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Abstract

A fundamental characteristic common to both human vi-
sion and natural language is their compositional nature. Yet,
despite the performance gains contributed by large vision
and language pretraining, we find that—across 7 architec-
tures trained with 4 algorithms on massive datasets—they
struggle at compositionality. To arrive at this conclusion, we
introduce a new compositionality evaluation benchmark,
CREPE, which measures two important aspects of compo-
sitionality identified by cognitive science literature: system-
aticity and productivity. To measure systematicity, CREPE
consists of a test dataset containing over 370K image-text
pairs and three different seen-unseen splits. The three splits
are designed to test models trained on three popular training
datasets: CC-12M, YFCC-15M, and LAION-400M. We also
generate 325K, 316K, and 309K hard negative captions
for a subset of the pairs. To test productivity, CREPE con-
tains 17K image-text pairs with nine different complexities
plus 278K hard negative captions with atomic, swapping
and negation foils. The datasets are generated by repurpos-
ing the Visual Genome scene graphs and region descriptions
and applying handcrafted templates and GPT-3. For sys-
tematicity, we find that model performance decreases con-
sistently when novel compositions dominate the retrieval
set, with Recall@1 dropping by up to 9%. For productivity,
models’ retrieval success decays as complexity increases,
frequently nearing random chance at high complexity. These
results hold regardless of model and training dataset size.

1. Introduction

Compositionality, the understanding that “the meaning
of the whole is a function of the meanings of its parts” [11],
is held to be a key characteristic of human intelligence.
In language, the whole is a sentence, made up of words.
In vision, the whole is a scene, made up of parts like
objects, their attributes, and their relationships [31, 35].

*Equal contribution

Figure 1. We introduce CREPE, a benchmark to evaluate whether
vision-language foundation models demonstrate two fundamental
aspects of compositionality: systematicity and productivity. To eval-
uate systematicity, CREPE utilizes Visual Genome and introduces
three new test datasets for the three popular pretraining datasets:
CC-12M, YFCC-15M, and LAION-400M. These enable evaluating
models’ abilities to systematically generalize their understanding
to seen compounds, unseen compounds, and even unseen atoms.
To evaluate productivity, CREPE introduces examples of nine com-
plexities, with three types of hard negatives for each.

Through compositional reasoning, humans can understand
new scenes and generate complex sentences by combining
known parts [6, 27, 30]. Despite compositionality’s impor-
tance, there are no large-scale benchmarks directly evaluat-
ing whether vision-language models can reason composition-
ally. These models are pretrained using large-scale image-
caption datasets [62, 64, 74], and are already widely applied
for tasks that benefit from compositional reasoning, includ-
ing retrieval, text-to-image generation, and open-vocabulary
classification [10,57,60]. Especially as such models become
ubiquitous “foundations” for other models [5], it is critical
to understand their compositional abilities.

Previous work has evaluated these models using image-
text retrieval [32,56,82]. However, the retrieval datasets used
either do not provide controlled sets of negatives [45, 74]
or study narrow negatives which vary along a single axis
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Figure 2. An overview of the systematicity retrieval set generation process. First, a model’s image-caption training set is parsed to identify
what atoms and compounds the model has seen. Then, an evaluation set is divided into three compositional splits according to whether the
model has seen all the compounds (Seen Compounds), only all the atoms of the caption (Unseen Compounds), or neither (Unseen Atoms).
Finally, hard negative captions HN-ATOM and HN-COMP are generated for the hard negatives retrieval set DHN

test .

(e.g. permuted word orders or single word substitutions as
negative captions) [21, 51, 65, 75]. Further, these analyses
have also not studied how retrieval performance varies when
generalizing to unseen compositional combinations, or to
combinations of increased complexity.

