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Abstract

Open world object detection (OWOD) has attracted ex-
tensive attention due to its practicability in the real world.
Previous OWOD works manually designed unknown-
discover strategies to select unknown proposals from the
background, suffering from uncertainties without appropri-
ate priors. In this paper, we claim the learning of ob-
ject detection could be seen as an object-level feature-
entanglement process, where unknown traits are propa-
gated to the known proposals through convolutional opera-
tions and could be distilled to benefit unknown recognition
without manual selection. Therefore, we propose a simple
yet effective Annealing-based Label-Transfer framework,
which sufficiently explores the known proposals to allevi-
ate the uncertainties. Specifically, a Label-Transfer Learn-
ing paradigm is introduced to decouple the known and un-
known features, while a Sawtooth Annealing Scheduling
strategy is further employed to rebuild the decision bound-
aries of the known and unknown classes, thus promoting
both known and unknown recognition. Moreover, previ-
ous OWOD works neglected the trade-off of known and un-
known performance, and we thus introduce a metric called
Equilibrium Index to comprehensively evaluate the effec-
tiveness of the OWOD models. To the best of our knowledge,
this is the first OWOD work without manual unknown selec-
tion. Extensive experiments conducted on the common-used
benchmark validate that our model achieves superior detec-
tion performance (200% unknown mAP improvement with
the even higher known detection performance) compared
to other state-of-the-art methods. Our code is available at
https://github.com/DIG-Beihang/ALLOW.git.

1. Introduction

Traditional object detection models [7, 19,34,35] are un-
der an ideal closed world assumption, meaning the detected
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Figure 1. Comparison of the ORE [17] and Ours. ORE designed
an auto-labelling strategy to select potential unknown objects from
the background region, introducing uncertainties. In contrast, we
view object detection as an object-level feature entanglement and
explore unknown information from all the known proposals.

classes must be labeled and given during training. However,
an object detection system is highly likely to encounter un-
known objects that do not appear in the training phase. To
address the above problem, Open World Object Detection
(OWOD) has been pioneeringly proposed in [17], where the
detection models should identify both known (annotated)
and unknown (unannotated) categories and incrementally
learn the unknown classes once their annotations are given.

As shown in Figure 1, to accomplish unknown identi-
fication, previous OWOD works manually designed com-
plex unknown-discover strategies to select specific regions
from the background as unknown proposals, which will
introduce uncertainties in the open world learning. For
example, ORE [17] adopted an auto-labelling strategy in
RPN, which selected top-k background region proposals
sorted by their objectness scores as unknown objects. OW-
DETR [10] further designed an attention-driven pseudo-
labeling for selecting query boxes with high attention scores
but not matched with known class boxes. Although these
works [10, 17,39,42,45] achieved promising performance
and improved the unknown recall, these unknown-discover
strategies are much likely to choose parts of the known pro-
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posals or the authentic background regions, introducing too
many uncertainties. These low-quality unknown proposals
do not necessarily contain meaningful semantic patterns to
accomplish the unknown recognition, and may also degrade
the detection performance of known categories.

Different from previous works, we claim that the learn-
ing of object detection could be seen as an object-level
feature-entanglement process through the local-connected
convolution computation. That is to say, the features of each
region inside the image could be propagated and closely
entangled with each other, and thus a known proposal en-
compasses not only its own class-specific traits but also
the propagated context information with potential unknown
features. Empirical evidence also supports this point that
even a closed world detection model is capable of extract-
ing unknown features without unknown-discovery strate-
gies, which will be further illustrated in Section 3.2.

Therefore, in this paper, to alleviate the uncertainties
of manually selecting unknown proposals, we proposed a
simple yet effective Annealing-based Label-Transfer frame-
work for the open world object detection task. Our model
sufficiently utilizes all the known proposals to distill un-
known features of meaningful semantic patterns and pro-
motes the collaborative learning of known and unknown
classes. It follows a Label-Transfer Learning with a Saw-
tooth Annealing Scheduling.

