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Abstract

Inspired by the success of volumetric 3D pose estima-
tion, some recent human mesh estimators propose to esti-
mate 3D skeletons as intermediate representations, from
which, the dense 3D meshes are regressed by exploiting the
mesh topology. However, body shape information is lost
in extracting skeletons, leading to mediocre performance.
The advanced motion capture systems solve the problem by
placing dense physical markers on the body surface, which
allows to extract realistic meshes from their non-rigid mo-
tions. However, they cannot be applied to wild images
without markers. In this work, we present an intermedi-
ate representation, named virtual markers, which learns
64 landmark keypoints on the body surface based on the
large-scale mocap data in a generative style, mimicking the
effects of physical markers. The virtual markers can be ac-
curately detected from wild images and can reconstruct the
intact meshes with realistic shapes by simple interpolation.
Our approach outperforms the state-of-the-art methods on
three datasets. In particular, it surpasses the existing meth-
ods by a notable margin on the SURREAL dataset, which
has diverse body shapes. Code is available at https:
//github.com/ShirleyMaxx/VirtualMarker.

1. Introduction
3D human mesh estimation aims to estimate the 3D

positions of the mesh vertices that are on the body sur-
face. The task has attracted a lot of attention from
the computer vision and computer graphics communities
[3, 10, 18, 24, 26, 29, 34, 36, 41, 49] because it can benefit
many applications such as virtual reality [14]. Recently, the
deep learning-based methods [7, 18, 28] have significantly
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Figure 1. Mesh estimation results on four examples with different
body shapes. Pose2Mesh [7] which uses 3D skeletons as the inter-
mediate representation fails to predict accurate shapes. Our virtual
marker-based method obtains accurate estimates.

advanced the accuracy on the benchmark datasets.
The pioneer methods [18, 49] propose to regress the pose

and shape parameters of the mesh models such as SMPL [35]
directly from images. While straightforward, their accu-
racy is usually lower than the state-of-the-arts. The first
reason is that the mapping from the image features to the
model parameters is highly non-linear and suffers from
image-model misalignment [28]. Besides, existing mesh
datasets [15, 27, 37, 52] are small and limited to simple labo-
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ratory environments due to the complex capturing process.
The lack of sufficient training data severely limits its perfor-
mance.

Recently, some works [25, 38] begin to formulate mesh
estimation as a dense 3D keypoint detection task inspired
by the success of volumetric pose estimation [42, 43, 45,
48, 57, 63]. For example, in [25, 38], the authors propose
to regress the 3D positions of all vertices. However, it is
computationally expensive because it has more than several
thousand vertices. Moon and Lee [38] improve the efficiency
by decomposing the 3D heatmaps into multiple 1D heatmaps
at the cost of mediocre accuracy. Choi et al. [7] propose
to first detect a sparser set of skeleton joints in the images,
from which the dense 3D meshes are regressed by exploiting
the mesh topology. The methods along this direction have
attracted increasing attention [7, 28, 53] due to two reasons.
First, the proxy task of 3D skeleton estimation can leverage
the abundant 2D pose datasets which notably improves the
accuracy. Second, mesh regression from the skeletons is
efficient. However, important information about the body
shapes is lost in extracting the 3D skeletons, which is largely
overlooked previously. As a result, different types of body
shapes, such as lean or obese, cannot be accurately estimated
(see Figure 1).

The professional marker-based motion capture (mocap)
method MoSh [34] places physical markers on the body sur-
face and explore their subtle non-rigid motions to extract
meshes with accurate shapes. However, the physical markers
limit the approach to be used in laboratory environments.
We are inspired to think whether we can identify a set of
landmarks on the mesh as virtual markers, e.g., elbow and
wrist, that can be detected from wild images, and allow to
recover accurate body shapes? The desired virtual mark-
ers should satisfy several requirements. First, the number
of markers should be much smaller than that of the mesh
vertices so that we can use volumetric representations to
efficiently estimate their 3D positions. Second, the markers
should capture the mesh topology so that the intact mesh
can be accurately regressed from them. Third, the virtual
markers have distinguishable visual patterns so that they can
be detected from images.