We introduce CREPE (Compositional REPresentation
Evaluation): a new large-scale benchmark to evaluate two
aspects of compositionality: systematicity and productivity
(Figure 1). Systematicity measures how well a model is able
to represent seen versus unseen atoms and their composi-
tions. Productivity studies how well a model can compre-
hend an unbounded set of increasingly complex expressions.
CREPE uses Visual Genome’s scene graph representation as
the compositionality language [35] and constructs evaluation
datasets using its annotations. To test systematicity, we parse
the captions in three popular training datasets, CC-12M [8],
YFCC-15M [74], and LAION-400M [62], to identify atoms
(objects, relations, or attributes) and compounds (combina-
tions of atoms) present in each dataset. For each training set,
we curate corresponding test sets containing 385K, 385K
and 373K image-text pairs respectively, with splits checking
generalization to seen compounds, unseen compounds, and
unseen atoms. To test productivity, CREPE contains 17K
image-text pairs split across nine levels of complexity, as
defined by the number of atoms present in the text. Exam-
ples across all datasets are paired with various hard negative
types to ensure the legitimacy of our conclusions.

Our experiments—across 7 architectures trained with 4
training algorithms on massive datasets—find that vision-
language models struggle at compositionality, with both
systematicity and productivity. We present six key findings:
first, our systematicity experiments find that models’ perfor-
mance consistently drops between seen and unseen composi-
tions; second, we observe larger drops for models trained on

LAION-400M (up to a 9% decrease in Recall@1); third, our
productivity experiments indicate that retrieval performance
degrades with increased caption complexity; fourth, we find
no clear trend relating training dataset size to models’ com-
positional reasoning; fifth, model size also has no impact;
finally, models’ zero-shot ImageNet classification accuracy
correlates only with their absolute retrieval performance on
the systematicity dataset but not systematic generalization to
unseen compounds or to productivity. 1

2. Related Work

Our work lies within the field of evaluating foundation
models. Specifically, we measure visio-linguistic composi-
tionality. To do so, we create a retrieval benchmark with
hard negatives.
Contrastive Image-Text Pretraining. The recently released
contrastively trained CLIP model [56] has catalyzed a wide
array of work at the intersection of Computer Vision and
Natural Language Processing. Since its release, CLIP has en-
abled several tasks, ranging from semantic segmentation to
image captioning, many of which have remarkable zero-shot
capability [12, 16, 38, 56, 71, 73]. CLIP has been used as a
loss function within image synthesis applications [29, 44, 46,
54, 79, 83], acted as an automated evaluation metric [22, 52],
used successfully as a feature extractor for various vision
and language tasks [66], and incorporated into architectures
for various tasks including dense prediction and video sum-
marization [43, 50, 55, 58, 67, 68]. This success has also en-
couraged the design of other contrastive vision and language
pretraining algorithms for image [15,18,40–42,48,69,80,81]
and video domains [39,76,78]. Our work evaluates how well

1We release our datasets, and code to generate and evaluate on our test
sets at https://github.com/RAIVNLab/CREPE.
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such contrastively trained models capture a fundamental
property present in human vision and language: composi-
tionality.

Compositionality. Compositionality allows us to compre-
hend an infinite number of scenes and utterances [37]. For
an AI model, compositionality would not only allow for sys-
tematic, combinatorial generalization, but would also confer
benefits such as controllability [5]. This promise prompted a
wealth of work on both designing [2, 23, 25] and evaluating
[17, 19, 26, 36, 72] compositional models. In our work, we
focus on two aspects of compositionality: systematicity and
productivity. While there is a plethora of benchmarks for sys-
tematic generalization within Computer Vision [3, 4, 19, 33]
and Machine Learning [34, 36, 59], the subject has been al-
most unexplored for vision-language models, largely due to
lack of benchmarks complementary to the different large-
scale training datasets. To address this, CREPE provides a
benchmark with three different datasets to evaluate the com-
positional generalization of vision-language models. Produc-
tivity, on the other hand, has been studied only for special-
ized tasks [19] or toy domains [27,36,59]. CREPE evaluates
productivity by using an image-text retrieval task featuring
captions of varying compositional complexity.

