
CAT: LoCalization and IdentificAtion Cascade Detection Transformer
for Open-World Object Detection

Shuailei Ma 1* Yuefeng Wang1* Ying Wei1 2† Jiaqi Fan1

Thomas H. Li3 Hongli Liu4 Fanbing Lv4

1Northeast University, Shenyang, China 2Information Technology R&D Innovation Center of Peking University
3School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China

4Changsha Hisense Intelligent System Research Institute Co., Ltd

Abstract

Open-world object detection (OWOD), as a more gen-
eral and challenging goal, requires the model trained from
data on known objects to detect both known and unknown
objects and incrementally learn to identify these unknown
objects. The existing works which employ standard de-
tection framework and fixed pseudo-labelling mechanism
(PLM) have the following problems: (𝑖) The inclusion of de-
tecting unknown objects substantially reduces the model’s
ability to detect known ones. (𝑖𝑖) The PLM does not ad-
equately utilize the priori knowledge of inputs. (𝑖𝑖𝑖) The
fixed selection manner of PLM cannot guarantee that the
model is trained in the right direction. We observe that hu-
mans subconsciously prefer to focus on all foreground ob-
jects and then identify each one in detail, rather than lo-
calize and identify a single object simultaneously, for al-
leviating the confusion. This motivates us to propose a
novel solution called CAT: LoCalization and IdentificAtion
Cascade Detection Transformer which decouples the detec-
tion process via the shared decoder in the cascade decod-
ing way. In the meanwhile, we propose the self-adaptive
pseudo-labelling mechanism which combines the model-
driven with input-driven PLM and self-adaptively generates
robust pseudo-labels for unknown objects, significantly im-
proving the ability of CAT to retrieve unknown objects. Ex-
periments on two benchmarks, 𝑖.𝑒., MS-COCO and PAS-
CAL VOC, show that our model outperforms the state-of-
the-art methods. The code is publicly available at https:
//github.com/xiaomabufei/CAT.

1. Introduction
Open-world object detection (OWOD) is a more prac-

tical detection problem in computer vision, making artifi-
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Figure 1. When faced with new scenes in open world, humans sub-
consciously focus on all foreground objects and then identify them
in detail in order to alleviate the confusion between the known and
unknown objects and get a clear view. Motivated by this, our CAT
utilizes the shared decoder to decouple the localization and iden-
tification process in the cascade decoding way, where the former
decoding process is used for localization and the latter for identi-
fication.

cial intelligence (AI) smarter to face more difficulties in real
scenes. Within the OWOD paradigm, the model’s life-span
is pushed by iterative learning process. At each episode, the
model trained only by known objects needs to detect known
objects while simultaneously localizing unknown objects
and identifying them into the unknown class. Human an-
notators then label a few of these tagged unknown classes
of interest gradually. The model given these newly-added
annotations will continue to incrementally update its knowl-
edge without retraining from scratch.

Recently, Joseph et al. [21] proposed an open-world ob-
ject detector, ORE, based on the two-stage Faster R-CNN
[38] pipeline. ORE utilized an auto-labelling step to obtain
pseudo-unknowns for training model to detect unknown ob-
jects and learned an energy-based binary classifier to dis-
tinguish the unknown class from known classes. However,
its success largely relied on a held-out validation set which
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was leveraged to estimate the distribution of unknown ob-
jects in the energy-based classifier. Then, several methods
[29, 43–45] attempted to extend ORE and achieved some
success. To alleviate the problems in ORE, Gupta et al. [17]
proposed to use the detection transformer [4,46] for OWOD
in a justifiable way and directly leveraged the framework
of DDETR [46]. In addition, they proposed an attention-
driven PLM which selected pseudo labels for unknown ob-
jects according to the attention scores.

For the existing works, we find the following hindering
problems. (𝑖) Owing to the inclusion of detecting unknown
objects, the model’s ability to detect known objects substan-
tially drops. To alleviate the confusion between known and
unknown objects, humans prefer to dismantle the process of
open-world object detection rather than parallelly localize
and identify open-world objects like most standard detec-
tion models. (𝑖𝑖) To the best of our knowledge, in the exist-
ing OWOD PLM, models leverage the learning process for
known objects to guide the generation of pseudo labels for
unknown objects, without leveraging the prior conditions of
the inputs (𝑡𝑒𝑥𝑡𝑢𝑟𝑒, 𝑙𝑖𝑔ℎ𝑡 𝑓 𝑙𝑜𝑤, 𝑒𝑡𝑐). As a result, the model
cannot learn knowledge beyond the data annotation. (𝑖𝑖𝑖)
The fixed selection manner of PLM cannot guarantee that
the model learns to detect unknown objects in the right di-
rection, due to the uncertain quality of the pseudo labels.
The models may be worse for detecting unknown objects.

