DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot Object Detection

Jiawei Ma Yulei Niu* Jincheng Xu Shiyuan Huang Guangxing Han Shih-Fu Chang
Columbia University
{jiawei.m, yulei.niu, jx2467, shiyuan.h, gh2561, sc250}@columbia.edu

Abstract

Generalized few-shot object detection aims to achieve precise detection on both base classes with abundant annotations and novel classes with limited training data. Existing approaches enhance few-shot generalization with the sacrifice of base-class performance, or maintain high precision in base-class detection with limited improvement in novel-class adaptation. In this paper, we point out the reason is insufficient discriminative feature learning for all of the classes. As such, we propose a new training framework, DiGeo, to learn Geometry-aware features of inter-class separation and intra-class compactness. To guide the separation of feature clusters, we derive an offline simplex equiangular tight frame (ETF) classifier whose weights serve as class centers and are maximally and equally separated. To tighten the cluster for each class, we include adaptive class-specific margins into the classification loss and encourage the features close to the class centers. Experimental studies on two few-shot benchmark datasets (VOC, COCO) and one long-tail dataset (LVIS) demonstrate that, with a single model, our method can effectively improve generalization on novel classes without hurting the detection of base classes. Our code can be found here.

1. Introduction

Recent years have witnessed the tremendous growth of object detection through deep neural models and large-scale training [2, 13–15, 40, 42, 45, 60, 65]. However, the success of detection models heavily relies on the amount and quality of annotations, which requires expensive annotation cost and time. In addition, traditional object detection models perform worse on the classes with a limited number of annotations [11, 52, 56], while human are able to learn from few observations. In order to close the gap between human vision system and detection models, recent studies have investigated how to generalize well on rare classes under the few-shot object detection (FSOD) setting. Specifically, given many-shot (base) classes with plenty of training data and few-shot (novel) classes with extremely limited training data (e.g., 5 annotated instances per class), FSOD expects the model to detect the objects in the novel classes well.

To improve the generalization ability on novel-class detection, recent studies [6, 44, 52] conduct transfer learning in a two-step manner. In detail, the model is pre-trained on the whole set of base classes, and then fine-tuned on the union of the set of novel classes and an aggressively down-sampled base subset. However, the efficient few-shot adaptation is often achieved at the expense of sacrificing precision on base detection (Fig. 1). Being aware of this limitation, Fan et al. [6] proposed to evaluate the performance of both base and novel classes in the generalized few-shot object detection (GFSOD) setting. In addition, they proposed a consistency regularization to emphasize the pre-trained base knowledge during fine-tuning and employed an ensembling strategy. However, they design different classifiers for base and novel classes, and the adaptation on novel classes is impeded due to a complex ensembling process.

In this paper, we pointed out that the devil is in in-
We propose DiGeo to pursue desired feature geometry-aware and adapt the knowledge learned from base classes to novel classes. As a result, the model cannot distinguish between the novel classes, which weakens the few-shot adaptation. Secondly, balanced training strategies such as down-sampling fail to utilize the diverse training samples from base set. Thus, it is hard to preserve the complete knowledge of base classes, which leads to overfitting and further decreases the detection scores.

To tackle these challenges, we propose a new training framework, DiGeo, to make the best of both worlds for generalized few-shot object detection, i.e., improving generalization on novel classes without hurting the detection of base classes. Our motivation is to learn discriminative Geo- metry-aware features via \textit{inter-class separation} and \textit{intra-class compactness}. For inter-class separation, we expect the class centers \cite{53} to be well distinct from each other. Motivated by the symmetric geometry of simplex equiangular tight frame (ETF) \cite{36}, we proposed to use ETF as classifier to guide the separation of features. To be specific, we derive an offline ETF whose weights are maximally & equivalently separated \textit{(i.e., independent from the training data distribution)} and are assigned as fixed centers for all classes. For intra-class compactness, we expect the features to be closed to the class centers for a clear decision boundary. In practice, we add class-specific margins to output logits during training to push the features close to the class centers. The margins are based on instance distribution prior and are then adaptively adjusted though self-distillation. Meanwhile, we consider the huge imbalance between \textit{base} set and \textit{novel} set, and up-sample the \textit{novel} set to facilitate the feature extraction.