In this work, we present a learning algorithm based on
archetypal analysis [12] to identify a subset of mesh vertices
as the virtual markers that try to satisfy the above require-
ments to the best extent. Figure 2 shows that the learned
virtual markers coarsely outline the body shape and pose
which paves the way for estimating meshes with accurate
shapes. Then we present a simple framework for 3D mesh
estimation on top of the representation as shown in Figure 3.
It first learns a 3D keypoint estimation network based on [45]
to detect the 3D positions of the virtual markers. Then we
recover the intact mesh simply by interpolating them. The
interpolation weights are pre-trained in the representation

learning step and will be adjusted by a light network based
on the prediction confidences of the virtual markers for each
image.

We extensively evaluate our approach on three bench-
mark datasets. It consistently outperforms the state-of-the-art
methods on all of them. In particular, it achieves a signifi-
cant gain on the SURREAL dataset [51] which has a variety
of body shapes. Our ablation study also validates the ad-
vantages of the virtual marker representation in terms of
recovering accurate shapes. Finally, the method shows de-
cent generalization ability and generates visually appealing
results for the wild images.

2. Related work
2.1. Optimization-based mesh estimation

Before deep learning dominates this field, 3D human
mesh estimation [2, 27, 34, 40, 58] is mainly optimization-
based, which optimizes the parameters of the human mesh
models to match the observations. For example, Loper et
al. [34] propose MoSh that optimizes the SMPL parameters
to align the mesh with the 3D marker positions. It is usually
used to get GT 3D meshes for benchmark datasets because
of its high accuracy. Later works propose to optimize the
model parameters or mesh vertices based on 2D image cues
[2, 11, 27, 40, 58]. They extract intermediate representations
such as 2D skeletons from the images and optimize the
mesh model by minimizing the discrepancy between the
model projection and the intermediate representations such
as the 2D skeletons. These methods are usually sensitive to
initialization and suffer from local optimum.

2.2. Learning-based mesh estimation

Recently, most works follow the learning-based frame-
work and have achieved promising results. Deep networks
[18, 24, 26, 36, 49] are used to regress the SMPL parame-
ters from image features. However, learning the mapping
from the image space to the parameter space is highly non-
linear [38]. In addition, they suffer from the misalignment
between the meshes and image pixels [60]. These problems
make it difficult to learn an accurate yet generalizable model.

Some works propose to introduce proxy tasks to get inter-
mediate representations first, hoping to alleviate the learning
difficulty. In particular, intermediate representations of physi-
cal markers [59], IUV images [55,60–62], body part segmen-
tation masks [23,27,39,50] and body skeletons [7,28,47,53]
have been proposed. In particular, THUNDR [59] first es-
timates the 3D locations of physical markers from images
and then reconstructs the mesh from the 3D markers. The
physical markers can be interpreted as a simplified represen-
tation of body shape and pose. Although it is very accurate,
it cannot be applied to wild images without markers. In
contrast, body skeleton is a popular human representation
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Zoom in

Figure 2. Left: The learned virtual markers (blue balls) in the back and front views. The grey balls mean they are invisible in the front view.
The virtual markers act similarly to physical body markers and approximately outline the body shape. Right: Mesh estimation results by
our approach, from left to right are input image, estimated 3D mesh overlayed on the image, and three different viewpoints showing the
estimated 3D mesh with our intermediate predicted virtual markers (blue balls), respectively.

that can be robustly detected from wild images. Choi et
al. [7] propose to first estimate the 3D skeletons, and then
estimate the intact mesh from them. However, accurate body
shapes are difficult to be recovered from the oversimplified
3D skeletons.

Our work belongs to the learning-based class and is re-
lated to works that use physical markers or skeletons as
intermediate representations. But different from them, we
propose a novel intermediate representation, named virtual
markers, which is more expressive to reduce the ambiguity
in pose and shape estimation than body skeletons and can be
applied to wild images.