When faced with a new scene, humans prefer focusing
on all foreground objects and then analysing them in detail
[6], as shown in Figure.1. Motivated by this and the afore-
mentioned observations, we propose a novel LoCalization
and IdentificAtion Cascade Detection Transformer. CAT
comprises three dedicated components namely, shared
transformer decoder, cascade decoupled decoding man-
ner and self-adaptive pseudo-labelling mechanism. Via
the cascade decoupled decoding manner, the shared trans-
former decoder decouples the localization and identification
process. Therefore, the influence of the category informa-
tion of the identification process on the localization process
is reduced. In this case, the model can localize more fore-
ground objects so that the model’s ability to retrieve un-
known objects is improved. Meanwhile, the independent
recognition process allows the model to identify with more
focus, so that the influence of unknown on detecting known
objects is alleviated. In this decoding way, the former de-
coding process is used for localization and the latter for
identification. The self-adaptive PLM maintains the ability
of CAT to explore the knowledge beyond the known objects
and self-adaptively adjusts the pseudo-label generation ac-
cording to the model training process. Our contributions
can be summarized fourfold:

• We propose a novel localization and identification cas-
cade detection transformer (CAT), which has excellent
ability to retrieve unknown objects and alleviate the in-

fluence of detecting unknown objects on the detection
of known ones.

• Inspired by the subconscious reactions when people
face open scenes, we propose the cascade decoupled
decoding way, which decouples the decoding proce-
dure via the shared decoder.

• We introduce a novel pseudo-labelling mechanism that
self-adaptively combines the model-driven and input-
driven pseudo-labelling during the training process for
generating robust pseudo-labels and exploring knowl-
edge beyond known objects.

• Our extensive experiments on two popular bench-
marks demonstrate the effectiveness of the proposed
CAT. CAT outperforms the state-of-the-art methods for
OWOD, IOD, and open-set detection. For OWOD,
CAT achieves absolute gains ranging from 9.7% to
12.8% in terms of unknown recall over the SOTA
method.

2. Problem Formulation
At time 𝑡, let K 𝑡 = {1,2, . . . ,𝐶} denote the set of known

object classes and U𝑡 = {𝐶 + 1, . . .} denote the unknown
classes which might be encountered at the test time. The
known object categories K 𝑡 are labeled in the dataset
D𝑡 = {J 𝑡 ,L𝑡 } where J 𝑡 denotes the input images and
L𝑡 denotes the corresponding labels at time 𝑡. The train-
ing image set consists of 𝑀 images J 𝑡 = {𝑖1, 𝑖2, . . . , 𝑖𝑀 }
and corresponding labels L𝑡 = {ℓ1, ℓ2, . . . , ℓ𝑀 }. Each ℓ𝑖 =

{T1,T2, . . . ,T𝑁 } denotes a set of 𝑁 object instances with
their class labels 𝑐𝑛 ⊂ K 𝑡 and locations, 𝑥𝑛, 𝑦𝑛,𝑤𝑛, ℎ𝑛
denote the bounding box center coordinates, width and
height respectively. The Open-World Object Detection re-
moves the artificial assumptions and restrictions in tradi-
tional object detection and makes object detection tasks
more aligned with real life. It requires the trained model
M𝑡 not only to detect the previously encountered known
classes 𝐶 but also to identify an unseen class instance as
belonging to the unknown class. In addition, it requires the
object detector to be capable of incremental update for new
knowledge and this cycle continues over the detector’s lifes-
pan. In incremental updating phase, the unknown instances
identified by M𝑡 are annotated manually, and along with
their corresponding training examples, update D𝑡 to D𝑡+1

andK 𝑡 toK 𝑡+1 = {1,2, . . . ,𝐶, . . . ,𝐶+n}, the model adds the
𝑛 new classes to known classes and updates itself toM𝑡+1
without retraining from scratch on the whole dataset D𝑡+1.

3. Proposed method
This section elaborates the proposed CAT in details. In

Sec.3.1, the overall architecture of CAT is described in de-
tail. We propose to decouple the decoding process of the
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Figure 2. Overall Architecture of proposed CAT framework. The proposed CAT consists of a multi-scale feature extractor, the shared trans-
former decoder, the regression prediction branch, and the self-adaptive pseudo-labelling. The multi-scale feature extractor comprises the
mainstream feature extraction backbone and a deformable transformer encoder, for extracting multi-scale features. The shared transformer
decoder is a deformable transformer decoder and decouples the localization and identification process in the cascade decoding way. The
regression prediction branch contains the bounding box regression branch 𝐹𝑟𝑒𝑔, novelty objectness branch 𝐹𝑜𝑏 𝑗 , and novelty classification
branch 𝐹𝑐𝑙𝑠 . While the novelty classification and objectness branches are single-layer feed-forward networks (FFN) and the regression
branch is a 3-layer FFN.

detection transformer and propose the localization and iden-
tification cascade decoupled decoding manner in Sec.3.2. A
novel self-adaptive adjustment strategy for pseudo-labelling
is proposed in Sec.3.3. In Sec.3.4, we illustrate the end-to-
end training strategy of CAT.