We validate the effectiveness of DiGeo under the GF-SOD setting on Pascal VOC \cite{3,4} and MS COCO \cite{27}. Compared to existing methods, we can both achieve precise detection on base classes and sufficiently improve the adaptation efficiency on novel classes using a single model. Furthermore, our DiGeo can be intuitively extended to long-tailed object detection. Experimental results on LVIS datasets demonstrate the generalizability of our approach. Our contributions are summarized as follows:

- We conduct extensive experiments on three benchmark datasets for few-shot object detection and long-tailed object detection to verify the generalizability of DiGeo.

2. Related Work

\textbf{Few-shot object detection (FSOD)} aims to detect objects of few-shot (\textit{novel}) classes at instance-level. To improve the adaptation efficiency, the approaches based on the meta-learning and the transfer-learning are investigated. The \textit{meta-learning approaches} \cite{5,9–12,18} learns a class-agnostic meta-learner to align instances of the same class from different images. Under the Faster-RCNN framework, the attention-based meta-RPN \cite{5} and meta-detector \cite{10} are proposed to generate class-relevant proposals and improve the instance alignment. In addition, approaches based on Transformer \cite{11} and YoLo \cite{18} are proposed to extract features jointly and align features at multiple scales. The \textit{transfer-learning approaches} \cite{30,44,52,54} performs finetuning for few-shot adaptation. Specifically, TFA \cite{52} pre-trains an base detector from plenty of \textit{base} samples and finetune it for novel classes. To improve the adaptation efficiency, multi-scale feature extraction \cite{54} and regularization such as contrastive loss \cite{44}, margin equilibrium \cite{21} and transformation invariance \cite{20} are employed. Recently, DeFRCN \cite{39} adjusts gradients back-propagated from different losses and achieve superior novel detection scores.

\textbf{Generalized Few-Shot Object Detection.} For all FSOD approaches mentioned above, the precision on \textit{base} detection is sacrificed after few-shot adaptation. This phenomenon has also been observed in various vision tasks where models forget the base knowledge due to domain gap or distribution gap \cite{33–35,38,48,63,64}. As pointed out by Fan \textit{et al.} \cite{6}, different from the classification \cite{7,17,24,29,31,43,49,59,62}, an image may contain instances from both novel and base classes and base detection is also important. Then, they propose a consistency regularization few-shot fine-tuning and employ an model ensembling technique to preserve the precision of base detection. However, the few-shot adaptation efficiency is inevitably limited. In a more general case, \textit{long-tail object detection (LTOD)} has been studied where techniques such as resampling \cite{41,61}, decoupling \cite{23,50} and reweighting \cite{22,66} are studied. Also, ACSL \cite{51} revisits LTOD from a statistic-free perspective and propose the adaptive suppression loss.

\textbf{Feature Distribution on a Balanced Set} has been studied in classification. To be specific, the weights in the last linear layer is treated as class centers where the geometry property of feature output by pernunimate layer is analyzed. Recently, Papyan \textit{et al.} \cite{36} summarized it as neural collapse (NC) and observed that 1) the features in the same class are maximally concentrated towards the class mean and different feature clusters are maximally separated \cite{57}. 2) The class means and the class centers converge to each other.
3. Background

We first introduce the few-shot object detection (FSOD) task, and analyze the limitations of existing FSOD methods.

3.1. Few-shot Object Detection

In this paper, we focus on the task of few-shot object detection (FSOD). The training data consists of a base set \(D_b \) and a novel set \(D_n \), where the base classes \(C_b \) have plenty of annotated object instances while novel classes \(C_n \) have limited annotations. In an \(N_{n} \)-way \(K \)-shot FSOD task with \(|C_n| = N_n\), each novel class has \(K \) annotated instances. Note that an image may contain multiple instances from different classes with associated bounding boxes, which is more challenging than the few-shot classification where each image contains one object to be recognized. Then, we follow \([6, 52]\) to validate the robustness of detection model under the generalized few-shot object detection (GFSOD) setting, where the test samples come from both base and novel classes, and the models are evaluated on all classes.