Evaluation with hard negatives. Like us, past work evaluat-
ing models has commonly designed tasks featuring hard neg-
atives to isolate particular model capabilities while overcom-
ing the limitations of prior evaluation tasks. Using atomic
foils that replace an atom in the image or text with a distrac-
tor has been the most common strategy [4,9,21,24,51,53,65].
Notably, Park et al. [53] targets verbs and person entities
in videos; COVR [4] studies question answering with dis-
tractor images; VALSE [51] targets linguistic phenomena
such as existence, cardinality and the recognition of actions
and spatial relationships. Another strategy has been to swap
atoms within a caption to test whether models behave akin
to a bag-of-words [1, 51, 75]. In particular, Winoground [75]
introduces a set of 800 human edited negatives to evaluate
compositionality; it is the closest related work to us. We
complement Winoground by scaling it up by three orders
of magnitude, by decomposing compositionality into sys-
tematicity and productivity, and by studying a variety of
different types of hard negatives.

3. Compositional evaluation

The following section builds from the formally vacuous
principle of compositionality to a well-defined evaluation
scheme [27]. First, we establish the syntax and semantics
of the composed language (Section 3.1). Then, we define
expected behaviors from a model that achieves comprehen-
sion of said language ( 3.2, 3.3). Finally, we establish how
to empirically measure those behaviors via retrieval ( 3.4).

3.1. Compositional language of visual concepts

To evaluate vision-language models, we find that a compo-
sitional language consisting of scene graph visual concepts
to be an appropriate foundation [35]. Accordingly, an atom
A is defined as a singular visual concept, corresponding to
a single scene graph node. Atoms are subtyped into objects
Ao, relationships Ar, and attributes Aa. A compound C is
defined as a primitive composition of multiple atoms, which
corresponds to connections between scene graph nodes. Vi-
sual concepts admit two compound types: the attachment of
attribute to objects (“black dog”) Cao, and the attachment of
two objects via a relationship (“man hugs child”) Coro.

The composition of these compounds form subgraphs
S, which can be translated to natural language captions T .
Conversely, captions T derived from image-text datasets D
can be parsed to become scene graphs S. This extensible lan-
guage is capable of capturing a number of linguistic phenom-
ena identified in existing literature [51, 72], including the ex-
istence of concepts (“a photo with flowers”), spatial relation-
ships (“a grill on the left of a staircase”), action relationships
(“a person throwing a frisbee”), prepositional attachment
(“A bird with green wings”), and negation (“There are no
trucks on the road”). Furthermore, while this study focuses
on visual concepts, scene graphs featuring common-sense re-
lationships or other more abstract concepts can be designed;
therefore, our methodology is widely applicable [61].

3.2. Systematicity

With our compositional language in place, we now de-
fine two dimensions of compositionality—systematicity and
productivity—which we adapt to vision-language represen-
tations. Systematicity evaluates a model’s ability to sys-
tematically recombine seen atoms in compounds. Con-
cretely, let SEEN(A,D) denote if an atom is seen in a
training dataset D, namely ∃(I, S) ∈ D : A ∈ S, and
SEEN(C,D) denote if a compound is seen in a dataset D,
namely ∃(I, S) ∈ D : C ⊆ S. To evaluate systematic-
ity, we define three compositional splits: Seen Compounds
(SC), Unseen Compounds (UC) and Unseen Atoms (UA).
SC is the split where all compounds (and thus all atoms)
of every caption have been seen in the training dataset, i.e.
DSC = {(I, S) ∈ Dtest | ∀C ⊆ S : SEEN(C,Dtrain)}.
UC is the split where, for each caption, all atoms have
been seen but at least one compound has NOT, i.e. DUC =
{(I, S) ∈ Dtest | (∀A ∈ S : SEEN(A,Dtrain) ∧ (∃C ⊆
S : ¬Seen(C,Dtrain))}. UA is the split where each cap-
tion contains at least one atom that has NOT been seen, i.e.
DUA = {(I, S) ∈ Dtest | ∃A ∈ S : ¬SEEN(A,Dtrain) }.