3.1. Overall Architecture

As shown in Figure.2, for a given image J ∈ R𝐻×𝑊×3,
CAT uses a hierarchical feature extraction backbone to ex-
tract multi-scale features Z𝑖 ∈ R

H
4×𝑖2
× 𝑤

4×2𝑖
×2𝑖𝐶𝑠 , 𝑖 = 1,2,3.

The feature maps 𝑍𝑖 are projected from dimension 𝐶𝑠

to dimension 𝐶𝑑 by using 1×1 convolution and concate-
nated to 𝑁𝑠 vectors with 𝐶𝑑 dimensions after flattening
out.Afterwards, along with supplement positional encod-
ing 𝑃𝑛 ∈ R𝑁𝑠×𝐶𝑑 , the multi-scale features are sent into the
deformable transformer encoder to encode semantic fea-
tures. The encoded semantic features 𝑀 ∈ R𝑁𝑠×𝑐𝑑 are ac-
quired and sent into the shared decoder together with a
set of 𝑁 learnable location queries. Aided by interleaved
cross-attention and self-attention modules, the shared de-
coder transforms the location queries Q location ∈ R𝑁×𝐷 to
a set of N location query embeddings E location ∈ R𝑁×𝐷 .
The Elocation are then input to the regression branch to lo-
cate N foreground bounding boxes containing the known
classes and unknown classes. Meanwhile, the E location are
used as class queries and sent into the shared decoder to-
gether with the 𝑀 again. The shared decoder transforms
the class queries to 𝑁 class query embeddings Eclass that

are corresponding to the location query embeddings. The
Eclass are then sent into the objectness and novelty classifi-
cation branch to predict the objectness and category respec-
tively. After selecting the unique queries that best match the
known instances by a bipartite matching loss, the remain-
ing queries are utilized to select the unknown category in-
stances and generate pseudo labels by self-adaptive pseudo-
labelling mechanism.

3.2. The Cascade Decoupled Decoding Way

Detection transformer [3, 4, 11, 25, 32, 46] leverages the
object queries to detect object instances, where each object
query represents an object instance. In the decoding stage,
the object queries are updated to query embeddings by
connecting object queries with semantic information from
the encoded semantic features. The generated query em-
beddings couple the location and category information for
both object localization and identification process simulta-
neously. For open-world object detection, the model re-
quires detecting the known objects, localizing the unknown
objects, and identifying them as the unknown class.

Inspired by how people react to new scenarios [6], a cas-
cade decoupled decoding manner is proposed to decode the
encoded features in a cascade way. We leverage the shared
decoder to decode the encoded features twice. The first de-
coded embeddings are utilized to localize the foreground
objects, while the second decoded embeddings are lever-
aged to identify the object categories and “unknown”. The
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operation of localization and identification cascade decod-
ing structure is expressed as follows:

ELocation = F𝑠 (F𝑒 (∅(J), 𝑃𝑛),Q Location,R) , (1)

EClass = F𝑠 (F𝑒 (∅(J), 𝑃𝑛),ELocation,R) . (2)

where F𝑠 (·) denotes the shared decoder. F𝑒 (·) is the en-
coder and ∅(·) is the backbone. 𝑃𝑛 stands for the positional
encoding. R represents the reference points and J denotes
the input image. In the cascade decoupled decoding phase,
the location embeddings are used as class queries to gener-
ate class embeddings. Therefore, the localization process is
not restricted by the category information, and the identifi-
cation process can get help from the location knowledge in
the cascade structure.

3.3. Self-Adaptive Pseudo-labelling Mechanism

Pseudo labels play an important role in guiding mod-
els to detect unknown object instances, determining the up-
per learning limitation of the model. The existing meth-
ods [17,21] only use model-driven pseudo-labelling and do
not take full advantage of the inputs’ priori knowledge (light
flow, textures, 𝑒𝑡𝑐). The model-driven pseudo-labelling
[17] makes the model’s learning get caught up in the knowl-
edge of known objects, for the reason that the only source
of knowledge for the model is known object instances.
In addition, their fixed selection manner cannot guarantee
the right learning direction for unknown objects. We pro-
pose to combine model-driven with input-driven pseudo-
labelling [36, 41, 47] for expanding the knowledge sources
of the model. In the meanwhile, the pseudo-labels selection
scheme should not be fixed, but be adapted as training and
able to adjust itself when facing unexpected problems.