Commonly, object detection models consist of a proposal generation module to generate a set of region candidates, and a detection module to localize & classify objects on the extracted proposals \([2, 40, 42, 45, 65]\). For the classification part, an additional background class should be considered to recognize the proposal with no foreground objects. We regard the last linear layer as classifier, and its weights \(W = \{w_i\}_{i=1}^{N_b+N_n+1} \) as class centers where \(N_b = |C_b| \). Without loss of generality, we set \(W_b = \{w_i\}_{i=1}^{N_b} \), \(W_n = \{w_i\}_{i=N_b+1}^{N_b+N_n} \), and \(W_+ = \{w_i\}_{i=N_b+1}^{N_n+1} \) as weights for base classes \(C_b \), novel classes \(C_n \), and background \(c_- \).

3.2. Analysis of Existing Methods

As a representative transfer-learning approach shown in Fig. 2(a), TFA \([52]\) first trains a Base detector on \(D_b \) for \(C_b \) as initialization. Then, in an \(N_{n} \)-way \(K \)-shot GFSOD task, \(K \) instances for each base class \(c \in C_b \) from \(D_b \) are selected to a subset \(D_b^- \). The detector is fine-tuned on \(D_b^- \cup D_n \) with balanced training data distribution over \(C_b \cup C_n \). However, for each class, as the training data is extremely limited, overfitting to \(D_b^- \) is unignorable and results in the drop of base detection. As such, Retentive RCNN \([6]\) proposes to ensemble the detector adapted for \(C_b \cup C_n \) and the Base detector by combining their outputs as final prediction. However, the novel detection performance on \(C_n \) is limited.

Nevertheless, training among \(D_b \cup D_n \) makes the model favor \(C_b \). As shown in Fig. 3(a), the novel weights \(W_n \) are not well-learned and close to weights of other foreground classes. With such a classifier, the proposal features (i.e., input feature of classifier) cannot be separated. Thus, as shown in Fig. 2(b), we obtain a classifier offline with well-separated weights. For each class, the features are trained to be compact and close to the centers using learnable margins.

4. Approach

Considering the limitations mentioned above, we aim to achieve the best of both worlds using a single model, i.e., improve the few-shot adaptation performance on novel classes without hurting the precision on base detection. Our motivation is to enhance the discriminative feature learning of detection models, i.e., clear boundaries on the feature space to discriminate all classes. We realize this idea from two aspects, inter-class separation between all classes and intra-class compactness for each class.

4.1. Inter-Class Separation

We realize inter-class separation by maximizing the pairwise distances between class centers. Specifically, for each \(w_i \), we maximize its minimum distance with all other weights \(W \setminus \{w_i\} \):

\[
W^* = \arg\max_W \sum_{i=1}^{N_c} \min_{j \neq i} ||w_i - w_j||^2 \quad s.t. \quad ||w_i|| = 1, \ \forall w_i \in W
\]

\[
(1)
\]
where \(N_c = N_b + N_n + 1 \) and all weight vectors are of the same norm (e.g., 1). When the feature dimension \(d \geq N_c - 1 \), the distances of all class center pairs in \(W^s \) should be the same. Also, the angle between any two of the class centers has the same value given \(\|w_i\| = 1 \). In this way, we expect the class centers to be evenly distributed in the feature space. In this case, \(W^s \) is equivalent to simple equiangular tight frame (ETF) [36]. Furthermore, we have the following theorem for ETF.

Theorem Suppose the vector space is \(d \)-dimensional and the number of vectors is \(N \). When \(d \geq N - 1 \), we can always derive a simplex ETF whose vectors are maximally and equally separated from each other.

The above theorem guarantees the existence of ETF in application when \(d \geq N - 1 \). For \(d < N_c - 1 \), e.g., the number of classes is large while the feature dimension is compact, we can project the \(d \)-dim feature to a \(d' \)-space with \(d' \geq N_c - 1 \). Then, we can always obtain a Simplex ETF classifier in the mapped feature space.

We have two options to obtain the Simplex ETF classifier. The **offline** solution is to use Eq. (1) as a regularization loss to learn the classifier during training. The **online** solution is to manually set up the Simplex ETF classifier for all classes \(C = C_b \cup C_n \cup \{c_\perp\} \) and fix it during training. We experimentally find the offline solution is more stable and better than the online solution (details discussed in Sec. 5.4) and thus use the offline solution in implementation.