3.3. Productivity

Productivity refers to a capacity to comprehend an un-
bounded set of expressions. Since the set of atoms in any
dataset is finite, a reasonable substitute for testing unbounded
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Figure 3. An overview of the productivity retrieval set generation process. By performing random walks on the scene graphs of an
evaluation dataset, we generate subgraphs of various complexities. Then, for complexities n ∈ {4, , 5 . . . , 12} and three hard negative types,
we populate the retrieval set DHN

test by generating a ground truth caption for each n-subgraph and hard negatives for each caption.

Table 1. We summarize the sizes of the eight evaluation datasets we create for systematicity and productivity evaluation.

Systematicity Productivity

DRAW
test (# of image-text pairs) DHN

test (# of texts) DRAW
test DHN

test

Training data CC-12M YFCC-15M LAION-400M CC-12M YFCC-15M LAION-400M Any Any
Dataset size 385,777 385,777 373,703 325,523 316,668 309,342 17,553 278,730

comprehension is testing comprehension over increasingly
complex scenes. Now, an image I does not have a notion of
complexity, since it is theoretically infinitely describable; on
the other hand, we can define a notion of complexity for a
caption T : the number of atoms in its corresponding scene
graph |ST |. 2 Therefore, a productive vision-language model
should be able to match a given image to the correct corre-
sponding caption, regardless of that caption’s complexity.
To evaluate productivity, we define a range of productivity
complexity (in our case, n = 4, 5, . . . , 12). We need splits
of the evaluation dataset based on these complexities, where
image-text pairs in a given split have a fixed complexity n,
and evaluate a model’s performance over each split.

3.4. Compositional evaluation via retrieval

We evaluate compositional reasoning using zero-shot
image-to-text and text-to-image retrieval. This formulation
probes the representation space as directly as possible and
is already the most common evaluation method for vision-
language foundation models [56]. Theoretically, any existing
image-text dataset can be used as retrieval sets for our evalua-
tion. However, one challenging limitation in existing datasets
renders the metrics evaluated on them inaccurate. Consider
using an image query of a “plant inside a yellow vase on
top of a black television.” Retrieving unintended alternative
positives (e.g. “a black television”) is not necessarily incor-

2By avoiding captions with redundant objects (“... a lamb and a lamb
and...”) and abstract modifiers (“there are many lampposts”), we ensure
atom count is tightly coupled with caption complexity.

rect. Similarly, if no other texts in the retrieval set contain a
“plant” and a “television”, retrieving the correct text doesn’t
suggest that the model comprehends the image. Ideally, to
properly evaluate a model, the retrieval dataset should con-
tain hard negatives for every query. A hard negative is a
caption that does not faithfully represent the corresponding
image, and differs from the ground truth caption by some
minimal atomic shift. A example hard negative for the query
above is “man inside a yellow vase on top of a black televi-
sion.” By erring in a single, granular syntactic or semantic
fashion, hard negatives allow for variations in retrieval per-
formance to be attributable to a specific failure mode of a
model’s compositional comprehension (see Appendix). We
address this need for a new benchmark dataset to evaluate the
systematicity and productivity of vision-language models.

4. CREPE: a large-scale benchmark for
vision-language compositionality

There are several challenges to creating image-text re-
trieval datasets that evaluate compositional systematicity and
productivity. For systematicity, the primary challenge lies in
parsing the training dataset for seen atoms and compounds
in order to split the data into the three compositional splits.
For productivity, the major challenge is generating image-
text pairs across different text complexities for the retrieval
sets. For both datasets, it is crucial to enumerate different
types of hard negatives, and to design an automated hard
negative generator which ensures the incorrectness of the
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negatives it generates. We detail our methods for tackling
these challenges for future efforts that attempt to create simi-
lar benchmarks for other training datasets.