3. Method
In this section, we describe the details of our approach.

First, Section 3.1 introduces how we learn the virtual marker
representation from mocap data. Then we present the overall
framework for mesh estimation from an image in Section
3.2. At last, Section 3.3 discusses the loss functions and
training details.

3.1. The virtual marker representation

We represent a mesh by a vector of vertex positions
x ∈ R3M where M is the number of mesh vertices. De-
note a mocap dataset such as [15] with N meshes as
⌢

X = [x1, ..., xN ] ∈ R3M×N . To unveil the latent struc-
ture among vertices, we reshape it to X ∈ R3N×M with
each column xi ∈ R3N representing all possible positions
of the ith vertex in the dataset [15].

The rank of X is smaller than M because the mesh
representation is smooth and redundant where some ver-
tices can be accurately reconstructed by the others. While
it seems natural to apply PCA [17] to X to compute the
eigenvectors as virtual markers for reconstructing others,
there is no guarantee that the virtual markers correspond
to the mesh vertices, making them difficult to be detected
from images. Instead, we aim to learn K virtual markers
Z = [z1, ..., zK ] ∈ R3N×K that try to satisfy the follow-

Type Formula Reconst. Error (mm) ↓
Original ||X−XBA||2F 11.67
Symmetric ||X−XB̃symÃsym||2F 10.98

Table 1. The reconstruction errors using the original and the sym-
metric sets of markers on the H3.6M dataset [15], respectively. The
errors are small indicating that they are sufficiently expressive and
can reconstruct all vertices accurately.

ing two requirements to the greatest extent. First, they can
accurately reconstruct the intact mesh X by their linear com-
binations: X = ZA, where A ∈ RK×M is a coefficient
matrix that encodes the spatial relationship between the vir-
tual markers and the mesh vertices. Second, they should
have distinguishable visual patterns in images so that they
can be easily detected from images. Ideally, they can be on
the body surface as the meshes.

We apply archetypal analysis [4, 12] to learn Z by mini-
mizing a reconstruction error with two additional constraints:
(1) each vertex xi can be reconstructed by convex com-
binations of Z, and (2) each marker zi should be convex
combinations of the mesh vertices X:

min
αi∈∆K for 1≤i≤M,
βj∈∆M for 1≤j≤K

||X−XBA||2F , (1)

where A = [α1, ...,αM ] ∈ RK×M , each α resides in
the simplex ∆K ≜ {α ∈ RK s.t.α ⪰ 0 and ||α||1 = 1},
and B = [β1, ...,βK ] ∈ RM×K , βj ∈ ∆M . We adopt
Active-set algorithm [4] to solve objective (1) and obtain
the learned virtual markers Z = XB ∈ R3N×K . As shown
in [4, 12], the two constraints encourage the virtual markers
Z to unveil the latent structure among vertices, therefore
they learn to be close to the extreme points of the mesh and
located on the body surface as much as possible.

Post-processing. Since human body is left-right symmetric,
we adjust Z to reflect the property. We first replace each zi ∈
Z by its nearest vertex on the mesh and obtain Z̃ ∈ R3×K .
This step allows us to compute the left or right counterpart
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Figure 3. Overview of our framework. Given an input image I, it first estimates the 3D positions P̂ of the virtual markers. Then we update
the coefficient matrix Â based on the estimation confidence scores C of the virtual markers. Finally, the complete human mesh can be
simply recovered by linear multiplication M̂ = P̂Â.

of each marker. Then we replace the markers in the right
body with the symmetric vertices in the left body and obtain
the symmetric markers Z̃sym ∈ R3×K . Finally we update
B and A by minimizing ||X − XB̃symÃsym||2F subject
to Z̃sym = XB̃sym. More details are elaborated in the
supplementary.

Figure 2 shows the virtual markers learned on the mocap
dataset [15] after post-processing. They are similar to the
physical markers and approximately outline the body shape
which agrees with our expectations. They are roughly evenly
distributed on the surface of the body, and some of them
are located close to the body keypoints, which have distin-
guishable visual patterns to be accurately detected. Table
1 shows the reconstruction errors of using original markers
XB and the symmetric markers XB̃sym. Both can recon-
struct meshes accurately.