4.2. Intra-Class Compactness

We realize intra-class compactness by tightening the clusters of features and push the samples close to the assigned center in \(W^s \). The challenges are two folds. First, the number of training samples in base and novel classes extremely are imbalanced, which makes it hard to determine the boundaries of novel classes in the feature space. Second, as the number of novel classes is much smaller than that of base classes, i.e., \(|D_n| \ll |D_b| \), the network receives less positive gradients for novel classes [51], which makes the features of instances in novel classes farther to the class centers and thus less discriminative.

Inspired by the success of logit adjustment in long-tailed recognition [32], we apply class-specific margins on logits to modify the classification loss and balance the optimization between base and novel classes. Specifically, we calculate the class-specific margins based on the frequencies of instance (i.e., bounding box annotations) as priors:

\[
m_c = \begin{cases}
- \log(p_c) & \text{if } c \in C_b \cup C_n \\
- \log(p_\perp) & \text{if } c = c_\perp
\end{cases},
\]

where \(p_c \) is the frequency of bounding box annotations for class \(c \), and \(p_\perp \) is an estimated probability of background boxes to train the classifier, and \(p_\perp + \sum_{c \in C_b \cup C_n} p_c = 1 \). Intuitively, the class with fewer data is assigned with a larger margin to guarantee the learning of this class.

Suppose that the logit outputs for sample \(x \) are \(v = \{v_c\} \in \mathbb{R}^c \), we use the following prior-margin cross-entropy loss by adding the margins to the logits:

\[
L_{\text{prior}}(x) = - \sum_{c \in C} y_c \cdot \log \frac{\exp(v_c - m_c)}{\sum_{c' \in C} \exp(v_{c'} - m_{c'})},
\]

where \(y_c \) equals to 1 if \(c \) is the ground-truth label, otherwise \(y_c = 0 \). Note that our prior-margin loss reduce to vanilla cross-entropy loss if all margins \(m_c \) are set as 0. As the margins are obtained based on prior distribution and fixed during training, we term this baseline as Prior.

Though the margin-based loss is calculated over all the proposals, precisely calculating the margins from the proposals is time-consuming. Thus, we obtain the prior margins over all annotated bounding box instances. In this case, there is a misalignment between proposal-based loss and instance-based margin. To mitigate this gap, we proposed to adaptively learn the margins based on the priors. Motivated by the success of self distillation [49] in knowledge transfer, we use the detection module learned from \(L_{\text{prior}} \) in Eq. (3) as teacher model, and distill its knowledge to a student model to adaptively learn and update the margins through soft labels, which has the same architecture as teacher model but different parameters. For sample \(x \), the ground-truth label is \(y \), the adaptive-margin distillation objective is:

\[
L_{\text{adapt}}(x) = - \sum_{c \in C} p^t_c + y_c \cdot \log \frac{\exp(v^t_c - m^*_c)}{\sum_{c' \in C} \exp(v^t_{c'} - m^*_c)},
\]

where the predicted probability for class \(c \) of the teacher model \(p^t_c \) is obtained by \(\frac{\exp(v^t_c - m^*_c)}{\sum_{c' \in C} \exp(v^t_{c'} - m^*_c)} \), \(v^t_c \) denotes the logit output for class \(c \) of the student model, and \(m^*_c \) denotes the adaptive learnable margin for class \(c \). The teacher model is fixed during self distillation, and the student detection head uses the same ETF classifier weights \(W^s \) with other parts in the detection module to be learned. Finally, we use the student model for evaluation.

Even though the margins are added during training, the extreme imbalance between base set and novel set still makes the detector favors more on base set. Considering this limitation and the challenge that the number of novel classes is very limited to provide the gradients for network updating, we proposed to up-sample the images containing annotations of novel classes (\(D^+_n \)). Specifically, we use repeated factor sampling (RFS) [8] and the repeating times is set by a hyper-parameter threshold in RFS. We experimentally found that using up-sampling itself can achieve marginal improvement, but can clearly improve the novel detection precision combined with our approach. This observation demonstrates that the up-sampling strategy works closely with our hypothesis rather than just a trivial trick.
Table 1. Performance comparison of AP$_{50}$ on the PASCAL VOC dataset on all classes $C_b \cup C_n$. The best and second-best are highlighted.