In this paper, inspired by [1], a novel pseudo-labelling
mechanism is proposed for self-adaptively combining
model-driven and input-driven pseudo-labelling according
to the situation faced by the model, where the attention-
driven pseudo-labelling [17] is used as the model-driven
pseudo-labelling and selective search [41] is selected as the
input-driven pseudo-labelling. In the self-adaptive pseudo-
labelling mechanism, the model-driven pseudo-labelling
generates pseudo-labels’ candidate boxes 𝑃𝑚 and the cor-
responding confidence 𝑠𝑜, and the input-driven pseudo-
labelling generates pseudo-label candidate boxes 𝑃𝐼 . The
object confidence of generated pseudo labels is formulated
as follows:

S𝑖 = (𝑛𝑜𝑟𝑚 (𝑠𝑜))W𝑚 ·
(

max
1≤ 𝑗≤ |P𝐼 |

(
IOU

(
𝑃𝐼

𝑗 , 𝑃
𝑚
𝑖

)))W𝐼

, (3)

where IOU(·) (Intersection-over-union [39]) is the most
commonly used metric for comparing the similarity be-
tween two arbitrary shapes, 𝑖 denotes the index of the

Algorithm 1 COMPUTINGADAPTIVEWEIGHTS

Input: Loss Memory: 𝐿𝑚; Current Iteration: 𝑡; Positive
Momentum Amplitude: 𝜋𝑝𝑚𝑎; Negative Momentum
Amplitude: 𝜋𝑛𝑚𝑎; 𝑇𝑠𝑡𝑎𝑟𝑡 : Start iteration; 𝑇𝑏: Weight
updating cycle; Loss← Compute using Equation.9

Output: self-adaptive weights 𝑊𝑚
𝑡 and 𝑊𝐼

𝑡

1: while 𝑡𝑟𝑎𝑖𝑛 do
2: if 𝑡 ≤ 𝑇𝑠𝑡𝑎𝑟𝑡 then
3: Initialise 𝑊𝑚

0← 0.8 and 𝑊𝐼
0← 0.2

4: Initialise 𝐿𝑚 using Equation.5
5: else
6: Update 𝐿𝑚 using Equation.5
7: if 𝑡%𝑇𝑏 == 0 then
8: Compute Δ𝑙 using 𝐿𝑚 and Equation.6
9: Compute Δ𝑤 using Δ𝑙 and Equation.7

10: UpdateW𝑚
𝑡 andW𝐼

𝑡 using Equation.8
11: end if
12: end if
13: end while

pseudo labels. W𝑚 andW𝐼 are the self-adaptive weights,
which are controlled by the 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑟 , 𝑆𝑒𝑛𝑠𝑜𝑟 and
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟 , as formulated below:

W𝑡 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟 (W𝑡−1, 𝑆𝑒𝑛𝑠𝑜𝑟 (𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑟 (𝐿𝑚))), (4)

where 𝐿𝑚 represents the loss memory which is stored and
updated in real time during model training. The formulation
is illustrated in Equation.5:

𝐿𝑚 = DEQUE(𝑙𝑜𝑠𝑠𝑡−1, 𝑙𝑜𝑠𝑠𝑡−2, · · · , 𝑙𝑜𝑠𝑠𝑡−𝑛), (5)

where DEQUE is the sequence function, and 𝑡 is the current
iteration. Considering the sensitivity of the model and the
uneven quality of the data, we leverage 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑟 to obtain
the trend of the losses Δ𝑙 for replacing the single loss. The
formula is as follows:

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑟 (𝐿𝑚) =
∑𝑛

𝑖=1𝛼𝑖 · 𝑙𝑜𝑠𝑠𝑡−𝑖∑𝑁
𝑗=𝑛+1 𝛽 𝑗 · 𝑙𝑜𝑠𝑠𝑡− 𝑗

, 𝑛 < 𝑁 < 𝑇, (6)

where 𝛼 and 𝛽 denote the weighted average weights and
they are the decreasing series of equal differences (i.e.∑𝑛

𝑖=1𝛼𝑖 =
∑𝑁

𝑗=𝑛+1 𝛽 𝑗 =
𝛼𝑖−𝛼𝑖−1
𝛼𝑖+1−𝛼𝑖

=
𝛽 𝑗−𝛽 𝑗−1
𝛽 𝑗+1−𝛽 𝑗

= 1). In the
𝑆𝑒𝑛𝑠𝑜𝑟 , the variable of the weight Δ𝑤 is acquired as fol-
lows:

𝑆𝑒𝑛𝑠𝑜𝑟 (Δ𝑙) =
{
𝜋𝑛𝑚𝑎 · 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (Δ𝑙 −1),Δ𝑙 > 1,

−𝜋𝑝𝑚𝑎 ·Δ𝑙,Δ𝑙 ≤ 1, (7)

where 𝜋𝑝𝑚𝑎 and 𝜋𝑛𝑚𝑎 represents the positive and nega-
tive momentum amplitude (i.e. the amplitude of incremen-
tal changing), respectively. In the 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑟, we use Equa-
tion.8 to update the self-adaptive weight via a incremental
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way [9, 18, 21], for memory storage and enhancing the ro-
bustness.


W 𝑡

𝑚 =W 𝑡−1
𝑚 +Δ𝑤×W 𝑡−1

𝑚 ,

W 𝑡
𝐼
=W 𝑡−1

𝐼
−Δ𝑤×W 𝑡−1

𝐼
,

W 𝑡
𝑚 ,W 𝑡

𝐼
= 𝑛𝑜𝑟𝑚

(
W 𝑡

𝑚 ,W 𝑡
𝐼

)
,

(8)

where 𝑛𝑜𝑟𝑚(·) is the normalization operation. The update
strategy for the weights during training is shown in Algo-
rithm.1.

3.4. Training and Inference

Our CAT is trained end-to-end using the following joint
loss formulation:

𝐿 = 𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑏 𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 , (9)

where 𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐿𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐿𝑜𝑏 𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 de-
notes the loss terms for foreground localization, novelty
identification and object scoring, respectively. When a set
of new categories are introduced at each episode, we em-
ploy an exemplar replay based finetuning to alleviate catas-
trophic forgetting of learned classes and then finetune the
model using a balanced set of exemplars stored for each
known class. The bounding boxes and categories predic-
tions of the known and 𝑡𝑜𝑝-k unknown objects are simulta-
neous used during evaluation.

4. Experiments

4.1. Datasets and Metrics

The experiments are implemented on two mainstream
splits of MS-COCO [27] and Pascal VOC [14] dataset.
We group the classes into a set of nonoverlapping tasks{
𝑇1, . . . ,𝑇 𝑡 , . . .

}
. The class in task 𝑇𝑐 only appears in tasks

where 𝑡 ≥ 𝑐. In task 𝑇𝑐, classes encountered in {𝑇𝑐 : 𝑐 ≤ 𝑡}
and {𝑇𝑐 : 𝑐 > 𝑡} are considered as known and unknown
classes, respectively.
OWOD SPLIT [21] spilts the 80 classes of MS-COCO into
4 tasks and selects training set for each task from the MS-
COCO and Pascal VOC training set images. Pascal VOC
testing and MS-COCO validation set are used for evalua-
tion.
MS-COCO SPLIT [17] mitigates data leakage across tasks
in [21] and is more challenging. The training and testing
data are selected from MS-COCO.
Metrics: Following the most commonly used evaluation
metric for object detection, we use mean average preci-
sion (mAP) to evaluate the known objects. Inspired by
[2, 13, 17, 21, 30], U-Recall is used as main metric for un-
known objects. U-Recall measures the ability of the model
to retrieve unknown object instances for OWOD problem.

4.2. Implementation Details

The multi-scale feature extractor consists of a Resnet-
50 [20] pretrained on ImageNet [12] in a self-supervised
[5] manner and a deformable transformer encoder whose
number of layer is set to 6. For the shared decoder, we use
a deformable transformer decoder and the numbder of layer
is set to 6, too. We set the number of queries 𝑀 = 100, the
dimension of the embeddings 𝐷 = 256 and the number of
pseudo-labels 𝑘 = 5. During inference, 𝑡𝑜𝑝-50 high scoring
detections are used for evaluation for per image.