3.2. Mesh estimation framework

On top of the virtual markers, we present a simple yet
effective framework for end-to-end 3D human mesh estima-
tion from a single image. As shown in Figure 3, it consists of
two branches. The first branch uses a volumetric CNN [45]
to estimate the 3D positions P̂ of the markers, and the sec-
ond branch reconstructs the full mesh M̂ by predicting a
coefficient matrix Â:

M̂ = P̂Â. (2)

We will describe the two branches in more detail.

3D marker estimation. We train a neural network to es-
timate a 3D heatmap Ĥ = [Ĥ1, ..., ĤK ] ∈ RK×D×H×W

from an image. The heatmap encodes per-voxel likelihood of
each marker. There are D×H×W voxels in total which are
used to discretize the 3D space. The 3D position P̂z ∈ R3

of each marker is computed as the center of mass of the
corresponding heatmap Ĥz [45] as follows:

P̂z =

D∑
d=1

H∑
h=1

W∑
w=1

(d, h, w) · Ĥz(d, h, w). (3)

The positions of all markers are represented as
P̂ = [P̂1, P̂2, · · · , P̂K ].

Interpolation. Ideally, if we have accurate estimates for all
virtual markers P̂, then we can recover the complete mesh by
simply multiplying P̂ with a fixed coefficient matrix Ãsym

with sufficient accuracy as validated in Table 1. However,
in practice, some markers may have large estimation errors
because they may be occluded in the monocular setting. Note
that this happens frequently. For example, the markers in the
back will be occluded when a person is facing the camera.
As a result, inaccurate markers positions may bring large
errors to the final mesh if we directly multiply them with the
fixed matrix Ãsym.

Our solution is to rely more on those accurately detected
markers. To that end, we propose to update the coefficient
matrix based on the estimation confidence scores of the
markers. In practice, we simply take the heatmap score at
the estimated positions of each marker, i.e. Ĥz(P̂z), and
feed them to a single fully-connected layer to obtain the
coefficient matrix Â. Then the mesh is reconstructed by
M̂ = P̂Â.

3.3. Training

We train the whole network end-to-end in a supervised
way. The overall loss function is defined as:

L = λvmLvm + λcLconf + λmLmesh. (4)

Virtual marker loss. We define Lvm as the L1 distance
between the predicted 3D virtual markers P̂ and the GT P̂∗

as follows:
Lvm = ∥P̂− P̂∗∥1. (5)

Note that it is easy to get GT markers P̂∗ from GT meshes as
stated in Section 3.1 without additional manual annotations.

Confidence loss. We also require that the 3D heatmaps
have reasonable shapes, therefore, the heatmap score at the
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voxel containing the GT marker position P̂∗
z should have the

maximum value as in the previous work [16]:

Lconf = −
K∑

z=1

log(Ĥz(P̂
∗
z)). (6)

Mesh loss. Following [38], we define Lmesh as a weighted
sum of four losses:

Lmesh = Lvertex + Lpose + Lnormal + λeLedge. (7)

– Vertex coordinate loss. We adopt L1 loss between
predicted 3D mesh coordinates M̂ with GT mesh M̂∗

as:
Lvertex = ∥M̂− M̂∗∥1. (8)

– Pose loss. We use L1 loss between the 3D landmark
joints regressed from mesh M̂J and the GT joints Ĵ∗

as:
Lpose = ∥M̂J − Ĵ∗∥1, (9)

where J ∈ RM×J is a pre-defined joint regression
matrix in SMPL model [2].