<table>
<thead>
<tr>
<th>Approach</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Meta-Learning Approaches</td>
<td></td>
</tr>
<tr>
<td>Meta RCNN [56]*</td>
<td>17.5</td>
<td>30.5</td>
<td>36.1</td>
<td>42.3</td>
<td>55.6</td>
<td>19.4</td>
<td>33.2</td>
<td>34.8</td>
<td>44.4</td>
<td>53.9</td>
<td>20.3</td>
</tr>
<tr>
<td>Retinitve R-CNN [6]†</td>
<td>71.3</td>
<td>72.3</td>
<td>72.1</td>
<td>74.0</td>
<td>74.6</td>
<td>66.8</td>
<td>68.4</td>
<td>70.2</td>
<td>70.7</td>
<td>71.5</td>
<td>69.0</td>
</tr>
<tr>
<td>Transfer-Learning Approaches</td>
<td></td>
</tr>
<tr>
<td>TFA w/ fc [52]</td>
<td>69.3</td>
<td>66.9</td>
<td>70.3</td>
<td>73.4</td>
<td>73.2</td>
<td>64.7</td>
<td>66.3</td>
<td>67.7</td>
<td>68.3</td>
<td>68.7</td>
<td>67.8</td>
</tr>
<tr>
<td>TFA w/ cos [52]</td>
<td>69.7</td>
<td>68.2</td>
<td>70.5</td>
<td>73.4</td>
<td>72.8</td>
<td>65.5</td>
<td>65.0</td>
<td>67.7</td>
<td>68.0</td>
<td>68.6</td>
<td>67.9</td>
</tr>
<tr>
<td>FRCN-ft-full [56]*</td>
<td>55.4</td>
<td>57.1</td>
<td>56.8</td>
<td>60.1</td>
<td>60.9</td>
<td>50.1</td>
<td>53.7</td>
<td>53.6</td>
<td>55.9</td>
<td>55.5</td>
<td>58.5</td>
</tr>
<tr>
<td>MFSR [54]</td>
<td>56.8</td>
<td>60.4</td>
<td>62.8</td>
<td>66.1</td>
<td>69.0</td>
<td>53.1</td>
<td>57.6</td>
<td>62.8</td>
<td>64.2</td>
<td>66.3</td>
<td>55.2</td>
</tr>
<tr>
<td>DiGeo (Ours)</td>
<td>71.3</td>
<td>72.3</td>
<td>72.1</td>
<td>74.0</td>
<td>74.6</td>
<td>66.8</td>
<td>68.4</td>
<td>70.2</td>
<td>70.7</td>
<td>71.5</td>
<td>69.0</td>
</tr>
</tbody>
</table>

*: results reported by Retentive R-CNN [6] and TFA [52].†: Model ensembling.

Table 2. Comparison of nAP$_{50}$ and bAP$_{50}$ on the PASCAL VOC.

<table>
<thead>
<tr>
<th>Approach</th>
<th>nAP$_{50}$ (Avg. on splits for each shot)</th>
<th>bAP$_{50}$ (Avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Meta-R-CNN [56]*</td>
<td>11.2</td>
<td>15.3</td>
</tr>
<tr>
<td>FSRW [37]</td>
<td>16.6</td>
<td>17.5</td>
</tr>
<tr>
<td>FsDetView [55]*</td>
<td>26.9</td>
<td>20.4</td>
</tr>
<tr>
<td>TFA w/ fc [52]</td>
<td>27.6</td>
<td>30.6</td>
</tr>
<tr>
<td>TFA w/ cos [52]</td>
<td>31.4</td>
<td>32.6</td>
</tr>
<tr>
<td>FRCN-ft-full [56]*</td>
<td>16.1</td>
<td>20.6</td>
</tr>
<tr>
<td>MFSR [54]</td>
<td>36.2</td>
<td>37.2</td>
</tr>
<tr>
<td>Retentive RCNN [6]†</td>
<td>31.4</td>
<td>37.1</td>
</tr>
<tr>
<td>DiGeo (Ours)</td>
<td>31.6</td>
<td>36.1</td>
</tr>
</tbody>
</table>

*: results reported by Retentive R-CNN [6] and TFA [52].†: Model ensembling. Full tables can be found in Supp.