4.1. Creating systematicity datasets

To create the three systematicity splits—SC, SA,
UA—we parse a given training dataset D into its constituent
atoms and compounds, filter low-quality data, and generate
hard negatives (Figure 2).
Parsing a dataset into atoms and compounds Since we
utilize the scene graph representation as our compositional
language, we use the Stanford Scene Graph Parser [63,77] to
parse texts in Dtrain into their corresponding scene graphs
with objects, attributes and relationships. Since the parser
only parses for objects and relationships, we further extract
the attributes from the text via spaCy’s natural language
processing parser by identifying adjective part-of-speech
tags. These connected objects, attributes, and relationships
constitute our seen atoms and compounds. Similarly, we
parse a given Dtest and divide all the image-text pairs into
the three splits based on the presence of unseen atoms and/or
compounds in the parsed training set. Details on the quality
of the scene graph parser can be found in the Appendix.
Filtering low-quality data We perform the following fil-
tering steps on the image-text pairs in all splits: we only
keep region crops which have an area greater than or equal
to 40K pixels, occupy at least 10% of the whole image, and
whose width-to-height ratio is between 0.5-2.0. We only in-
clude text which have at least 2 atoms and 1 compound and
de-duplicate text using their corresponding scene graphs.
Generating hard negatives We introduce two types of hard
negatives: HN-ATOM and HN-COMP. HN-ATOM replaces
Aa, Ao, or Ar in the text with an atomic foil. For example,
for the caption “a grill on top of the porch”, one HN-ATOM
can be “a grill underneath the porch”, where the Ar “on
top of” is replaced by “underneath”. Since captions and
scene graphs are not exhaustive, this replacement must be
done carefully. For example, if a dog is white and furry,
but only “white” is annotated, replacing the atom “white”
with “furry” would result in a correct caption. To minimize
errors, we employ WordNet [49] to pick replacement atoms
that are either antonyms (“black dog”) or share the same
grand-hypernym (“pink dog") with respect to the original
atom. Furthermore, we use BERT to select the most sensical
negatives for each ground truth caption [13, 51]. HN-COMP
concatenates two compound foils where each contains an
atomic foil. For instance, one HN-COMP of the caption “a
pink car” can be “a blue car and a pink toy”, where “blue”
and “toy” are the atomic foils in the two compounds foils
“blue car” and “pink toy”. We only generate negatives for
one-compound examples for systematicity evaluation, as
productivity covers complex captions with more atoms.

4.2. Creating productivity datasets

We first generate ground truth captions for scene graphs of
varying complexity, filter for data quality, and then generate
hard negatives for each example (Figure 3).
Generating captions We systematically generate captions
of different atom counts for each image. Given a scene graph,
we perform a random walk of length n through the graph
to generate a subgraph. Each subgraph corresponds to a
specific region of the image, determined by the union of the
bounding boxes of the subgraph atoms. We filter out low-
quality regions using the same process as systematicity with
additional deduplication on patches that overlap by ≥ 75%.
For simple subgraphs (n = 4), we produce captions using
handcrafted templates. For larger subgraphs (n ≥ 5), we
leverage GPT-3 [7] (text-davinci-002) to generate captions
based on a text description of the scene graph, which lists all
objects and relationships. We prompt GPT-3 using 5 manu-
ally written captions per complexity, filtering out captions
where GPT-3 errs and omits atoms from the subgraph during
generation (see more details in Appendix).
Generating hard negatives For productivity, we employ
three hard negatives types (HN-ATOM from systematicity,
HN-SWAP, and HN-NEG) corresponding to three hypoth-
esized model error modes. First, as a caption’s complexity
increases, a model may begin to ignore individual atoms.
HN-ATOM randomly selects an atom from the caption and
replaces it with an incorrect atom. Second, as a caption’s
complexity increases, a model may treat captions as “bags
of words”, ignoring syntactic connections built out of word
order. A swap hard negative (HN-SWAP) accordingly per-
mutes atoms of the same subtype in a caption. This hard
negative is similar to Winoground [75], but in the context
of varying caption complexity. On top of Wordnet, we use
entailment with RoBERTa to further filter errant HN-SWAP
hard negatives [47]. Finally, as a caption’s complexity in-
creases, a model may begin to lose comprehension of nega-
tions. A negation hard negative (HN-NEG) either negates
the entire caption or a specific atom. Refer to the Appendix
for details on generating HN-SWAP and HN-NEG.