– Surface losses. To improve surface smoothness [54],
we supervise the normal vector of a triangle face with
GT normal vectors by Lnormal and the edge length of
the predicted mesh with GT length by Ledge:

Lnormal =
∑
f

∑
{i,j}⊂f

∣∣∣∣∣
〈

M̂i − M̂j

∥M̂i − M̂j∥2
, n̂∗

f

〉∣∣∣∣∣ ,
Ledge =

∑
f

∑
{i,j}⊂f

∣∣∣∥M̂i − M̂j∥2 − ∥M̂∗
i − M̂∗

j∥2
∣∣∣ .
(10)

where f and n̂∗
f denote a triangle face in the mesh and

its GT unit normal vector, respectively. M̂i denote the
ith vertex of M̂. ∗ denotes GT.

4. Experiments
4.1. Datasets and metrics

H3.6M [15]. We use (S1, S5, S6, S7, S8) for training and
(S9, S11) for testing. As in [7, 18, 31, 32], we report MPJPE
and PA-MPJPE for poses that are derived from the estimated
meshes. We also report Mean Per Vertex Error (MPVE) for
the whole mesh.

3DPW [52] is collected in natural scenes. Following the
previous works [23,31,32,59], we use the train set of 3DPW
to learn the model and evaluate on the test set. The same
evaluation metrics as H3.6M are used.

SURREAL [51] is a large-scale synthetic dataset with GT
SMPL annotations and has diverse samples in terms of body
shapes, backgrounds, etc. We use its training set to train a
model and evaluate the test split following [7].

4.2. Implementation Details

We learn 64 virtual markers on the H3.6M [15] training
set. We use the same set of markers for all datasets instead
of learning a separate set on each dataset. Following [7, 18,
22,25,31,32,38,59], we conduct mix-training by using MPI-
INF-3DHP [37], UP-3D [27], and COCO [33] training set
for experiments on the H3.6M and 3DPW datasets. We adapt
a 3D pose estimator [45] with HRNet-W48 [44] as the image
feature backbone for estimating the 3D virtual markers. We
set the number of voxels in each dimension to be 64, i.e.
D = H = W = 64 for 3D heatmaps. Following [18,25,38],
we crop every single human region from the input image and
resize it to 256× 256. We use Adam [21] optimizer to train
the whole framework for 40 epochs with a batch size of 32.
The learning rates for the two branches are set to 5× 10−4

and 1×10−3, respectively, which are decreased by half after
the 30th epoch. Please refer to the supplementary for more
details.

4.3. Comparison to the State-of-the-arts

Results on H3.6M. Table 2 compares our approach to
the state-of-the-art methods on the H3.6M dataset. Our
method achieves competitive or superior performance.
In particular, it outperforms the methods that use skele-
tons (Pose2Mesh [7], DSD-SATN [47]), body markers
(THUNDR) [59], or IUV image [60,62] as proxy representa-
tions, demonstrating the effectiveness of the virtual marker
representation.

Results on 3DPW. We compare our method to the
state-of-the-art methods on the 3DPW dataset in Table 2.
Our approach achieves state-of-the-art results among all the
methods, validating the advantages of the virtual marker
representation over the skeleton representation used in
Pose2Mesh [7], DSD-SATN [47], and other representations
like IUV image used in PyMAF [62]. In particular, our
approach outperforms I2L-MeshNet [38], METRO [31],
and Mesh Graphormer [32] by a notable margin, which
suggests that virtual markers are more suitable and effective
representations than detecting all vertices directly as most of
them are not discriminative enough to be accurately detected.

Results on SURREAL. This dataset has more diverse sam-
ples in terms of body shapes. The results are shown in Table
3. Our approach outperforms the state-of-the-art methods
by a notable margin, especially in terms of MPVE. Figure 1
shows some challenging cases without cherry-picking. The
skeleton representation loses the body shape information so
the method [7] can only recover mean shapes. In contrast,
our approach generates much more accurate mesh estimation
results.
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Method
Intermediate H3.6M 3DPW
Representation MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓

† Arnab et al. [1] CVPR’19 2D skeleton - 77.8 54.3 - - 72.2
† HMMR [19] CVPR’19 - - - 56.9 139.3 116.5 72.6
† DSD-SATN [47] ICCV’19 3D skeleton - 59.1 42.4 - - 69.5
† VIBE [22] CVPR’20 - - 65.9 41.5 99.1 82.9 51.9
† TCMR [6] CVPR’21 - - 62.3 41.1 102.9 86.5 52.7
† MAED [53] ICCV’21 3D skeleton - 56.3 38.7 92.6 79.1 45.7
SMPLify [2] ECCV’16 2D skeleton - - 82.3 - - -
HMR [18] CVPR’18 - 96.1 88.0 56.8 152.7 130.0 81.3
GraphCMR [25] CVPR’19 3D vertices - - 50.1 - - 70.2
SPIN [24] ICCV’19 - - - 41.1 116.4 96.9 59.2
DenseRac [55] ICCV’19 IUV image - 76.8 48.0 - - -
DecoMR [60] CVPR’20 IUV image - 60.6 39.3 - - -
ExPose [9] ECCV’20 - - - - - 93.4 60.7
Pose2Mesh [7] ECCV’20 3D skeleton 85.3 64.9 46.3 106.3 88.9 58.3
I2L-MeshNet [38] ECCV’20 3D vertices 65.1 55.7 41.1 110.1 93.2 57.7
PC-HMR [36] AAAI’21 3D skeleton - - - 108.6 87.8 66.9
HybrIK [28] CVPR’21 3D skeleton 65.7 54.4 34.5 86.5 74.1 45.0
METRO [31] CVPR’21 3D vertices - 54.0 36.7 88.2 77.1 47.9
ROMP [46] ICCV’21 - - - - 108.3 91.3 54.9
Mesh Graphormer [32] ICCV’21 3D vertices - 51.2 34.5 87.7 74.7 45.6
PARE [23] ICCV’21 Segmentation - - - 88.6 74.5 46.5
THUNDR [59] ICCV’21 3D markers - 55.0 39.8 88.0 74.8 51.5
PyMaf [62] ICCV’21 IUV image - 57.7 40.5 110.1 92.8 58.9
ProHMR [26] ICCV’21 - - - 41.2 - - 59.8
OCHMR [20] CVPR’22 2D heatmap - - - 107.1 89.7 58.3
3DCrowdNet [8] CVPR’22 3D skeleton - - - 98.3 81.7 51.5
CLIFF [30] ECCV’22 - - 47.1 32.7 81.2 69.0 43.0
FastMETRO [5] ECCV’22 3D vertices - 52.2 33.7 84.1 73.5 44.6
VisDB [56] ECCV’22 3D vertices - 51.0 34.5 85.5 73.5 44.9
Ours Virtual marker 58.0 47.3 32.0 77.9 67.5 41.3

Table 2. Comparison to the state-of-the-arts on H3.6M [15] and 3DPW [52] datasets. † means using temporal cues. The methods are not
strictly comparable because they may have different backbones and training datasets. We provide the numbers only to show proof-of-concept
results.

Method
Intermediate

MPVE↓ MPJPE↓ PA-MPJPE↓
Representation

HMR [18] CVPR’18 - 85.1 73.6 55.4
BodyNet [50] ECCV’18 Skel. + Seg. 65.8 - -
GraphCMR [25] CVPR’19 3D vertices 103.2 87.4 63.2
SPIN [24] ICCV’19 - 82.3 66.7 43.7
DecoMR [60] CVPR’20 IUV image 68.9 52.0 43.0
Pose2Mesh [7] ECCV’20 3D skeleton 68.8 56.6 39.6
PC-HMR [36] AAAI’21 3D skeleton 59.8 51.7 37.9
∗ DynaBOA [13] TPAMI’22 - 70.7 55.2 34.0
Ours Virtual marker 44.7 36.9 28.9

Table 3. Comparison to the state-of-the-arts on SURREAL [51]
dataset. ∗ means training on the test split with 2D supervisions.
“Skel. + Seg.” means using skeleton and segmentation together.