5. Experiment

We mainly conduct experiments on the few-shot object detection (FSOD) benchmark datasets Pascal VOC and MS COCO to validate the effectiveness of our proposed DiGeo. We further apply DiGeo on long-tailed object detection and conduct experiments on LVIS to show its generalizability.

5.1. Datasets & Training Details

Pascal VOC [3, 4] consists of 20 classes where the class split for C_b and C_n are 15 and 5 separately. The train set $D_b \cup D_n$ are from Pascal VOC 07+12 trainval sets [3, 4] where D_n is randomly sampled with K in $\{1,2,3,5,10\}$. Following TFA [52], we conduct experiments on three base-novel class partitions marked as $\{1,2,3\}$. In each partition, for fairness comparison, we use the same sampled novel instance numbers and report the detection precision for C_n (nAP$_{50}$), C_b (bAP$_{50}$), and $C_b \cup C_n$ (AP$_{50}$) on Pascal VOC 07 test set [3].

MS COCO [27] is derived from COCO14 [27] consisting of 80 classes where $|C_b| = 60$, $|C_n| = 20$ and C_n are in common with Pascal VOC. The D_b and D_n are from train set with $K = \{10, 30\}$. The detection precision of C_n (nAP), C_b(bAP) and $C_b \cup C_n$ (AP) on COCO 14 val set are reported. **LVIS** [8] is derived from COCO17 [27] and contains ~0.7M training instances of 1230 classes. The classes are divided into three groups w.r.t. the amount of annotation, rare (1-10), common (11-100), and frequent (>100). Following [52], we report the precision for all classes (AP) and class groups (AP$_r$, AP$_c$, and AP$_f$) on the val set.

Implementation Details. We instantiate our approach on Faster-RCNN [42,52] which employs a region proposal network (RPN) to generate region candidates. For fair comparison, we use ResNet-101 with FPN [25] as backbone to extract image feature maps where the Resnet-101 backbone is initialized by ImageNet [19]-pretrained model. As the outputs of penultimate layer in original classification module are non-negative and does not meet the property of the ETF classifier, we add a linear layer (projector) with the same input and output dimension on top of the penultimate layer. The projector output is then used for classification. For RFS [16], we set the up-sampling threshold as 0.01 for PASCAL VOC and MS COCO and 0.001 for LVIS. During distillation, we share and fix the parameters of ResNet101 and FPN and only learn a new detection head. We follow the setup in TFA [52] baseline such as SGD optimizer [46]. More details can be found in Supp.

5.2. Comparison with FSOD Methods

We show the comparisons between our methods and state-of-the-art few-shot object detection approaches on PASCAL VOC and MSCOCO. We follow previous works to conduct experiments on three data splits with different shots of novel classes. As for the performance AP$_{50}$ over all classes in Table 1, our DiGeo achieves the best performances for 12 out of 15 cases. Compared to the baseline method TFA [52], our DiGeo outperformed TFA consistently in all shots & splits. Compared to the state-of-the-art Retentative RCNN model, our DiGeo achieves better AP$_{50}$ when the number of shots is larger than 2, and obtains com-
Table 3. Performance comparison of MS COCO dataset.

<table>
<thead>
<tr>
<th>Approach</th>
<th>10-shot</th>
<th>30-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP</td>
<td>bAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRCCN-ft-full</td>
<td>18.1</td>
<td>21.0</td>
</tr>
<tr>
<td>[56]*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRCCN-BCE</td>
<td>29.2</td>
<td>36.8</td>
</tr>
<tr>
<td>[56]*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFA w/ tc</td>
<td>27.9</td>
<td>33.9</td>
</tr>
<tr>
<td>[52]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFA w/ cos</td>
<td>28.4</td>
<td>34.6</td>
</tr>
<tr>
<td>[52]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPSR</td>
<td>15.3</td>
<td>17.1</td>
</tr>
<tr>
<td>[54]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-R-CNN</td>
<td>5.4</td>
<td>5.2</td>
</tr>
<tr>
<td>[56]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FsDetView</td>
<td>6.7</td>
<td>6.4</td>
</tr>
<tr>
<td>[55]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retentive R-CNN</td>
<td>32.1</td>
<td>39.2</td>
</tr>
<tr>
<td>[6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiGeo</td>
<td>32.0</td>
<td>39.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: results are reported by Retentive R-CNN [6] and TFA [52].