4.3. The final benchmark datasets

For both productivity and systematicity, we generate two
test datasets: DHN

test , which contains image-ground truth text
pairs along with all generated hard negatives, and DRAW

test ,
which contains only image-ground truth text pairs. To mea-
sure the data quality, we randomly sample 2% of produc-
tivity ground truth captions generated by GPT-3 and 1%
of the queries in the productivity and systematicity DHN

test

sets for manual human verification. We assign 2 annotators
to each set and measure both generated quality and intra-
annotator agreement. 87.9% of sampled productivity ground
truth captions generated by GPT-3 are rated as faithful to
the image, with an average pairwise annotator agreement of
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Figure 4. We plot models’ recall@1 on the Seen Compounds vs. Unseen Compounds split of the systematicity retrieval set with hard
negatives HN-ATOM, HN-COMP and both types. We observe a consistent drop in models’ performance from the SC to UC split when the
hard negative set consists of both HN-ATOM and HN-COMP or HN-ATOM only.

Figure 5. Productivity Analysis. We plot models’ Recall@1 on the hard negatives retrieval set against complexity, averaged across all models
pretrained on all three training datasets. We find that models’ ability to retrieve the ground-truth degrades as complexity increases.

88.8%. 83.7% of productivity and 86.0% of systematicity
hard negatives were rated as genuine negatives (i.e. made fac-
tually incorrect statements about the image), with pairwise
annotator agreements of 84.3% and 83.7% respectively.

5. Experiments

We present our experimental setup and results with six
takeaways. First, our systematicity experiments show per-
formance decreases consistently on compounds unseen in
training. Second, the greatest drop between splits occurs for
models trained on LAION-400M. Third, our productivity
results reveal models’ retrieval performance decays with in-
creasing complexity. Fourth, we find that dataset size has
no impact on compositionality. Fifth, we find no clear trend
relating model size to compositionality. Finally, models’
zero-shot ImageNet classification accuracy correlates with
retrieval performance on the systematicity dataset but not
systematic generalization to the UC split or productivity.
Datasets. We utilize Visual Genome to create our test
datasets. For systematicity, image patches and corresponding
spelling-corrected region descriptions are used. We provide
three different splits for DHN

test , for three training datasets:

CC-12M, YFCC-15M and LAION-400M. For productivity,
Visual Genome’s image-scene graph pairs are used to create
captions and hard negatives for DRAW

test and DHN
test (Table 1).