Specifically, the Label-Transfer Learning disentangles
the meaningful unknown features from all known propos-
als to accomplish unknown recognition, effectively reduc-
ing the uncertainties. Since it is non-trivial to directly de-
couple the features within a known proposal, the known la-
bel is transferred to the unknown class and thus decoupled
into two classes, to guide the model decouple the learning
of unknown and known traits. This strategy is intuitive and
easy to implement, without complex and excessive compu-
tations in the forward process. Since most images simul-
taneously contain known and unknown objects, it could ef-
fectively distill the unknown traits of meaningful semantic
patterns from the known proposals. Hence, it subtly avoids
selecting unknown proposals and alleviates uncertainties.

Moreover, the Sawtooth Annealing Scheduling strategy
meticulously adjusts the disentanglement degree to encour-
age the collaborative learning of both known and unknown
classes. In our Label-Transfer Learning, since we cannot
access the unknown supervision, it is hard to tell its entan-
glement extent and thus nontrivial to determine disentan-
glement level. If the disentanglement level is too small, we
cannot well sufficiently mine the unknown traits. In con-
trast, if we over-disentangle the features, the informative
known semantic will be dramatically destroyed and may
adversely affect unknown identification either. Thus, it is
critical to determine the suitable disentanglement level, to
appropriately guide the unknown identification while main-

taining the known detection performance. The concept “an-
nealing” is borrowed from material science, where atoms
within a solid material will redistribute under certain tem-
perature control and reach an equilibrium state. Through
our Sawtooth Annealing Scheduling strategy, the decision
boundaries will be rebuilt with the consideration of both
known and unknown classes, thus harmoniously promoting
both the known and unknown learning to reach equilibrium.

The proposed Annealing-based Label-Transfer OWOD
model is the first OWOD work without manually select-
ing unknown proposals, and achieves state-of-the-art per-
formance. In addition, unlike previous models only report-
ing the unknown recall performance, we further present the
unknown mAP performance and introduce a novel eval-
uation metric Equilibrium Index (EI) to comprehensively
measure the unknown and known detection performance.
In summary, our contributions are:

* We view object detection as an object-level feature
entanglement and propose an Annealing-based Label-
Transfer Learning, which is the first OWOD work
without manually selecting unknown proposals.

e We introduce Label-Transfer Learning to disentangle
the meaningful unknown traits from all known propos-
als, alleviating the uncertainties.

* We design a Sawtooth Annealing Scheduling strategy
to adjust the disentanglement degree, ensuring the col-
laborative learning of known and unknown classes.

* A new OWOD evaluation metric Equilibrium Index is
proposed to comprehensively evaluate known and un-
known detection performance.

» Extensive experiments conducted on the commonly-
used dataset prove the effectiveness of the proposed
method. Specifically, we report a substantial increase
in unknown mAP performance (200% gains compared
to previous state-of-the-arts with an even better known
detection performance).

2. Related work

The development of deep learning [3,5,9, 13, 15,21,22,

,47] has promoted the research of object detection where
multiple objects should be recognized and localized inside
an image. Traditional object detection models are under an
ideal closed world assumption, which means the classes to
be detected must be labeled and given in the training phase.
However, it is highly possible that an object detection sys-
tem will encounter the unknown objects that is not appeared
in the training phase. To handle this problem, previous ap-
proaches have explored open set and open world settings.

Open set classification and detection. In the open set
setting, the knowledge obtained through the training set is
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incomplete, and thus the classifier during inference may en-
counter categories that do not appear in the training set. To
meet this challenge, several works [8, 14, 18,29,33,36] ex-
plored this task under a number of assumptions. The open
set classification problem was first defined in [31] as a con-
strained minimization problem and extended to multi-class
classifier by follow up works [16,32]. Bendale and Boult [2]
proposed a method to identify the unknowns in the feature
space of the model and use the OpenMax classifier to esti-
mate the ensemble risk. Liu et al. [23] developed a metric
learning framework that identifies invisible classes as un-
known classes through a long-tail recognition setting for
category coexistence. PROSER [46] encouraged the dis-
crimination between known and unknown classes, neglect-
ing the dynamic balance between the known and unknown
instances. In addition, self-supervised learning [28] and
unsupervised learning with reconstruction [43] method has
been used in the recognition problem of open set.