4.4. Ablation study

Virtual marker representation. We compare our method
to two baselines in Table 4. First, in baseline (a), we re-
place the virtual markers of our method with the skeleton
representation. The rest are kept the same as ours (c). Our

No.
Intermediate MPVE↓
Representation H3.6M SURREAL

(a) Skeleton 64.4 53.6
(b) Rand virtual marker 63.0 50.1
(c) Virtual marker 58.0 44.7

Table 4. Ablation study of the virtual marker representation for our
approach on H3.6M and SURREAL datasets. “Skeleton” means
the sparse landmark joint representation is used. “Rand virtual
marker” means the virtual markers are randomly selected from all
the vertices without learning. (c) is our method, where the learned
virtual markers are used.

method achieves a much lower MPVE than the baseline (a),
demonstrating that the virtual markers help to estimate body
shapes more accurately than the skeletons. In baseline (b),
we randomly sample 64 from the 6890 mesh vertices as vir-
tual markers. We repeat the experiment five times and report
the average number. We can see that the result is worse than
ours, which is because the randomly selected vertices may
not be expressive to reconstruct the other vertices or can not
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Image Ours GTPose2Mesh

Figure 4. Mesh estimation results of different methods on H3.6M
test set. Our method with virtual marker representation gets better
shape estimation results than Pose2Mesh which uses skeleton rep-
resentation. Note the waistline of the body and the thickness of the
arm.

(a) (b) (c)

Figure 5. Visualization of the learned virtual markers of different
numbers of K = 16, 32, 96, from left to right, respectively.

be accurately detected from images as they lack distinguish-
able visual patterns. The results validate the effectiveness of
our learning strategy.

Figure 1 shows some qualitative results on the SURREAL
test set. The meshes estimated by the baseline which uses
skeleton representation, i.e. Pose2Mesh [7], have inaccurate
body shapes. This is reasonable because the skeleton is over-
simplified and has very limited capability to recover shapes.
Instead, it implicitly learns a mean shape for the whole train-
ing dataset. In contrast, the mesh estimated by using virtual
markers has much better quality due to its strong representa-
tion power and therefore can handle different body shapes
elegantly. Figure 4 also shows some qualitative results on
the H3.6M test set. For clarity, we draw the intermediate
representation (blue balls) in it as well.

Number of virtual markers. We evaluate how the number
of virtual markers affects estimation quality on H3.6M [15]
dataset. Figure 5 visualizes the learned virtual markers,
which are all located on the body surface and close to the
extreme points of the mesh. This is expected as mentioned
in Section 3.1. Table 5 (GT) shows the mesh reconstruc-
tion results when we have GT 3D positions of the virtual
markers in objective (1). When we increase the number
of virtual markers, both mesh reconstruction error (MPVE)
and the regressed landmark joint error (MPJPE) steadily de-
crease. This is expected because using more virtual markers
improves the representation power. However, using more

K
GT Det

MPVE↓ MPJPE↓ MPVE↓ MPJPE↓
16 46.8 39.8 58.7 47.8
32 20.1 14.2 58.2 48.3
64 11.0 7.5 58.0 47.3
96 9.9 5.6 59.6 48.2

Table 5. Ablation study of the different number of virtual markers
(K) on H3.6M [15] dataset. (GT) Mesh reconstruction results when
GT 3D positions of the virtual markers are used in objective (1).
(Det) Mesh estimation results obtained by our proposed framework
when we use different numbers of virtual markers (K).

Input Image (a) Using fixed
coefficient matrix

(b) Using updated
coefficient matrix

Figure 6. Mesh estimation comparison results when using (a) fixed
coefficient matrix Ãsym, and (b) updated Â. Please zoom in to
better see the details.

virtual markers cannot guarantee smaller estimation errors
when we need to estimate the virtual marker positions from
images as in our method. This is because the additional vir-
tual markers may have large estimation errors which affect
the mesh estimation result. The results are shown in Table 5
(Det). Increasing the number of virtual markers K steadily
reduces the MPVE errors when K is smaller than 96. How-
ever, if we keep increasing K, the error begins to increase.
This is mainly because some of the newly introduced virtual
markers are difficult to detect from images and therefore
bring errors to mesh estimation.