4.3. Comparison With State-of-the-art Methods

For a fair comparison, we compare CAT with ORE [21]
without the energy-based unknown identifier (EBUI) that
relies on held-out validation data with weak unknown object
supervision and other SOTA methods [17,43–45] to demon-
strate the effectiveness of our method for OWOD problem.
We present the comparison in terms of known class mAP
and unknown class recall where U-Recall cannot be com-
puted in Task 4 due to the absence of unknown test annota-
tions, for the reason that all 80 classes are known.
OWOD SPLIT: The results compared with the state-of-the-
art methods on OWOD split for OWOD problem are shown
in Table.1. Benefiting from the cascade decoupled decod-
ing manner and the self-adaptive pseudo-labelling mecha-
nism, the ability of CAT to detect unknown objects goes
substantially beyond the existing models. Compared with
2B-OCD’s [43] U-Recall of 12.1, 9.4 and 11.6 on Task 1,
2 and 3, our CAT achieves 23.7, 19.1 and 24.4 in the cor-
responding tasks, achieving significant absolute gains up to
12.8%. The ability to detect known objects and alleviate
catastrophic forgetting of previous knowledge gains an im-
proved performance with significant gains, achieving sig-
nificant absolute gains up to 4.7% beyond OW-DETR [17].
This demonstrates the significant performance of the cas-
cade decoding manner.
MS-COCO SPLIT: We report the results on MS-COCO
split in Table.2. MS-COCO split mitigates data leakage
across tasks and assign more data to each Task, while CAT
receives a more significant boost compared with OWOD
split. Compared with OW-DETR’s U-Recall of 5.7, 6.2 and
6.9 on Task 1, 2 and 3, our CAT achieves 24.0, 23.0 and
24.6 in the corresponding tasks, achieving significant abso-
lute gains up to 18.3%. Furthermore, the performance on
detecting known objects achieves significant absolute gains
up to 9.7%. This demonstrates that our CAT has the more
powerful ability to retrieve new knowledge and detect the
known objects when faced with more difficult tasks.
Qualitative Results: We report qualitative results in Fig-
ure.3. We show the detection results of CAT (top row) and
OW-DETR (bottom row), with Blue - known objects and
Yellow - unknown objects. It is easy to see that CAT could
detect more unknown objects. In the left column, OW-
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Figure 3. Comparison of qualitative results between CAT and OW-DETR. Detections of CAT (top row) and OW-DETR (bottom row)
are displayed, with Blue - known and Yellow - unknown object detections. CAT detected more unknown objects than OW-DETR. In the
left column, OW-DETR identifies the background and known objects as unknowns and the real unknown object (carton) as the background,
and our model accurately identifies the carton as the unknown object. In the middle column, OW-DETR identifies the two calendars as the
chair and the background, respectively, and the keyboard as the background, and our CAT accurately identifies them as unknown objects.
The right column shows that OW-DETR not only does not detect the unknown object (frame) but also identifies two known objects (sofa)
as one. Our model accurately identifies the frame as an unknown object and also accurately identifies the two sofas.

Table 1. State-of-the-art comparison on OWOD split. The comparison is shown in terms of U-Recall and known class mAP. U-Recall
measures the ability of the model to retrieve unknown object instances for OWOD problem. For a fair comparison, we compare with the
recently introduced methods and ORE not employing EBUI. The CAT achieves improved all metrics over the existing works across all
tasks, demonstrating our model’s effectiveness for OWOD problem. U-Recall cannot be computed in Task 4 due to the absence of unknown
test annotations, for the reason that all 80 classes are known.

Task IDs→ Task 1 Task 2 Task 3 Task 4

Unknown Known Unknown Known Unknown Known Known
Recall mAP(↑) Recall mAP(↑) Recall mAP(↑) mAP(↑)Metrics→

(↑) Current (↑) Previously Current Both (↑) Previously Current Both Previously Current Both

UC-OWOD [44] 2.4 50.7 3.4 33.1 30.5 31.8 8.7 28.8 16.3 24.6 25.6 15.9 23.2
ORE-EBUI [21] 4.9 56.0 2.9 52.7 26.0 39.4 3.9 38.2 12.7 29.7 29.6 12.4 25.3
OW-DETR [17] 7.5 59.2 6.2 53.6 33.5 42.9 5.7 38.3 15.8 30.8 31.4 17.1 27.8
OCPL [45] 8.3 56.6 7.7 50.6 27.5 39.1 11.9 38.7 14.7 30.7 30.7 14.4 26.7
2B-OCD [43] 12.1 56.4 9.4 51.6 25.3 38.5 11.6 37.2 13.2 29.2 30.0 13.3 25.8
Ours: CAT 23.7 60.0 19.1 55.5 32.7 44.1 24.4 42.8 18.7 34.8 34.4 16.6 29.9

DETR identifies the background and known objects (dog)
as unknowns and the real unknown object (carton) as the
background, while our model accurately identifies the car-
ton as the unknown object. As shown in the middle col-
umn, OW-DETR identifies the two calendars as the chair
and the background, respectively, and the keyboard as the
background, while our CAT accurately identifies them as
unknown objects. The right column shows that OW-DETR

not only does not detect the unknown object (frame) but
also identifies two known objects (sofa) as one, while our
model accurately identifies the frame as an unknown object
and accurately identifies the two sofas.

