu-
sion model (SLIDE) outperforms DDPMs directly trained
on point clouds in terms of both sample quality and gener-
ation speed. In addition, this sparse latent point represen-
tation allows us to explicitly control the shape of generated
shapes, perform both global and local interpolations, and
shape combination.
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