Dhamija et al. [4] studied the open set object detection
task and proposed the open set object detection protocol.
Subsequent works [11,26,27] improved the detection per-
formance of by measuring the uncertainties. OpenDet [12]
also learns from known proposals from a feature-density
perspective, but it manually designed an unknown-discover
strategy that selects a few high-uncertainty known propos-
als to help improve the unknown identification.

Open world classification and detection. Unlike open
set tasks that only focus on the identification of unknown
classes, open world tasks also learn incrementally based on
newly obtained category data. Bendale et al. [1] proposed
the first open world image recognition model and presented
a protocol for the evaluation of open world recognition sys-
tems. Xu et al. proposed a meta-learning method [41] to
match a new sample with a dynamic set of known classes
and identifies the new sample as an unknown class when it
shows low similarities to all known classes. Some recent
works [25,25,38] attempted to address the open world clas-
sification with long-tail distribution [44], few-shot learn-
ing [37] and zero-shot learning [40], respectively, to explore
more complex scenes.

For open world detection, Joseph et al. [17] proposed
the ORE method, in which an unknown object aware RPN
is designed to endow the model with the capacity of de-
tecting unknown objects. The work SA [42] utilizes se-
mantic topology by defining a semantic centroid in fea-
ture space for each category, and pushing object instances
close to their belonging centroids during the learning. OW-
DETR [10] proposed an end-to-end framework compris-
ing pseudo-labeling, novelty classification and object scor-
ing. Wu et al. [39] defined the Unknown-Classified OWOD
problem and designed a two-stage detector based on sim-
ilarity and clustering to distinguish multiple different un-
known classes. Zhao et al. [45] further proposed an auxil-
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Figure 2. Object-level Feature Entanglement. Through local-
connected convolutional operations of the multi-layer neural net-
works, potential unknown features could be propagated to known
proposals and entangled with the known class-specific features.
Thus, even closed world detector Faster RCNN could extract un-
known features but mistakenly recognize them as known classes.

iary proposal advisor and a class-specific expelling classi-
fier to improve the performance of the unknown detection.
Previous methods [10, 17, 39, 42, 45] usually adopted
complex unknown-discover strategies to deal with the un-
known detection, and cannot always accurately select un-
known proposals and thus introduce too many uncertainties,
harming the learning of unknown objects and influencing
the known classification as well. In contrast, our method
only explores the unknown information from the known
proposals through a reasonable disentanglement process,
which improves the detection performance of the unknown
objects while maintaining that of the known objects.

3. Method

Our Annealing-based Label Transferring model effec-
tively improves the open world object detection perfor-
mance through disentangling the known traits and unknown
information from the known proposals, without specifically
selecting unknown proposals. We will elaborate on the de-
tails of the proposed model in this section. First, we will in-
troduce the OWOD formulation. And then, we will analyze
the object-level feature entanglement in OWOD, and put
forward our motivation. Finally, we will present the overall
Annealing-based Label-Transfer OWOD framework, and
further demonstrate our Label-Transfer Learning and Saw-
tooth Annealing Scheduling strategy.

3.1. Problem Formulation

The open world object detection contains 7" incremental
tasks. In the ¢-th task, where ¢ € {1, ..., T'}, the known class
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Figure 3. Overview of our Annealing-based Label-Transfer Framework. By viewing the learning of object detection as a process of
object-level feature-entanglement process, the proposed model follows a Label-Transfer learning paradigm with a Sawtooth Annealing
Scheduling strategy to accomplish the collaborative learning of known and unknown classes.

set and unknown class set are denoted as X! and U*, where
K!NiU' = @. During the training phase, ONLY instances of
known classes are assigned class labels and bounding box
annotations. For example, an instance of the ¢-th known
classes, denoted as X(Ki), and its corresponding class labels
y(K) and bounding box coordinates b = [z, y, w, h] would
be given to guide the learning. However, both known class
set K and unknown class set U exist during inference and
should be identified by the OWOD models. The known in-
stances should be accurately classified into their own cate-
gories, while the unknown instances are ought to be recog-
nized as “unknown” class.