4.4. Ablation Study

We conduct abundant ablative experiments to verify the
effectiveness of CAT’s components on the OWOD split.
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Table 2. State-of-the-art comparison on MS-COCO split. The comparison is shown in terms of U-Recall and mAP. Although the
MS-COCO split is more challenging, our model gets a more significant improvement on this in comparison to ORE and OW-DETR. The
significant metric improvements demonstrate that our CAT has the ability to retrieve new knowledge beyond the range of closed set and
would not be limited by category knowledge of existing objects.

Task IDs→ Task 1 Task 2 Task 3 Task 4

Unknown Known Unknown Known Unknown Known Known
Recall mAP(↑) Recall mAP(↑) Recall mAP(↑) mAP(↑)Metrics→

(↑) Current (↑) Previously Current Both (↑) Previously Current Both Previously Current Both

ORE-EBUI [21] 1.5 61.4 3.9 56.5 26.1 40.6 3.6 38.7 23.7 33.7 33.6 26.3 31.8
OW-DETR [17] 5.7 71.5 6.2 62.8 27.5 43.8 6.9 45.2 24.9 38.5 38.2 28.1 33.1
Ours: CAT 24.0 74.2 23.0 67.6 35.5 50.7 24.6 51.2 32.6 45.0 45.4 35.1 42.8

Table 3. Component ablation experiment. The comparison is shown in terms of known class average precision (mAP) and unknown
class recall (U-Recall). CAT-Cddw is our model without the cascade decoupled decoding way. CAT-Sam is our model without the
self-adaptive manner but with the prior from the selective search. We also include the performance of deformable DETR and an upper
bound (D-DETR trained with ground-truth unknown class annotations) as reported by OW-DETR [17].

Task IDs→ Task 1 Task 2 Task 3 Task 4

Unknown Known Unknown Known Unknown Known Known
Recall mAP(↑) Recall mAP(↑) Recall mAP(↑) mAP(↑)Metrics→

(↑) Current (↑) Previously Current Both (↑) Previously Current Both Previously Current Both

Upper Bound 31.6 62.5 40.5 55.8 38.1 46.9 42.6 42.4 29.3 33.9 35.6 23.1 32.5
D-DETR [46] - 60.3 - 54.5 34.4 44.7 - 40.0 17.7 33.3 32.5 20.0 29.4

CAT – Cddw 19.1 59.3 18.6 52.8 30.2 41.5 21.0 41.0 17.6 33.0 32.6 15.8 27.9
CAT – Sam 19.1 59.7 16.9 54.8 32.4 43.6 18.6 42.1 19.3 34.5 34.0 16.0 29.5
Final:CAT 23.7 60.0 19.1 55.5 32.7 44.1 24.4 42.8 18.7 34.8 34.4 16.6 29.9

Furthermore, we demonstrate the effectiveness of our model
for incremental object detection and open-set detection.

Ablating Components: To study the contribution of each
component, we design ablation experiments in Table.3. In
comparison to the Final CAT, removing the cascade de-
coupled decoding manner CAT-Cddw reduces the perfor-
mance on retrieving unknown objects and detecting known
objects, achieving significant absolute gains down to 4.6,
0.5 and 3.4 points in Task 1,2,3 for U-Recall and the mAP
for known objects is reduced by 0.7, 2.6, 1.8, and 2.0 in Task
1,2,3,4. The results demonstrate that the cascade decoupled
decoding manner is better for the open-world object de-
tection which contains the unknown objects and improves
the ability of CAT to retrieve unknown objects and detect
known objects. To ablate the self-adaptive manner compo-
nent, we remove the self-adaptive manner from CAT and
hold the prior from selective search. Compared with CAT,
removing the self-adaptive manner CAT-Sam significantly
reduces the performance on detecting unknown objects,
achieving significant absolute gains down to 4.6, 2.2, and
5.8 points in Task 1,2,3 respectively. The results demon-
strate that the self-adaptive manner could efficiently com-
bine the input and model-driven pseudo-labelling mecha-
nism, improving the CAT’s ability to explore unknown ob-

jects. Thus, each component has a critical role to play in
open-World object detection.
Incremental Object Detection: To intuitively present our
CAT’s ability for detecting object instances, we compare it
to [17,21,35,40] on the incremental object detection (IOD)
task. We evaluate the experiments on three standard set-
tings, where a group of classes (10, 5 and last class) are in-
troduced incrementally to a detector trained on the remain-
ing classes (10, 15 and 19), based on PASCAL VOC 2007
dataset [14]. As the results shown in Table.4, CAT outper-
forms the existing method in a great migration on all three
settings, indicating the power of localization and identifica-
tion cascade detection transformer for IOD.
Open-set Detection Comparison: To further demonstrate
CAT’s ability to handle unknown instances in open-set data,
we follow the same evaluation protocol as [17, 21, 31] and
report the performance in Table.5. CAT achieves promising
performance in comparison to the existing methods.