Coefficient matrix. We compare our method to a baseline
which uses the fixed coefficient matrix Ãsym. We show
the quality comparison in Figure 6. We can see that the
estimated mesh by a fixed coefficient matrix (a) has mostly
correct pose and shape but there are also some artifacts on the
mesh while using the updated coefficient matrix (b) can get
better mesh estimation results. As shown in Table 6, using a
fixed coefficient matrix gets larger MPVE and MPJPE errors
than using the updated coefficient matrix. This is caused
by the estimation errors of virtual markers when occlusion
happens, which is inevitable since the virtual markers on the
back will be self-occluded by the front body. As a result,
inaccurate marker positions would bring large errors to the
final mesh estimates if we directly use the fixed matrix.

4.5. Qualitative Results

Figure 7 (top) presents some meshes estimated by our
approach on natural images from the 3DPW test set. The
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Failure case

Figure 7. Top: Meshes estimated by our approach on images from 3DPW test set. The rightmost case in the dashed box shows a typical
failure. Bottom: Meshes estimated by our approach on Internet images with challenging cases (extreme shapes or in a long dress).

No. Method Fixed Ãsym Updated Â MPVE↓ MPJPE↓
(a) Ours (fixed) ✓ ✗ 64.7 51.6

(b) Ours ✗ ✓ 58.0 47.3

Table 6. Ablation study of the coefficient matrix for our approach
on H3.6M dataset. “fixed” means using the fixed coefficient matrix
Ãsym to reconstruct the mesh.

rightmost case shows a typical failure where our method has
a wrong pose estimate of the left leg due to heavy occlu-
sion. We can see that the failure is constrained to the local
region and the rest of the body still gets accurate estimates.
We further analyze how inaccurate virtual markers would
affect the mesh estimation, i.e. when part of human body is
occluded or truncated. According to the finally learned coef-
ficient matrix Â of our model, we highlight the relationship
weights among virtual markers and all vertices in Figure 8.
We can see that our model actually learns local and sparse
dependency between each vertex and the virtual markers, e.g.
for each vertex, the virtual markers that contribute the most
are in a near range as shown in Figure 8 (b). Therefore, in
inference, if a virtual marker has inaccurate position estima-
tion due to occlusion or truncation, the dependent vertices
may have inaccurate estimates, while the rest will be barely
affected. Figure 2 (right) shows more examples where oc-
clusion or truncation occurs, and our method can still get
accurate or reasonable estimates robustly. Note that when
truncation occurs, our method still guesses the positions of
the truncated virtual markers.

Figure 7 (bottom) shows our estimated meshes on chal-
lenging cases, which indicates the strong generalization abil-
ity of our model on diverse postures and actions in natural
scenes. Please refer to the supplementary for more quality
results. Note that since the datasets do not provide supervi-
sion of head orientation, face expression, hands, or feet, the
estimates of these parts are just in canonical poses inevitably.

(a) (b)

Figure 8. (a) For each virtual marker (represented by a star), we
highlight the top 30 most affected vertices (represented by a colored
dot) based on average coefficient matrix Â. (b) For each vertex
(dot), we highlight the top 3 virtual markers (star) that contribute
the most. We can see that the dependency has a strong locality
which improves the robustness when some virtual markers cannot
be accurately detected.

Apart from that, most errors are due to inaccurate 3D vir-
tual marker estimation which may be addressed using more
powerful estimators or more diverse training datasets in the
future.

5. Conclusion
In this paper, we present a novel intermediate represen-

tation Virtual Marker, which is more expressive than the
prevailing skeleton representation and more accessible than
physical markers. It can reconstruct 3D meshes more accu-
rately and efficiently, especially in handling diverse body
shapes. Besides, the coefficient matrix in the virtual marker
representation encodes spatial relationships among mesh ver-
tices which allows the method to implicitly explore structure
priors of human body. It achieves better mesh estimation
results than the state-of-the-art methods and shows advanced
generalization potential in spite of its simplicity.
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