In the (¢ + 1)-th task, unknown classes of interests
U! € U, are labeled and then integrated into known class
set ' = K' U Y. The current unknown class set
UL = YP\U!. This process continues until Y7 = . Fur-
thermore, the OWOD models are required to incrementally
identify previous known classes and current known classes,
while recognizing the remained unknown classes as “un-
known” class as well. It is worth noting that only a few
instances of previous known classes in each task are stored
for incremental learning, in order to save the computation
and storage resources.

3.2. Motivation: Object-Level Feature Entangle-
ment in Object Detection

Since multiple objects, including the unknown ones, are
contained in the same image, their object-level features
will be simultaneously perceived and entangled together

through local-connected convolutional operations. We term
this phenomenon as object-level feature entanglement. As
shown in Figure 2, output by the multiple-layer network,
the “cat” feature is entangled with the context (such as the
“schoolbag” and “the toy”). Therefore, a proposal matched
with a known groundtruth box contains both the known
class-specific characteristics and the potential unknown in-
formation benefiting the unknown recognition. Simply clas-
sifying such an entangled known proposal as a known class
will induce mis-classification of unknown instances.

Figure 2 also provides the empirical evidence to prove
that. We adopt the evaluation metrics UDP and UDR
used in [45]. UDR could illustrate the localization rate of
unknown objects (even misclassified as the known ones),
while the UDP is the rate of correct classification of the
localized unknown objects. From the UDR performance,
we can conclude that both close world and open world ob-
ject detection models are capable of capturing the unknown
characteristics due to the object-level feature entanglement.
But with the guidance of classic one-hot supervisions, they
tend to mistakenly identify the unknown instances as the
known ones from the UDP results. Moreover, previous
OWOD models merely reported the unknown recall results,
veiling the fact that the unknown mAP is extremely low
(less than 1%) due to the mis-classification. What is worse,
the learning between the unknown and known classes is
nearly a trade-off, where the unknown detection is improved
with known mAP performance drop of the similar extent.

Therefore, we could simply distill the unknown informa-
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tion with appropriate guidance from all the known propos-
als. Since most images simultaneously contain known and
unknown instances, and we can extract unknown traits with
meaningful semantic patterns while not conflicting with the
known discriminative features. In this way, it could improve
the unknown detection while maintaining the known detec-
tion performance, accomplishing the OWOD task.

3.3. Annealing-based Label-Transfer Framework

The overall architecture is shown in Figure 3. Our model
could be based on any closed world detection architec-
ture. The model follows an Label-Transfer Learning under
the Sawtooth Annealing Scheduling strategy. The Label-
Transfer Learning could guide the model to distinguish the
known and potential unknown information to advance the
unknown learning, while the Sawtooth Annealing Schedul-
ing strategy could adjust the learning process through mod-
ifying the disentanglement degree, to reach an equilibrium
between the unknown and known learning.

Following the Sawtooth Annealing Scheduling, the
whole Label-Transfer Learning pipeline could be seen as
two successive phases, namely the forming phase and the
extending phase, respectively with different disentangle-
ment degrees. In the forming phase, the model inclines to
form entangled known proposals. Then, as the disentangle-
ment degree is increased to learn unknown information, the
known detection performance is adversely affected. There-
fore, in the extending phase, we adjust the disentanglement
degree changing to a sawtooth shape, to rebuild the known
decision boundaries with the consideration of unknown ob-
jects. Finally, the decision boundaries of both unknown and
known classes are formed, and the OWOD model is empow-
ered with the unknown recognition ability and preserves the
known identification accuracy. Besides, following the in-
cremental learning approaches adopted in previous OWOD
models [10, 17,45], we store a balanced set of examples of
the previous tasks and further finetune the current model to
alleviate the forgetting problem in the incremental process.

3.3.1 Label-Transfer Learning

Since the object detection is an object-level feature-
entanglement process, a known proposal may simultane-
ously contain discriminative class-specific traits and poten-
tial unknown information, which could be represented as:

x T = %™ 4 (1 = \)xKD (1)

where X indicates the uncoupled information of either i-th
known class K} or the unknown class ¢" rather than a real
instance. A indicates the disentanglement degree.