5.3. Analysis of Inter-Class Separation

Revisit the conventional adaptation strategy from the perspective of separation between classes. Recall that existing few-shot object detection methods follow in TFA [52] and employ a two-step strategy, i.e., first pre-train on the base train set D_b to learn a Base detector, and then fine-tune on the union of the downsampled base set and the novel set, i.e., $D_{n^-} \cup D_n$. We take TFA [52] as the baseline and consider the following settings for the second step: (1) full set $D_b \cup D_n$, (2) balanced set $D_{n^-} \cup D_n$, (3) only novel set D_n.

As shown in Fig. 3, we visualize the separation of classifier weights based on their pair-wise cosine similarities. By comparing Fig. 3(a-c), fine-tuning among a balanced set is vital to learn the well-separated classifier weights for all classes $C_b \cup C_n$. Instead, using the full set would make the novel classes entangled in Fig. 3(a) due to the extremely imbalanced class distribution (i.e., $|D_n| \ll |D_b|$). Although only using D_n can maximally separate the weights of W_n, as no training data of C_b is seen, the separation between base weights in W_b is hurt and each novel class center $w_i \in W_n$ may still close to some base weight, e.g., the similarity between classes “cat” and “cow” is relatively high in Fig. 3(c).

As summarized in Table 4, the novel detection fails when the full set is used in fine-tuning (Row(1)). The detection precision on both $C_b \cup C_n$ is sub-optimal when no annotation of base class is provided (Row(3)) and the detector can easily overfit to the small D_n. Then, finetuning on the balanced set (Row(2)) can preserve the base knowledge, maximize the few-shot adaptation effect, and achieve the highest score among the three settings. However, such a balanced set has discarded the diverse training samples of C_b and the performance drop in base detection is inevitable.

Training on the union of whole base set and upsampled novel set.

In contrast, we propose to train from $D_b \cup D_n^+$ directly. Note that D_n^+ is a duplication of D_n with same images but more copies. To properly separate the features of different classes, we use the data-independent optimization target in Eq. 1 to derive a ETF classifier weights W^* offline. As mentioned in Sec. 4.1, Eq. 1 can still be used as a regularization loss to supervised the learning of the last linear layer during training (online). However, as shown in Fig. 3(d), it is still hard to get a perfect ETF classifier shown in Fig. 3(e). After all, the update of classifier weights is also impacted by the weight decay regularization and classification loss, and the learning of weights is not stable, in particular, on an extremely imbalanced dataset. As the classifier weights are kept being updated, the optimization direction of each feature cluster is not stable, which then impede the adaptation efficiency. As compared in Table 5, the performance by online optimization is slightly worse, in particular when $K = 1$. Though the classifier weights are fixed in
ETF, as the pair-wise angles between weights are the same, we can equivalently assign the weights to all classes C.

Next, as compared in Table 6 Row (1,3,4), though adding margins or performing RFS may help with inter-class separation and improve nAP$_{50}$ on C_n, since the weights W_n are still not well-learned due to the extreme imbalance between D_b and D_n, the performance gain is limited. In contrast, fixing the weights as ETF (Row (3,5)) can improve the novel detection, in particular, the nAP$_{50}$ is boosted from 12.2 to 35.8 in Row (3,5), which shows that the inter-class separation is essential for distinguishing objects in GFSOD.

Furthermore, being orthogonal to the previous FSOD approaches, our model can be intuitively used as initialization for their adaptation. For the sake of simplicity, we only consider Prior and use a strong baseline DeFRCN [39] for comparison. The PCB calibration [39] is removed to better demonstrate the effect of Prior. As reported in Table 7, though DeFRCN has improved novel detection (nAP$_{50}$) significantly, it still sacrifices the performance on base set. Then, comparing with using Base detector as initialization, on both datasets, using our Prior can both help with the adaptation on C_n and mitigate the drop in C_b (bAP$_{50}$). Finally, comparing Table 7 Row (1) and Prior in Table 6, adding the step of Base detector initialization can only provide marginal improvement for Prior. As Prior has already outperformed TFA, we skip pre-training step for simplicity.