5. Relation to Prior Works

The issue of standard object detection [4, 10, 16, 19, 26,
28,34,37,38,46,48] has been raised for several years, num-
berous works have investigated this problem and push the
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Table 4. Performance comparison on incremental object detection task. Evaluation is performed on three standard settings, where a
group of classes (10, 5 and last class) are introduced incrementally to a detector trained on the remaining classes (10,15 and 19). Our CAT
performs favorably against existing approaches on all three settings, illustrating the power of localization identification cascade detection
transformer for incremental objection detection.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [40] 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.2
Faster ILOD [35] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.1
ORE-(CC+EBUI) [21] 53.3 69.2 62.4 51.8 52.9 73.6 83.7 71.7 42.8 66.8 46.8 59.9 65.5 66.1 68.6 29.8 55.1 51.6 65.3 51.5 59.4
ORE-EBUI [21] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.5
OW-DETR [17] 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7

Ours: CAT 76.5 75.7 67.0 51.0 62.4 73.2 82.3 83.7 42.7 64.4 56.8 74.1 75.8 79.2 78.1 39.9 65.1 59.6 78.4 67.4 67.7

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [40] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.8
Faster ILOD [35] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE-(CC+EBUI) [21] 65.1 74.6 57.9 39.5 36.7 75.1 80 73.3 37.1 69.8 48.8 69 77.5 72.8 76.5 34.4 62.6 56.5 80.3 65.7 62.6
ORE-EBUI [21] 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5
OW-DETR [17] 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4

Ours: CAT 75.3 81.0 84.4 64.5 56.6 74.4 84.1 86.6 53.0 70.1 72.4 83.4 85.5 81.6 81.0 32.0 58.6 60.7 81.6 63.5 72.2

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

ILOD [40] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.2
Faster ILOD [35] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.5
ORE-(CC+EBUI) [21] 60.7 78.6 61.8 45 43.2 75.1 82.5 75.5 42.4 75.1 56.7 72.9 80.8 75.4 77.7 37.8 72.3 64.5 70.7 49.9 64.9
ORE-EBUI [21] 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.8
OW-DETR [17] 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2

Ours: CAT 86.0 85.8 78.8 65.3 61.3 71.4 84.8 84.8 52.9 78.4 71.6 82.7 83.8 81.2 80.7 43.7 75.9 58.5 85.2 61.1 73.8

field to certain heights. Whereas the strong assumption that
the label space of object categories to be encountered dur-
ing the life-span of the model is the same as during its train-
ing results that these methods cannot meet real-world needs.
The success of [7,15,22–24,33,38] demonstrates the feasi-
bility of foreground localization based on the position and
appearance of objects. Existing works [8, 17, 21, 29, 43–45]
attempt to leverage the framework of standard object de-
tection models for open-world object detection. In this pa-
per, we propose a novel transformer [42] based framework.
CAT decouples the localization and identification process
and connects them in a cascade approach. In CAT, the fore-
ground localization process is not limited by the category
of known objects, whereas the process of foreground iden-
tification can use information from the localization process.
Along with self-adaptive pseudo-labelling, CAT can gain
information beyond the data annotation and maintain a sta-
ble learning process according to self-regulation.

6. Conclusions

We analyze the drawbacks of the parallel decoding struc-
ture for open-world object detection. Motivated by the sub-
conscious reactions of humans when facing new scenes, we
propose a novel localization and identification cascade de-
tection transformer (CAT), which decouples the localization
and identification process via the cascade decoding man-
ner. The cascade decoding manner alleviates the influence

Table 5. Performance comparison on open-set object detection
task. Our CAT achieves significant performance in comparison to
existing works.

Evaluated on→ VOC WR1

Standard Faster R-CNN [40] 81.8 77.1
Standard RetinaNet 79.2 73.8
Dropout Sampling [31] 78.1 71.1
ORE [21] 81.3 78.2
OW-DETR [17] 82.1 78.6

Ours: CAT 83.2 79.5

of detecting unknown objects on the detection of known ob-
jects. With the self-adaptive pseudo-labelling mechanism,
CAT gains knowledge beyond the data annotations, gener-
ates pseudo labels with robustness and maintains a stable
training process via self-adjustment. The extensive experi-
ments on two popular benchmarks, 𝑖.𝑒., PASCAL VOC and
MS COCO demonstrate that CAT’s performance is better
than the existing methods.
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