It is hard to directly decouple the object-level feature,
especially without explicit unknown labels. However, we
can project these feature respectively to their corresponding
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Figure 4. Comparison of Label-Transfer Learning with a fixed
A value and our Sawtooth Annealing Scheduling strategy on the
validation set. With a fixed A value, the known mAP declines until
convergence, transferring the known semantic to learn unknown
instances. In contrast, following the initial dramatic decline, the
known mAP performance of the model with Sawtooth Annealing
Scheduling subsequently rises to collaboratively learn the known
and unknown information.

labels, to encourage the classifier to better recognize them.
Despite assigning a feature-entangled proposal with a one-
hot label that could strengthen its class-specific discrimina-
tion, it will suppress its generalized information. Thus, we
could guide the classifier to recognize different features and
accomplish the unknown and known classification.

To promote the unknown classification and guide the
model to distinguish the unknown from the known ones, we
correspondingly transfer the original one-hot label y(’ci) of
the object to the unknown class. The label-transfer modifi-
cation could be denoted as y’:

¥ = Ay ") +(1 - Ny *D,
—— ——

Label-Transfer term

(@)

where the first term represents that y(’q) transfers to the
unknown label y(ut) with a tangling degree A. The classifi-
cation regularization with our Label-Transfer modifications
can be written as follows:

Jcls ~ t
lhenn = — Zyl 10gx<)c”)
i

— Z(l — )\)y(lq) log xKD _ Z )\y(ut) log x&D

3)

The Label-Transfer Learning could effectively and effi-

ciently encourage the model to explore the unknown char-

acteristics of the known proposals and thus generalize to
unknown categories without ground-truth supervision.

3.3.2 Sawtooth Annealing Scheduling

Although the Label-Transfer Learning could improve the
unknown detection, the disentanglement degree A is hard to
determine without specific unknown supervision. A large
disentanglement degree will lead to a dramatic known per-
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formance loss, while a small disentanglement degree cannot
sufficiently guide the learning of unknown information.

Therefore, we further present a Sawtooth Annealing
Scheduling strategy, ensuring the mutual advancement of
unknown and known learning. The known identification
performance is first sacrificed to improve the unknown de-
tection, and then is slowly enhanced with consideration of
unknown information, learning to form the decision bound-
aries of both known and unknown classes.

Specifically, the whole training follows an end-to-end
pipeline, which could be seen as two successive phases,
namely the forming phase and the extending phase. We
denote p as the iteration number, and Py indicates the to-
tal iteration of forming phase. The Sawtooth Annealing
Scheduling could be formalized as:

A= 0
1—T(p—Pf),

Where 7 is a constant demonstrating the annealing speed,
regulating the decoupling as the training iteration increases.

As we can see, in the forming phase, the model is ac-
tually trained in a closed world setting where parameters
of unknown classifiers W, are removed, in order to form
informative but mixed semantics under the one-hot supervi-
sion of known categories:

p<Pf

p> P “4)

argmin £ = (55 + Caby + Henn + Cndn

[O,W/W,]

&)
Where W is the full classifier parameters, and W /W,
means the full classifier parameters without the unknown
classifier’s. In addition, © represents the other parameters
in the whole network except the classifiers.

In the extending phase, the disentanglement degree is
abruptly changed to the peak to promote the unknown learn-
ing, and then gradually decreased to encourage the co-
learning of both unknown and known categories. In this
stage, we only fine-tune the classifier to avoid of destroying
the informative features:

argmin £, = (550 ns (6)
W

Figure 4 demonstrates the known mAP performance on
the validation datasets and also proves our point. First of
all, with a fixed disentanglement degree A, the known mAP
decreases all the time. The larger the A is, the more ob-
vious the mAP decrease is. It manifests that the model
is sacrificing known performance to improve the unknown
ones. However, with our annealing strategy, after the initial
known mAP drop, it increases as the A diminishes. Along
with the known mAP boosts, the model rebuilds the deci-
sion boundaries with consideration of both known and un-

known classes, to reach a final equilibrium.

4. Experiments

In this section, we perform comprehensive experiments
and detailed analysis to demonstrate the effectiveness of the
proposed method for open world object detection.