Models. We firstly evaluate seven vision-language mod-
els pretrained with contrastive loss [70] across three com-
monly used image-text datasets: Conceptual Captions 12M
(CC-12M) [8], a subset of the YFCC100M dataset (YFCC-
15M) [56, 74] and LAION-400M [62]. We limit our eval-
uation to models openly released in the OpenCLIP reposi-
tory [28] for systematicity evaluation. These include ResNet
(RN) [20] and Vision Transformer (ViT) [14] encoders of dif-
ferent sizes: RN50, RN101, ViT-B-16, ViT-B-16-plus-240,
ViT-B-32 and ViT-L-14. Additionally, since productivity
evaluation is not restricted to models that were trained on
publicly released datasets, we conduct productivity evalu-
ation on other foundation vision-language models as well.
Specifically, we consider OpenAI’s CLIP [56] with ResNet
and ViT backbones, CyCLIP [18] (a variant of CLIP intro-
ducing auxiliary losses that regularize the gap in similarity
scores between mismatched pairs, trained on Conceptual
Captions 3M [64] with a ResNet-50 [20] backbone), AL-
BEF [41] (additionally trained with a masked language mod-
eling and image-text matching loss) and FLAVA [69] (which
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Figure 6. Productivity Analysis on Additional Foundation Vision-language Models. We plot models’ Recall@1 on the productivity hard
negatives retrieval set against complexity, where OpenAI CLIP’s performance is averaged across five models RN50, RN101, ViT-B-16,
ViT-B-32 and ViT-L-14. We find that all models’ retrieval performance decreases as complexity increases in both the HN-ATOM and
HN-SWAP retrieval sets. For the HN-NEG set, all models except for CLIP either drop in performance or remain at random chance.

Figure 7. A plot showing the correlation between zero-shot top-1
accuracy on ImageNet and Recall@1 on CREPE’s systematicity
hard-negative sets. We observe a strong correlation, with an R2

score of 0.9914 for the SC split and 0.9534 for the UC split.

further adds unimodal losses for image and text domains).
Retrieval. For DHN

test , we perform image-to-text retrieval and
stratify results by split and hard negative type. For system-
aticity, the splits are SC, UC, and UA; for productivity, the
splits are by caption complexity n (denoted DHN,n

test ). Each
retrieval task is between one image and its ground truth cap-
tion plus h hard negatives of a single type (see Appendix).
We adopt commonly used retrieval metrics Recall@1, 3, 5
and Average Recall@K. For DRAW

test , retrieval experiments
are described in the Appendix.

5.1. Systematicity evaluation

Model performance on the DHN
test dataset for systematicity

decreases monotonically when compounds are unseen.
We first observe a monotonic decrease in recall@1 from
the Seen Compounds to the Unseen Compounds split on
the systematicity DHN

test set consisting of both HN-ATOM
and HN-COMP (Figure 4 left). This drop is relatively small
(1− 5%) for the CC-12M and YFCC-15M trained models
and the most pronounced for models trained on the largest
dataset LAION-400M [62], with the decrease reaching 7.9%

for the ViT-B-32 model. However, CC-12M and YFCC-
15M models also significantly underperform LAION-400M
models in general, meaning that small drops between sets
may be due to overall poor performance rather than improved
systematic generalization. In comparison, human oracle
experiments generalize with 100% accuracy to DHN

test .
Similar to the overall results, there is also a consistent

discrepancy between the SC and UC split on the DHN
test subset

consisting of HN-ATOM only (Figure 4 center). This drop is
consistently smaller (3−6%) for models trained on CC-12M
and YFCC-15M, but pronounced (6% or higher, reaching
9.4% drop for ViT-B-32) for LAION-400M models.

On the HN-COMP subset (Figure 4 right), we find little
to no difference in performance between the SC and UC
split. We hypothesize that this is due to the lower difficulty
of the HN-COMP hard negatives, as they introduce more
foils to the caption, are always longer than the ground truth,
and thus offer more opportunities for the model to correctly
distinguish the ground truth. This hypothesis is supported
by the fact that Recall@1 values on HN-COMP are similar
or higher than the ones on HN-ATOM even though the HN-
COMP retrieval set size is larger than that of HN-ATOM.