5.4. Analysis of Intra-Class Compactness

Even though the classifier weights have been maximally and equally separated in Fig. 3(e), as the training data is limited, it is still necessary to effectively push the features towards the assigned weight. As compared in Fig. 4, when ETF is used, for each $c \in C_n$, as $|D_a| \ll |D_b|$, the mean of the its features is still distant from the assigned weights. However, our Prior baseline clearly push the features to the assigned weights to facilitate the novel detection. Similarly, in Table 6, only using the ETF classifier can introduce limited gain (Row (1,2)). Though the ETF classifier with dot-regression loss has been used for long-tail classification [57, 58], we note the efficiency in dealing with hugely imbalanced datasets is limited. By adding margins.
1. Only Replace W**
2. Prior Baseline

Figure 4. Pair-wise cosine similarity between class means and weights. The class mean is obtained by averaging of features for each class. When the detector is trained on full set \(D_b \cup D_n \), we first (a) replace the linear classifier with ETF and (b) then use our Prior baseline. Our Prior can push the features close to the assigned weights effectively.

Figure 5. With a detector trained on the \(D_b \cup D_n \) with vanilla \(\mathcal{L}_{CE} \). For each class, we calculate the mean of a) the number of proposals per instance and b) classification confidence score where the number of annotations per class is plotted for reference.

to tighten each cluster and/or up-sampling novel instances in RFS to ensure that sufficient features of \(C_n \) are used for training, the nAP\(_50\) can then be improved (Row \(\{2,5,6,7\} \)).

Obtaining effective margins is essential to train on an extremely imbalanced dataset. As discussed in [32], the margins to be added should meet conditions such as Fisher consistency [1,28] to balance the error among different classes. As \(|D_n| \ll |D_b|\), directly learning the margins for each class individually from scratch (Table 8 Row \(\{11\} \)) is difficult and may suffer from training instability such as gradient explosion. By sharing margins for classes in the same group, i.e., \(C_b, C_n \), and \(\cdots \), the nAP\(_{50}\) can be improved slightly.

As summarized in Fig. 5, for each class, the number of proposals used to train the detection module ranges from 11 to 17 per instance on average. As such, using the prior of instance distribution \(\{p_c\}_c \in C_b \cup C_n \) can help estimate good margins (Prior). However, as the number of proposals for \(C_n \) (11~14) is still slightly less than that of \(C_b \) (13~17) and the margin \(m_{c-} \) for \(c_- \) is roughly estimated, it is still necessary to learn margins adaptively. As no stronger prior knowledge can be used, directly learning the margins initialized by \(\{\log(p_c)\} \) does not help clearly (Prior+). However, through self-distillation, the logits output by pre-trained Prior baseline model can be used to indicate the relationship between the proposals features and all class centers, which is then used as supervision signal in our DiGeo.

5.5. Extension to Long-tailed Object Detection

As compared in Table 9, we use TFA [52] and ACSL [51] as two baselines. By employing our design, our DiGeo can achieve higher detection precision on both cases. For comparison with ACSL, we follow the training procedure in ACSL and our approach can benefit from the prior of data distribution to learn discriminative features. More detailed explanation & results can be found in Supp.

6. Conclusion

In this paper, we revisit generalized few-shot object detection from a perspective of discriminative feature learning. We further proposed a simple but effective framework, Discriminative Geometry-aware (DiGeo) learning, for inter-class separation and intra-class compactness. Experiments demonstrate that our DiGeo improves generalization on novel classes without hurting the detection of base classes, and can be extended to long-tail object detection. In the future, we will keep investigating the desired properties of features in object detection and adapted it more realistic scenarios such as domain adaptation.

Acknowledgement This material is based on research sponsored by Air Force Research Laboratory (AFRL) under agreement number FA8750-19-1-1000. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation therein. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Laboratory, DARPA or the U.S. Government.
References

[24] Han Lin, Guangxing Han, Jiawei Ma, Shiyuan Huang, Xudong Lin, and Shih-Fu Chang. Supervised knowledge distillation for few-shot transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023. 2

Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang. Prevalence