Datasets. According to the typical setup of OWOD, all
classes from the training set are grouped in 7" incremental
tasks. Following [17], we set T" as 4, and adopt the Pascal-
VOC [6] and MS-COCO [20] dataset. When learning the ¢4
task, we treat classes and data from Pascal-VOC as training
set, and the remaining 60 classes of MS-COCO are con-
sidered unknown. For subsequent tasks, the class division
strategy is exactly the same as that in ORE. For evaluation,
we use Pascal-VOC test set and MS-COCO validation set.

Evaluation metrics. Except for the common-used
OWOD evaluation criteria, such as the mean average pre-
cision (mAP), recall, Wilderness Impact (WI) [4], Absolute
Open-Set Error (A-OSE) [27], UDP and UDR, we also pro-
pose a new metric, namely the Equilibrium Index (EI). Pre-
vious work usually respectively report known and unknown
detection performance, while our EI is designed to compre-
hensively evaluate the OWOD performance of both known
and unknown classes.

We formally define the known and unknown mAP of the
closed world baseline models as K_mAP,. and U_mAP,
(U_mAP_.=0). Correspondingly, the known and unknown
mAP of the evaluated open world model is K_mAP, and
U_-mAP,. And the Equilibrium Index is defined as:

EI = Z(U.mAP, > 0)((K_mAP, — K_mAP.) -
+6(U-mAP, — U_mAP,)),

Where § indicates the importance of unknown detection
performance, and can be set as 1 to indicate the equal im-
portance of known and unknown classes.

The first term of EI demonstrates the OWOD model
should detect the unknown instance, while the second term
demonstrates the weighted sum of mAP performance vari-
ations of both known and unknown classes. Ideally, both
known and unknown mAP variations should be positive and
improved by a large margin. However, normally known
classes and unknown classes may be negatively correlated.
Therefore, the goal of OWOD model is pursuing that the
unknown mAP gains should be larger than the known mAP
loss. Therefore, the larger the EI is, the OWOD perfor-
mance is better. The worst case is that the model sacrifices
too much known accuracy but improves limited unknown
detection performance, where the EI is a negative value.

Implementation details. We implement our method
based on two closed world detection models: (1) Faster
RCNN [30] with ResNet-50 [13] backbone and the cosine
classifier, and (2) DETR [3] following OW-DETR [10]. We
simply take the best model in the forming phase as the base-
line method for comparison. During training, the SGD op-
timizer was used and the batch size is set to 8. The peak of
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Table 1. State-of-the-art comparison for OWOD according to traditional detection metrics. “K-” indicates the known classes, and “U-"
represents the unknown classes. We present models using two closed world detection baselines, Faster RCNN and DETR, with their
performance at the top as a reference. Our model achieves superior performance in terms of traditional evaluation metrics in most cases.

Task IDs (—) Task ¢4 Task t5 Task t3 Task t4

WI-0.8 A-OSE K-mAP U-mAP U-Recall | WI-0.8 A-OSE K-mAP U-mAP U-Recall | WI-0.8 A-OSE K-mAP U-mAP U-Recall | K-mAP

O R Mo N o M o M A5 N O N MO o MO > M A I O G N I O B A )

Faster RCNN [ ]| 0.0645 10502 56.94 0 0 0.0273 8653  41.56 0 0 0.0164 7345 3241 0 0 27.03
ORE [17] 0.0528 11998 5649 0.71 5.72 |0.0315 9744 39.64 0.14 2.66 |0.0209 7769 30.17  0.12 3.34 25.95
SA [42] 0.0563 23320 55.56  0.20 1.93 |0.0181 16768 39.02 0.03 0.79 |0.0136 1428 31.54 0.003 0.12 26.42
Ours-RCNN 0.0604 8332 56.67 2.12 12.76 |0.0269 9454 40.55 0.41 5.02 |0.0157 6635 32.07 0.44 9.81 27.03
DETR [ ] 0.0600 57430 59.75 0 0 0.0245 27795 46.08 0 0 0.0187 17822 38.28 0 0 30.60
OW-DETR [10] {0.0599 42331 58.78 0.07 7.65 |0.0319 25857 44.11 0.04 5.83 |0.0220 18056 3596  0.03 5.97 27.94
Ours-DETR 0.0564 46589 59.34  4.86 13.56 | 0.0274 24709 4558  0.65 10.04 |0.0194 14952 3797 0.39 14.30 | 30.60

Table 2. State-of-the-art comparison for OWOD according to the newly proposed detection metrics, including UDR, UDP, and our Equi-
librium Index (EI). Our model achieves superior performance on the newly-proposed evaluation metrics in most cases.