5.2. Productivity evaluation

Models’ performance decreases with complexity on
HN-ATOM and HN-SWAP negatives. At small complex-
ities such as n = 4, we observe that model retrieval quality is
well above random chance (Figure 5). However, as caption
complexity increases, we observe a steady decrease in perfor-
mance, nearing random chance for HN-SWAP and dipping
below it for HN-ATOM negatives. Similarly, we find that
the same downward trend persists for other vision-language
foundation models (Figure 6). Importantly, the downward
trend occurs for FLAVA and ALBEF even though their train-
ing set contains Visual Genome images. We note that for
HN-NEG negatives, the OpenAI CLIP models do not adhere
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Figure 8. A plot showing the correlation between zero-shot top-1 accuracy on ImageNet and Recall@1 on CREPE’s productivity hard
negative sets for complexities of 4, 8 and 12. Overall, we find no correlation between ImageNet accuracy and Recall@1 on our productivity
sets. The strongest correlations are R2 scores of 0.284 for HN-NEG negatives on n = 12 and of 0.222 for HN-ATOM negatives on n = 8.

to the downward trend, achieving their lowest scores for the
lowest complexity. Their performances on higher complexi-
ties, however, show great variation. In short, our conclusion
is that vision-language foundation models struggle with pro-
ductivity. Our results on models released by OpenCLIP [28]
as well as other vision-language foundation models demon-
strate the challenge of differentiating between atomic and
swapping foils is exacerbated by caption complexity.
We see no effect of dataset size on productivity. We do not
observe a clear advantage for larger pretraining datasets in
our productivity evaluation. For atomic and swapping foils,
we see similar performance for models trained on the three
datasets, with slightly worse performance on atomic foils
for the CC-12M trained models. However, on negation hard
negatives (Figure 5), we see variable performance across
training sets, with CC-12M models outperforming larger
models trained on larger datasets YFCC and LAION.

5.3. Effect of model size

We find no trends relating compositionality to model size.
Overall, we note that the LAION trained models (which are
both larger models and trained on larger datasets) achieve
significantly better absolute performances than smaller mod-
els. However, model’s systematicity and productivity remain
indifferent to the size of the model itself (Figures 4 and 5).

5.4. Correlation with ImageNet performance

We find that zero-shot ImageNet top-1 accuracy strongly
correlates with models’ Recall@1 on the systematicity
retrieval set. Specifically, we acquire R2 scores of 0.984
and 0.877 for the SC and UC splits respectively (Figure 7).
However, this correlation does not imply that models’ zero-
shot ImageNet performance correlates with systematic gener-
alization, which is instead indicated by small or no difference
between the SC and UC splits. On our productivity dataset,
we do not observe such a strong correlation, where the high-
est R2 score is 0.284 for HN-NEG negatives on a complexity

of n = 12 (Figure 8). As such, we can infer that successful
zero-shot performance on ImageNet does not necessarily
lead to better performance on our productivity sets.

6. Discussion
Limitations. First, although our data validation protocols
verified our generated hard negatives for productivity as high-
quality, approximately 70% of HN-SWAP and of HN-NEG
negatives were rated as correct. While this does not invali-
date our key productivity result, this noise is a limitation of
CREPE and could hinder future evaluations once foundation
models begin performing better. Second, our evaluation only
covers a limited set of vision-language foundation models
that were trained with contrastive loss. Additionally, given
the computational requirements associated with training a
foundation model, our experiments centered around model
architectures that were already available publicly. We hope
that future foundation models are evaluated with our publicly
available CREPE benchmark. Third, while we observe text-
to-image and image-to-text retrieval to have similar trends
for our systematicity experiments, we lack text-to-image
datasets with hard negatives. Future work can explore mech-
anisms to generate counterfactual negative images.

Conclusion. We present CREPE, a collection of text-
to-image and image-to-text retrieval datasets for evaluating
pretrained vision-language models’ systematicity and pro-
ductivity. We demonstrate that models struggle with compo-
sitionality along both axes, with performance drops across
different compositional splits and increasing complexity. We
expect that CREPE will provide a more systematic evalu-
ation to benchmark the emergence of compositionality as
future models improve. Finally, researchers can leverage our
hard-negative generation process to create training batches
with hard negatives to incentivize vision-language composi-
tionality.
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