Task IDs (—) Task t, Task to Task t3

UDR UDP EI(d = 1) EI(6 = 2) EI( = 5)| UDR UDP EI( = 1) EI(d = 2) EI( = 5)| UDR UDP EI( = 1) EI(d = 2) EI(d = 5)

(O, (@) 1) (@) (NG (1 1) (@) (O, (1) ™) (1)
Faster RCNN [ ]{17.58 0 0 0 0 1632 0 0 0 0 2469 0 0 0 0
ORE [17] 18.58 31.28 0.26 0.97 3.11 17.30 1537 -1.79 -1.65 -1.23  |23.67 1495 -2.12 -2.00 -1.64
SA [42] 851 2273 -1.18 -0.98 -0.41 574 13.83 -2.51 -2.48 -239 9.2 130 -0.87 -0.86 -0.86
Ours-RCNN 17.95 71.08 1.85 3.97 10.33 |17.62 2849 -0.61 -0.20 1.04 23.78 41.25 0.10 0.54 1.86
DETR [ ] 2074 0 0 0 0 1441 0 0 0 0 3448 0 0 0 0
OW-DETR [10] 18.31 41.77 -0.90 -0.83 -0.63 16.24 35.88 -1.94 -1.90 -1.78 |21.53 27.72 -2.29 -2.25 -2.15
Ours-DETR 18.47 73.42 445 9.31 23.89 [13.92 7215 0.15 0.80 275 [18.53 77.19  0.08 0.47 1.64

Ais set to 1, and the annealing speed 7 is set to Se-5. In the
extending phase, the initial learning rate is set to le-4. The
decay steps are set to (12000, 16000), and the learning rate
is divided by 10 at each decay step.

4.1. State-of-the-art Comparison

Table 1 shows the comparison of our method respec-
tively with the state-of-the-art OWOD methods according
to traditional evaluation metrics, such as WI, A-OSE, mAP,
and Recall. From Table 1, we have the following ob-
servations: our method outperforms other state-of-the-art
OWOD methods in most cases. Specifically, based on the
Faster RCNN backbone, the unknown mAP of our method
is almost three times of that for the suboptimal model ORE
with the better known mAP performance, while the un-
known class recall of our method reaches 12.76 and is
higher than ORE by 7.04, which is the best method in the
existing works. Moreover, our method achieves even higher
unknown performance based on DETR architecture. These
phenomena clearly demonstrate the effectiveness of our
Annealing-based Label-Transfer Learning. As novel known
classes are added in the subsequent tasks, the recognition
ability of unknown classes decreases, which is consistent
with the performance of ORE. However, our method still
outperforms the comparison methods by a large margin in
U-mAP and unknown Recall metrics. And our known mAP
performance on the newly-annotated and previous known
classes is maintained. That is to say, our model is capable
of promoting the collaborative learning of both known and

unknown classes. It is worth noting that our method per-
forms the same as the baseline in task ¢, because there are
no unknown categories in ¢4 in the OWOD setting, so we
do not perform extending training.

Table 3. Ablation study. Our full model yields the superior perfor-
mance, and each module contributes to the proposed model.

EI(§ = 1) | K-mAP | U-mAP | UDR | UDP
w/o LT 0 56.94 0 17.58] O
w/o SAS -0.10 54.57 | 2.27 |21.39(95.45
full FT -20.36 | 34.95 1.63 [23.01|99.78
with AL 1.61 56.54 | 2.01 |19.72|65.42
Ours(SAS+LT) 1.85 56.67 | 2.12 |17.95|71.08

Table 2 further illustrates the comparison with state-
of-the-arts in terms of the recently-proposed UDR, UDP,
and our new EI metric with J respectively set to 1, 2
and 5. We can see a similar trend as shown in Table 1,
where our model achieves superior performance. In cer-
tain cases, such as ORE in t; task or OW-DETR in %5
task achieves slightly better UDR performance, illustrating
their unknown-discovery strategy indeed provides some un-
known proposals, but may introduce more background re-
gions in terms of UDP and thus adversely affect the per-
formance. Moreover, according to our new metric, we can
find that our model obtains maximum U-mAP gains with
minimum K-mAP loss, and thus achieves the best EI per-
formance. However, the U-mAP of SA and DETR in the
t; task are less than the K-mAP drop compared to their
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closed world baseline, therefore their EI performance is be-
low zero. In the incremental tasks, the EI performance of
almost all other methods are less than 0, demonstrating that
incrementally learning may bring obstacles for unknown
learning. In sum, the above observations fully demonstrate
that the newly proposed metric can reflect the OWOD per-
formance and comprehensively measure both known and
unknown detection performance.

4.2. Ablation Study

In Table 3, we investigate different components in our
proposed framework. It respectively lists the performance
of our model without Label-Transfer Learning (w/o LT)
which degrades to the Faster RCNN model, our model with-
out Sawtooth Annealing Scheduling (w/o SAS), our model
with full Label-Transfer with fixed A = 1 (full LT) where
all known proposals will be projected into unknown classes,
our model with auto-labelling strategies proposed by ORE
[17] (with AL), and the full model (SAS+LT). From the
table, we can observe that without the Label-Tansfer, the
model is not capable of accomplishing unknown detection.
Without SAS, we report the fixed A = 0.5 which shares
similar trends with that of other fixed \ values, while more
experiments could be seen in the appendix. Consistent with
our intuition, full Label-Transfer will greatly damage the
known detection performance, which will in turn do harm
to the unknown identification. Employing the unknown-
discovery strategy AL cannot bring performance gains for
our model. In conclusion, our full model achieves the best
performance, and each module contributes to the proposed
model.

4.3. Hyperparameter Analysis

Figure 5 respectively shows the hyperparameter analysis
of the proposed method. We first investigate the peak of A
in our Sawtooth Annealing scheduling strategy. Then we
will analysis the annealing speed 7.

Analysis on the peak of \. As we can see from the
Figure 5 (a), different peaks will not impact the K-mAP
performance, but will influence the unknown one. Consis-
tent with our intuition, the higher A is, the higher unknown
detection performance is. We can see the U-mAP, EI, U-
Recall, and UDP shows an obvious drop as the peak of A
declines. However, the localization of unknown objects is
not affected in terms of UDR. It proves our point that we
should first increase the disentanglement degree A to the
maximum, and then decrease it to reach the equilibrium.

Analysis on the annealing speed. We conduct experi-
ments which respectively sets 7 to 2e-4, 1e-4, Se-5 and 3e-5,
and keep the peak value of A unchanged. From Figure 5 (b),
it is clearly that our model with different 7 achieves similar
detection performance with either slightly higher K-mAP
and fractionally lower U-mAP or the opposite. Therefore,

rrrlr,l.[[[ 10
olliirpl)

0.0
Drop of K-mAP  U-mAP EI6=1)

(a) Impact of different peaks of A (b) Impact of annealing speed

Figure 5. Hyperparameter analysis. (a) The larger the A is, the
better OWOD detection performance the model achieves; (b) Our
model is insensitive to 7 and performs well with different choices.

our model is insensitive to the annealing speed, proving the
robustness and efficiency of the proposed model.

4.4. Visualization

Figure 6 presents the visualization of the proposed
method respectively in ¢1 and ¢4 tasks. In ¢; task, the model
could detect the known classes and identify the unknown
instances. In ¢4 task, our model could incrementally learn
the semantic class of all instances.

erson 97 %| il
unknown 19%j

Figure 6. Visualization of the proposed model.

5. Conclusion

In this work, we propose a simple yet effective
Annealing-based Label-Transfer framework for open world
object detection. By viewing the learning of object detec-
tion as a process of object-level feature-entanglement pro-
cess, the proposed model follows a Label-Transfer learn-
ing paradigm with a Sawtooth Annealing Scheduling strat-
egy to accomplish the collaborative learning of known and
unknown classes. The proposed framework is the first
OWOD framework without requiring manual unknown-
discover strategies. Extensive experiments on the common-
used benchmark verify that our model shows state-of-the-
art open world detection performance.
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